Commit e8e21970 authored by Alexander Alekhin's avatar Alexander Alekhin

samples: use findFile() in dnn

parent c4c31f5b
......@@ -64,9 +64,9 @@ int main(int argc, char **argv)
parser.printMessage();
return 0;
}
string modelTxt = parser.get<string>("proto");
string modelBin = parser.get<string>("model");
string imageFile = parser.get<string>("image");
string modelTxt = samples::findFile(parser.get<string>("proto"));
string modelBin = samples::findFile(parser.get<string>("model"));
string imageFile = samples::findFile(parser.get<string>("image"));
bool useOpenCL = parser.has("opencl");
if (!parser.check())
{
......
......@@ -86,6 +86,10 @@ def findFile(filename):
if os.path.exists(filename):
return filename
fpath = cv.samples.findFile(filename, False)
if fpath:
return fpath
samplesDataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'..',
'data',
......
......@@ -43,7 +43,7 @@ cv.dnn_registerLayer('Crop', CropLayer)
#! [Register]
# Load the model.
net = cv.dnn.readNet(args.prototxt, args.caffemodel)
net = cv.dnn.readNet(cv.samples.findFile(args.prototxt), cv.samples.findFile(args.caffemodel))
kWinName = 'Holistically-Nested Edge Detection'
cv.namedWindow('Input', cv.WINDOW_NORMAL)
......
......@@ -13,7 +13,7 @@ parser.add_argument('--height', default=-1, type=int, help='Resize input to spec
parser.add_argument('--median_filter', default=0, type=int, help='Kernel size of postprocessing blurring.')
args = parser.parse_args()
net = cv.dnn.readNetFromTorch(args.model)
net = cv.dnn.readNetFromTorch(cv.samples.findFile(args.model))
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV);
if args.input:
......
......@@ -68,13 +68,13 @@ def drawBox(frame, classId, conf, left, top, right, bottom):
# Load a network
net = cv.dnn.readNet(args.model, args.config)
net = cv.dnn.readNet(cv.samples.findFile(args.model), cv.samples.findFile(args.config))
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
winName = 'Mask-RCNN in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
cap = cv.VideoCapture(cv.samples.findFileOrKeep(args.input) if args.input else 0)
legend = None
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
......
......@@ -26,12 +26,12 @@ parser.add_argument('--annotations', help='Path to COCO annotations file.', requ
args = parser.parse_args()
### Get OpenCV predictions #####################################################
net = cv.dnn.readNetFromTensorflow(args.weights, args.prototxt)
net = cv.dnn.readNetFromTensorflow(cv.samples.findFile(args.weights), cv.samples.findFile(args.prototxt))
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV);
detections = []
for imgName in os.listdir(args.images):
inp = cv.imread(os.path.join(args.images, imgName))
inp = cv.imread(cv.samples.findFile(os.path.join(args.images, imgName)))
rows = inp.shape[0]
cols = inp.shape[1]
inp = cv.resize(inp, (300, 300))
......
......@@ -67,7 +67,7 @@ if args.classes:
classes = f.read().rstrip('\n').split('\n')
# Load a network
net = cv.dnn.readNet(args.model, args.config, args.framework)
net = cv.dnn.readNet(cv.samples.findFile(args.model), cv.samples.findFile(args.config), args.framework)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
outNames = net.getUnconnectedOutLayersNames()
......@@ -182,7 +182,7 @@ def callback(pos):
cv.createTrackbar('Confidence threshold, %', winName, int(confThreshold * 100), 99, callback)
cap = cv.VideoCapture(args.input if args.input else 0)
cap = cv.VideoCapture(cv.samples.findFileOrKeep(args.input) if args.input else 0)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
......
......@@ -66,9 +66,9 @@ int main(int argc, char **argv)
"{ t threshold | 0.1 | threshold or confidence value for the heatmap }"
);
String modelTxt = parser.get<string>("proto");
String modelBin = parser.get<string>("model");
String imageFile = parser.get<String>("image");
String modelTxt = samples::findFile(parser.get<string>("proto"));
String modelBin = samples::findFile(parser.get<string>("model"));
String imageFile = samples::findFile(parser.get<String>("image"));
int W_in = parser.get<int>("width");
int H_in = parser.get<int>("height");
float thresh = parser.get<float>("threshold");
......
......@@ -45,7 +45,7 @@ else:
inWidth = args.width
inHeight = args.height
net = cv.dnn.readNetFromCaffe(args.proto, args.model)
net = cv.dnn.readNetFromCaffe(cv.samples.findFile(args.proto), cv.samples.findFile(args.model))
cap = cv.VideoCapture(args.input if args.input else 0)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment