Commit e8c7d617 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #16817 from dkurt:dnn_onnx_lstm

parents b1f390b1 467c3ef0
......@@ -93,6 +93,7 @@ class LSTMLayerImpl CV_FINAL : public LSTMLayer
float forgetBias, cellClip;
bool useCellClip, usePeephole;
bool reverse; // If true, go in negative direction along the time axis
bool bidirectional; // If true, produces both forward and reversed directions along time axis
public:
......@@ -101,6 +102,7 @@ public:
{
setParamsFrom(params);
bidirectional = params.get<bool>("bidirectional", false);
if (!blobs.empty())
{
CV_Assert(blobs.size() >= 3);
......@@ -110,10 +112,11 @@ public:
const Mat& Wh = blobs[0];
const Mat& Wx = blobs[1];
const Mat& bias = blobs[2];
CV_Assert(Wh.dims == 2 && Wx.dims == 2);
CV_Assert(Wh.rows == Wx.rows);
CV_Assert(Wh.rows == 4*Wh.cols);
CV_Assert(Wh.rows == (int)bias.total());
CV_CheckEQ(Wh.dims, 2, "");
CV_CheckEQ(Wx.dims, 2, "");
CV_CheckEQ(Wh.rows, Wx.rows, "");
CV_CheckEQ(Wh.rows, (1 + static_cast<int>(bidirectional))*4*Wh.cols, "");
CV_CheckEQ(Wh.rows, (int)bias.total(), "");
CV_Assert(Wh.type() == Wx.type() && Wx.type() == bias.type());
// Peephole weights.
......@@ -135,6 +138,7 @@ public:
useCellClip = params.get<bool>("use_cell_clip", false);
usePeephole = params.get<bool>("use_peephole", false);
reverse = params.get<bool>("reverse", false);
CV_Assert(!reverse || !bidirectional);
allocated = false;
outTailShape.clear();
......@@ -206,6 +210,7 @@ public:
outResShape.push_back(_numSamples);
outResShape.insert(outResShape.end(), outTailShape_.begin(), outTailShape_.end());
outResShape.back() *= (1 + static_cast<int>(bidirectional));
size_t noutputs = produceCellOutput ? 2 : 1;
outputs.assign(noutputs, outResShape);
......@@ -252,6 +257,7 @@ public:
outTsShape.clear();
outTsShape.push_back(numSamples);
outTsShape.insert(outTsShape.end(), outTailShape.begin(), outTailShape.end());
outTsShape.back() *= (1 + static_cast<int>(bidirectional));
allocated = true;
}
......@@ -272,9 +278,12 @@ public:
outputs_arr.getMatVector(output);
internals_arr.getMatVector(internals);
const Mat &Wh = blobs[0];
const Mat &Wx = blobs[1];
const Mat &bias = blobs[2];
const int numDirs = 1 + static_cast<int>(bidirectional);
for (int i = 0; i < numDirs; ++i)
{
const Mat &Wh = blobs[0].rowRange(i * blobs[0].rows / numDirs, (i + 1) * blobs[0].rows / numDirs);
const Mat &Wx = blobs[1].rowRange(i * blobs[1].rows / numDirs, (i + 1) * blobs[1].rows / numDirs);
const Mat &bias = blobs[2].colRange(i * blobs[2].cols / numDirs, (i + 1) * blobs[2].cols / numDirs);
int numOut = Wh.size[1];
......@@ -288,10 +297,11 @@ public:
Mat xTs = input[0].reshape(1, numSamplesTotal);
Mat hOutTs = output[0].reshape(1, numSamplesTotal);
hOutTs = hOutTs.colRange(i * hOutTs.cols / numDirs, (i + 1) * hOutTs.cols / numDirs);
Mat cOutTs = produceCellOutput ? output[1].reshape(1, numSamplesTotal) : Mat();
int tsStart, tsEnd, tsInc;
if (reverse) {
if (reverse || i == 1) {
tsStart = numTimeStamps - 1;
tsEnd = -1;
tsInc = -1;
......@@ -359,6 +369,7 @@ public:
cInternal.copyTo(cOutTs.rowRange(curRowRange));
}
}
}
};
Ptr<LSTMLayer> LSTMLayer::create(const LayerParams& params)
......
This diff is collapsed.
......@@ -405,6 +405,8 @@ TEST_P(Test_ONNX_layers, Reshape)
TEST_P(Test_ONNX_layers, Squeeze)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
testONNXModels("squeeze");
}
......@@ -451,6 +453,16 @@ TEST_P(Test_ONNX_layers, Split_EltwiseMax)
testONNXModels("split_max");
}
TEST_P(Test_ONNX_layers, LSTM)
{
testONNXModels("lstm", npy, 0, 0, false, false);
}
TEST_P(Test_ONNX_layers, LSTM_bidirectional)
{
testONNXModels("lstm_bidirectional", npy, 0, 0, false, false);
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
class Test_ONNX_nets : public Test_ONNX_layers
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment