Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e8c7d617
Commit
e8c7d617
authored
Mar 23, 2020
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #16817 from dkurt:dnn_onnx_lstm
parents
b1f390b1
467c3ef0
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
194 additions
and
46 deletions
+194
-46
recurrent_layers.cpp
modules/dnn/src/layers/recurrent_layers.cpp
+19
-8
onnx_importer.cpp
modules/dnn/src/onnx/onnx_importer.cpp
+163
-38
test_onnx_importer.cpp
modules/dnn/test/test_onnx_importer.cpp
+12
-0
No files found.
modules/dnn/src/layers/recurrent_layers.cpp
View file @
e8c7d617
...
@@ -93,6 +93,7 @@ class LSTMLayerImpl CV_FINAL : public LSTMLayer
...
@@ -93,6 +93,7 @@ class LSTMLayerImpl CV_FINAL : public LSTMLayer
float
forgetBias
,
cellClip
;
float
forgetBias
,
cellClip
;
bool
useCellClip
,
usePeephole
;
bool
useCellClip
,
usePeephole
;
bool
reverse
;
// If true, go in negative direction along the time axis
bool
reverse
;
// If true, go in negative direction along the time axis
bool
bidirectional
;
// If true, produces both forward and reversed directions along time axis
public
:
public
:
...
@@ -101,6 +102,7 @@ public:
...
@@ -101,6 +102,7 @@ public:
{
{
setParamsFrom
(
params
);
setParamsFrom
(
params
);
bidirectional
=
params
.
get
<
bool
>
(
"bidirectional"
,
false
);
if
(
!
blobs
.
empty
())
if
(
!
blobs
.
empty
())
{
{
CV_Assert
(
blobs
.
size
()
>=
3
);
CV_Assert
(
blobs
.
size
()
>=
3
);
...
@@ -110,10 +112,11 @@ public:
...
@@ -110,10 +112,11 @@ public:
const
Mat
&
Wh
=
blobs
[
0
];
const
Mat
&
Wh
=
blobs
[
0
];
const
Mat
&
Wx
=
blobs
[
1
];
const
Mat
&
Wx
=
blobs
[
1
];
const
Mat
&
bias
=
blobs
[
2
];
const
Mat
&
bias
=
blobs
[
2
];
CV_Assert
(
Wh
.
dims
==
2
&&
Wx
.
dims
==
2
);
CV_CheckEQ
(
Wh
.
dims
,
2
,
""
);
CV_Assert
(
Wh
.
rows
==
Wx
.
rows
);
CV_CheckEQ
(
Wx
.
dims
,
2
,
""
);
CV_Assert
(
Wh
.
rows
==
4
*
Wh
.
cols
);
CV_CheckEQ
(
Wh
.
rows
,
Wx
.
rows
,
""
);
CV_Assert
(
Wh
.
rows
==
(
int
)
bias
.
total
());
CV_CheckEQ
(
Wh
.
rows
,
(
1
+
static_cast
<
int
>
(
bidirectional
))
*
4
*
Wh
.
cols
,
""
);
CV_CheckEQ
(
Wh
.
rows
,
(
int
)
bias
.
total
(),
""
);
CV_Assert
(
Wh
.
type
()
==
Wx
.
type
()
&&
Wx
.
type
()
==
bias
.
type
());
CV_Assert
(
Wh
.
type
()
==
Wx
.
type
()
&&
Wx
.
type
()
==
bias
.
type
());
// Peephole weights.
// Peephole weights.
...
@@ -135,6 +138,7 @@ public:
...
@@ -135,6 +138,7 @@ public:
useCellClip
=
params
.
get
<
bool
>
(
"use_cell_clip"
,
false
);
useCellClip
=
params
.
get
<
bool
>
(
"use_cell_clip"
,
false
);
usePeephole
=
params
.
get
<
bool
>
(
"use_peephole"
,
false
);
usePeephole
=
params
.
get
<
bool
>
(
"use_peephole"
,
false
);
reverse
=
params
.
get
<
bool
>
(
"reverse"
,
false
);
reverse
=
params
.
get
<
bool
>
(
"reverse"
,
false
);
CV_Assert
(
!
reverse
||
!
bidirectional
);
allocated
=
false
;
allocated
=
false
;
outTailShape
.
clear
();
outTailShape
.
clear
();
...
@@ -206,6 +210,7 @@ public:
...
@@ -206,6 +210,7 @@ public:
outResShape
.
push_back
(
_numSamples
);
outResShape
.
push_back
(
_numSamples
);
outResShape
.
insert
(
outResShape
.
end
(),
outTailShape_
.
begin
(),
outTailShape_
.
end
());
outResShape
.
insert
(
outResShape
.
end
(),
outTailShape_
.
begin
(),
outTailShape_
.
end
());
outResShape
.
back
()
*=
(
1
+
static_cast
<
int
>
(
bidirectional
));
size_t
noutputs
=
produceCellOutput
?
2
:
1
;
size_t
noutputs
=
produceCellOutput
?
2
:
1
;
outputs
.
assign
(
noutputs
,
outResShape
);
outputs
.
assign
(
noutputs
,
outResShape
);
...
@@ -252,6 +257,7 @@ public:
...
@@ -252,6 +257,7 @@ public:
outTsShape
.
clear
();
outTsShape
.
clear
();
outTsShape
.
push_back
(
numSamples
);
outTsShape
.
push_back
(
numSamples
);
outTsShape
.
insert
(
outTsShape
.
end
(),
outTailShape
.
begin
(),
outTailShape
.
end
());
outTsShape
.
insert
(
outTsShape
.
end
(),
outTailShape
.
begin
(),
outTailShape
.
end
());
outTsShape
.
back
()
*=
(
1
+
static_cast
<
int
>
(
bidirectional
));
allocated
=
true
;
allocated
=
true
;
}
}
...
@@ -272,9 +278,12 @@ public:
...
@@ -272,9 +278,12 @@ public:
outputs_arr
.
getMatVector
(
output
);
outputs_arr
.
getMatVector
(
output
);
internals_arr
.
getMatVector
(
internals
);
internals_arr
.
getMatVector
(
internals
);
const
Mat
&
Wh
=
blobs
[
0
];
const
int
numDirs
=
1
+
static_cast
<
int
>
(
bidirectional
);
const
Mat
&
Wx
=
blobs
[
1
];
for
(
int
i
=
0
;
i
<
numDirs
;
++
i
)
const
Mat
&
bias
=
blobs
[
2
];
{
const
Mat
&
Wh
=
blobs
[
0
].
rowRange
(
i
*
blobs
[
0
].
rows
/
numDirs
,
(
i
+
1
)
*
blobs
[
0
].
rows
/
numDirs
);
const
Mat
&
Wx
=
blobs
[
1
].
rowRange
(
i
*
blobs
[
1
].
rows
/
numDirs
,
(
i
+
1
)
*
blobs
[
1
].
rows
/
numDirs
);
const
Mat
&
bias
=
blobs
[
2
].
colRange
(
i
*
blobs
[
2
].
cols
/
numDirs
,
(
i
+
1
)
*
blobs
[
2
].
cols
/
numDirs
);
int
numOut
=
Wh
.
size
[
1
];
int
numOut
=
Wh
.
size
[
1
];
...
@@ -288,10 +297,11 @@ public:
...
@@ -288,10 +297,11 @@ public:
Mat
xTs
=
input
[
0
].
reshape
(
1
,
numSamplesTotal
);
Mat
xTs
=
input
[
0
].
reshape
(
1
,
numSamplesTotal
);
Mat
hOutTs
=
output
[
0
].
reshape
(
1
,
numSamplesTotal
);
Mat
hOutTs
=
output
[
0
].
reshape
(
1
,
numSamplesTotal
);
hOutTs
=
hOutTs
.
colRange
(
i
*
hOutTs
.
cols
/
numDirs
,
(
i
+
1
)
*
hOutTs
.
cols
/
numDirs
);
Mat
cOutTs
=
produceCellOutput
?
output
[
1
].
reshape
(
1
,
numSamplesTotal
)
:
Mat
();
Mat
cOutTs
=
produceCellOutput
?
output
[
1
].
reshape
(
1
,
numSamplesTotal
)
:
Mat
();
int
tsStart
,
tsEnd
,
tsInc
;
int
tsStart
,
tsEnd
,
tsInc
;
if
(
reverse
)
{
if
(
reverse
||
i
==
1
)
{
tsStart
=
numTimeStamps
-
1
;
tsStart
=
numTimeStamps
-
1
;
tsEnd
=
-
1
;
tsEnd
=
-
1
;
tsInc
=
-
1
;
tsInc
=
-
1
;
...
@@ -359,6 +369,7 @@ public:
...
@@ -359,6 +369,7 @@ public:
cInternal
.
copyTo
(
cOutTs
.
rowRange
(
curRowRange
));
cInternal
.
copyTo
(
cOutTs
.
rowRange
(
curRowRange
));
}
}
}
}
}
};
};
Ptr
<
LSTMLayer
>
LSTMLayer
::
create
(
const
LayerParams
&
params
)
Ptr
<
LSTMLayer
>
LSTMLayer
::
create
(
const
LayerParams
&
params
)
...
...
modules/dnn/src/onnx/onnx_importer.cpp
View file @
e8c7d617
...
@@ -49,6 +49,11 @@ class ONNXImporter
...
@@ -49,6 +49,11 @@ class ONNXImporter
LayerParams
getLayerParams
(
const
opencv_onnx
::
NodeProto
&
node_proto
);
LayerParams
getLayerParams
(
const
opencv_onnx
::
NodeProto
&
node_proto
);
bool
isCeilMode
(
const
LayerParams
&
layerParams
);
bool
isCeilMode
(
const
LayerParams
&
layerParams
);
void
addLayer
(
Net
&
dstNet
,
LayerParams
&
layerParams
,
const
opencv_onnx
::
NodeProto
&
node_proto
,
std
::
map
<
std
::
string
,
LayerInfo
>&
layer_id
,
std
::
map
<
std
::
string
,
MatShape
>&
outShapes
);
public
:
public
:
ONNXImporter
(
const
char
*
onnxFile
)
ONNXImporter
(
const
char
*
onnxFile
)
...
@@ -259,6 +264,42 @@ Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
...
@@ -259,6 +264,42 @@ Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto,
return
constBlob
->
second
;
return
constBlob
->
second
;
}
}
void
ONNXImporter
::
addLayer
(
Net
&
dstNet
,
LayerParams
&
layerParams
,
const
opencv_onnx
::
NodeProto
&
node_proto
,
std
::
map
<
std
::
string
,
LayerInfo
>&
layer_id
,
std
::
map
<
std
::
string
,
MatShape
>&
outShapes
)
{
std
::
map
<
std
::
string
,
LayerInfo
>::
iterator
layerId
;
std
::
map
<
std
::
string
,
MatShape
>::
iterator
shapeIt
;
int
id
=
dstNet
.
addLayer
(
layerParams
.
name
,
layerParams
.
type
,
layerParams
);
for
(
int
i
=
0
;
i
<
node_proto
.
output_size
();
++
i
)
{
layer_id
.
insert
(
std
::
make_pair
(
node_proto
.
output
(
i
),
LayerInfo
(
id
,
i
)));
}
std
::
vector
<
MatShape
>
layerInpShapes
,
layerOutShapes
,
layerInternalShapes
;
int
inpNum
=
0
;
for
(
int
j
=
0
;
j
<
node_proto
.
input_size
();
j
++
)
{
layerId
=
layer_id
.
find
(
node_proto
.
input
(
j
));
if
(
layerId
!=
layer_id
.
end
())
{
dstNet
.
connect
(
layerId
->
second
.
layerId
,
layerId
->
second
.
outputId
,
id
,
inpNum
);
++
inpNum
;
// Collect input shapes.
shapeIt
=
outShapes
.
find
(
node_proto
.
input
(
j
));
CV_Assert
(
shapeIt
!=
outShapes
.
end
());
layerInpShapes
.
push_back
(
shapeIt
->
second
);
}
}
// Compute shape of output blob for this layer.
Ptr
<
Layer
>
layer
=
dstNet
.
getLayer
(
id
);
layer
->
getMemoryShapes
(
layerInpShapes
,
0
,
layerOutShapes
,
layerInternalShapes
);
for
(
int
i
=
0
;
i
<
node_proto
.
output_size
()
&&
i
<
(
int
)
layerOutShapes
.
size
();
++
i
)
{
outShapes
[
node_proto
.
output
(
i
)]
=
layerOutShapes
[
i
];
}
}
void
ONNXImporter
::
populateNet
(
Net
dstNet
)
void
ONNXImporter
::
populateNet
(
Net
dstNet
)
{
{
CV_Assert
(
model_proto
.
has_graph
());
CV_Assert
(
model_proto
.
has_graph
());
...
@@ -455,6 +496,7 @@ void ONNXImporter::populateNet(Net dstNet)
...
@@ -455,6 +496,7 @@ void ONNXImporter::populateNet(Net dstNet)
runLayer
(
layerParams
,
inputs
,
sliced
);
runLayer
(
layerParams
,
inputs
,
sliced
);
CV_Assert
(
sliced
.
size
()
==
1
);
CV_Assert
(
sliced
.
size
()
==
1
);
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
sliced
[
0
]));
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
sliced
[
0
]));
outShapes
[
layerParams
.
name
]
=
shape
(
sliced
[
0
]);
continue
;
continue
;
}
}
}
}
...
@@ -579,6 +621,70 @@ void ONNXImporter::populateNet(Net dstNet)
...
@@ -579,6 +621,70 @@ void ONNXImporter::populateNet(Net dstNet)
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
layerParams
.
blobs
[
0
]));
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
layerParams
.
blobs
[
0
]));
continue
;
continue
;
}
}
else
if
(
layer_type
==
"LSTM"
)
{
LayerParams
lstmParams
=
layerParams
;
lstmParams
.
name
+=
"/lstm"
;
// https://pytorch.org/docs/stable/nn.html#lstm
CV_Assert
(
node_proto
.
input_size
()
==
7
);
Mat
Wx
=
getBlob
(
node_proto
,
constBlobs
,
1
);
Mat
Wh
=
getBlob
(
node_proto
,
constBlobs
,
2
);
Mat
b
=
getBlob
(
node_proto
,
constBlobs
,
3
);
CV_CheckEQ
(
countNonZero
(
getBlob
(
node_proto
,
constBlobs
,
5
)),
0
,
"Unsupported non zero initial_h"
);
CV_CheckEQ
(
countNonZero
(
getBlob
(
node_proto
,
constBlobs
,
6
)),
0
,
"Unsupported non zero initial_c"
);
b
=
b
.
reshape
(
1
,
b
.
size
[
0
]);
const
int
numHidden
=
lstmParams
.
get
<
int
>
(
"hidden_size"
);
const
int
numDirs
=
Wx
.
size
[
0
];
// Is 1 for forward only and 2 for bidirectional LSTM.
const
int
numFeatures
=
Wx
.
size
[
2
];
Mat
bx
=
b
.
colRange
(
0
,
b
.
cols
/
2
);
Mat
bh
=
b
.
colRange
(
b
.
cols
/
2
,
b
.
cols
);
b
=
bx
+
bh
;
// IFGO->IGFO
for
(
int
k
=
0
;
k
<
numDirs
;
++
k
)
{
float
*
WxData
=
Wx
.
ptr
<
float
>
(
k
);
float
*
WhData
=
Wh
.
ptr
<
float
>
(
k
);
float
*
biasData
=
b
.
ptr
<
float
>
(
k
);
for
(
int
j
=
0
;
j
<
numHidden
;
++
j
)
{
for
(
int
i
=
0
;
i
<
numFeatures
;
++
i
)
{
std
::
swap
(
WxData
[(
numHidden
+
j
)
*
numFeatures
+
i
],
WxData
[(
numHidden
*
2
+
j
)
*
numFeatures
+
i
]);
}
for
(
int
i
=
0
;
i
<
numHidden
;
++
i
)
{
std
::
swap
(
WhData
[(
numHidden
+
j
)
*
numHidden
+
i
],
WhData
[(
numHidden
*
2
+
j
)
*
numHidden
+
i
]);
}
std
::
swap
(
biasData
[
numHidden
+
j
],
biasData
[
numHidden
*
2
+
j
]);
}
}
Wx
=
Wx
.
reshape
(
1
,
Wx
.
size
[
0
]
*
Wx
.
size
[
1
]);
Wh
=
Wh
.
reshape
(
1
,
Wh
.
size
[
0
]
*
Wh
.
size
[
1
]);
lstmParams
.
blobs
.
resize
(
3
);
lstmParams
.
blobs
[
0
]
=
Wh
;
lstmParams
.
blobs
[
1
]
=
Wx
;
lstmParams
.
blobs
[
2
]
=
b
;
lstmParams
.
set
(
"bidirectional"
,
lstmParams
.
get
<
String
>
(
"direction"
,
""
)
==
"bidirectional"
);
node_proto
.
set_output
(
0
,
lstmParams
.
name
);
// set different name so output shapes will be registered on that name
addLayer
(
dstNet
,
lstmParams
,
node_proto
,
layer_id
,
outShapes
);
MatShape
lstmShape
=
outShapes
[
node_proto
.
output
(
0
)];
// Add fake 1 as it is done in ONNX
lstmShape
.
insert
(
lstmShape
.
begin
()
+
1
,
1
);
layerParams
.
type
=
"Reshape"
;
layerParams
.
set
(
"dim"
,
DictValue
::
arrayInt
(
&
lstmShape
[
0
],
lstmShape
.
size
()));
node_proto
.
set_input
(
0
,
lstmParams
.
name
);
// redirect input to LSTM
node_proto
.
set_output
(
0
,
layerParams
.
name
);
// keep origin LSTM's name
}
else
if
(
layer_type
==
"ImageScaler"
)
else
if
(
layer_type
==
"ImageScaler"
)
{
{
const
float
scale
=
layerParams
.
has
(
"scale"
)
?
layerParams
.
get
<
float
>
(
"scale"
)
:
1.0
f
;
const
float
scale
=
layerParams
.
has
(
"scale"
)
?
layerParams
.
get
<
float
>
(
"scale"
)
:
1.0
f
;
...
@@ -882,13 +988,38 @@ void ONNXImporter::populateNet(Net dstNet)
...
@@ -882,13 +988,38 @@ void ONNXImporter::populateNet(Net dstNet)
{
{
CV_Assert_N
(
node_proto
.
input_size
()
==
1
,
layerParams
.
has
(
"axes"
));
CV_Assert_N
(
node_proto
.
input_size
()
==
1
,
layerParams
.
has
(
"axes"
));
DictValue
axes_dict
=
layerParams
.
get
(
"axes"
);
DictValue
axes_dict
=
layerParams
.
get
(
"axes"
);
if
(
axes_dict
.
size
()
!=
1
)
MatShape
inpShape
=
outShapes
[
node_proto
.
input
(
0
)];
CV_Error
(
Error
::
StsNotImplemented
,
"Multidimensional squeeze"
);
int
axis
=
axes_dict
.
getIntValue
(
0
);
std
::
vector
<
bool
>
maskedAxes
(
inpShape
.
size
(),
false
);
layerParams
.
set
(
"axis"
,
axis
-
1
);
for
(
int
i
=
0
;
i
<
axes_dict
.
size
();
++
i
)
layerParams
.
set
(
"end_axis"
,
axis
);
{
layerParams
.
type
=
"Flatten"
;
int
axis
=
axes_dict
.
getIntValue
(
i
);
CV_CheckLE
(
axis
,
static_cast
<
int
>
(
inpShape
.
size
()),
"Squeeze axis"
);
maskedAxes
[
axis
]
=
inpShape
[
axis
]
==
1
;
}
MatShape
outShape
;
for
(
int
i
=
0
;
i
<
inpShape
.
size
();
++
i
)
{
if
(
!
maskedAxes
[
i
])
outShape
.
push_back
(
inpShape
[
i
]);
}
if
(
outShape
.
size
()
!=
inpShape
.
size
())
{
layerParams
.
type
=
"Reshape"
;
layerParams
.
set
(
"dim"
,
DictValue
::
arrayInt
(
&
outShape
[
0
],
outShape
.
size
()));
}
else
layerParams
.
type
=
"Identity"
;
if
(
constBlobs
.
find
(
node_proto
.
input
(
0
))
!=
constBlobs
.
end
())
{
Mat
inp
=
getBlob
(
node_proto
,
constBlobs
,
0
);
Mat
out
=
inp
.
reshape
(
1
,
outShape
);
out
.
dims
=
outShape
.
size
();
// to workaround dims == 1
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
out
));
outShapes
[
layerParams
.
name
]
=
shape
(
out
);
continue
;
}
}
}
else
if
(
layer_type
==
"Flatten"
)
else
if
(
layer_type
==
"Flatten"
)
{
{
...
@@ -1018,9 +1149,17 @@ void ONNXImporter::populateNet(Net dstNet)
...
@@ -1018,9 +1149,17 @@ void ONNXImporter::populateNet(Net dstNet)
else
else
layerParams
.
type
=
"Identity"
;
layerParams
.
type
=
"Identity"
;
}
}
else
if
(
layer_type
==
"ConstantOfShape"
)
else
if
(
layer_type
==
"ConstantOfShape"
||
layer_type
==
"ConstantFill"
)
{
float
fill_value
;
if
(
!
layerParams
.
blobs
.
empty
())
{
{
float
fill_value
=
layerParams
.
blobs
.
empty
()
?
0
:
layerParams
.
blobs
[
0
].
at
<
float
>
(
0
,
0
);
CV_Assert
(
!
layerParams
.
has
(
"value"
));
fill_value
=
layerParams
.
blobs
[
0
].
at
<
float
>
(
0
,
0
);
}
else
fill_value
=
layerParams
.
get
(
"value"
,
0
);
MatShape
inpShape
=
getBlob
(
node_proto
,
constBlobs
,
0
);
MatShape
inpShape
=
getBlob
(
node_proto
,
constBlobs
,
0
);
for
(
int
i
=
0
;
i
<
inpShape
.
size
();
i
++
)
for
(
int
i
=
0
;
i
<
inpShape
.
size
();
i
++
)
CV_CheckGT
(
inpShape
[
i
],
0
,
""
);
CV_CheckGT
(
inpShape
[
i
],
0
,
""
);
...
@@ -1032,17 +1171,30 @@ void ONNXImporter::populateNet(Net dstNet)
...
@@ -1032,17 +1171,30 @@ void ONNXImporter::populateNet(Net dstNet)
else
if
(
layer_type
==
"Gather"
)
else
if
(
layer_type
==
"Gather"
)
{
{
CV_Assert
(
node_proto
.
input_size
()
==
2
);
CV_Assert
(
node_proto
.
input_size
()
==
2
);
CV_Assert
(
layerParams
.
has
(
"axis"
));
Mat
input
=
getBlob
(
node_proto
,
constBlobs
,
0
);
Mat
input
=
getBlob
(
node_proto
,
constBlobs
,
0
);
Mat
indexMat
=
getBlob
(
node_proto
,
constBlobs
,
1
);
Mat
indexMat
=
getBlob
(
node_proto
,
constBlobs
,
1
);
CV_Assert_N
(
indexMat
.
type
()
==
CV_32S
,
indexMat
.
total
()
==
1
);
CV_Assert_N
(
indexMat
.
type
()
==
CV_32S
,
indexMat
.
total
()
==
1
);
int
index
=
indexMat
.
at
<
int
>
(
0
);
int
index
=
indexMat
.
at
<
int
>
(
0
);
Mat
out
;
if
(
layerParams
.
has
(
"axis"
))
{
int
axis
=
layerParams
.
get
<
int
>
(
"axis"
);
int
axis
=
layerParams
.
get
<
int
>
(
"axis"
);
std
::
vector
<
cv
::
Range
>
ranges
(
input
.
dims
,
Range
::
all
());
std
::
vector
<
cv
::
Range
>
ranges
(
input
.
dims
,
Range
::
all
());
ranges
[
axis
]
=
Range
(
index
,
index
+
1
);
ranges
[
axis
]
=
Range
(
index
,
index
+
1
);
Mat
out
=
input
(
ranges
);
out
=
input
(
ranges
);
}
else
{
CV_Assert
(
index
<
input
.
total
());
const
int
dims
=
input
.
dims
;
input
=
input
.
reshape
(
1
,
1
);
input
.
dims
=
2
;
out
=
input
.
reshape
(
1
,
1
).
colRange
(
index
,
index
+
1
);
out
.
dims
=
dims
;
}
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
out
));
constBlobs
.
insert
(
std
::
make_pair
(
layerParams
.
name
,
out
));
continue
;
continue
;
}
}
...
@@ -1145,34 +1297,7 @@ void ONNXImporter::populateNet(Net dstNet)
...
@@ -1145,34 +1297,7 @@ void ONNXImporter::populateNet(Net dstNet)
layerParams
.
blobs
.
push_back
(
getBlob
(
node_proto
,
constBlobs
,
j
));
layerParams
.
blobs
.
push_back
(
getBlob
(
node_proto
,
constBlobs
,
j
));
}
}
}
}
addLayer
(
dstNet
,
layerParams
,
node_proto
,
layer_id
,
outShapes
);
int
id
=
dstNet
.
addLayer
(
layerParams
.
name
,
layerParams
.
type
,
layerParams
);
for
(
int
i
=
0
;
i
<
node_proto
.
output_size
();
++
i
)
{
layer_id
.
insert
(
std
::
make_pair
(
node_proto
.
output
(
i
),
LayerInfo
(
id
,
i
)));
}
std
::
vector
<
MatShape
>
layerInpShapes
,
layerOutShapes
,
layerInternalShapes
;
int
inpNum
=
0
;
for
(
int
j
=
0
;
j
<
node_proto
.
input_size
();
j
++
)
{
layerId
=
layer_id
.
find
(
node_proto
.
input
(
j
));
if
(
layerId
!=
layer_id
.
end
())
{
dstNet
.
connect
(
layerId
->
second
.
layerId
,
layerId
->
second
.
outputId
,
id
,
inpNum
);
++
inpNum
;
// Collect input shapes.
shapeIt
=
outShapes
.
find
(
node_proto
.
input
(
j
));
CV_Assert
(
shapeIt
!=
outShapes
.
end
());
layerInpShapes
.
push_back
(
shapeIt
->
second
);
}
}
// Compute shape of output blob for this layer.
Ptr
<
Layer
>
layer
=
dstNet
.
getLayer
(
id
);
layer
->
getMemoryShapes
(
layerInpShapes
,
0
,
layerOutShapes
,
layerInternalShapes
);
for
(
int
i
=
0
;
i
<
node_proto
.
output_size
()
&&
i
<
(
int
)
layerOutShapes
.
size
();
++
i
)
{
outShapes
[
node_proto
.
output
(
i
)]
=
layerOutShapes
[
i
];
}
}
}
}
}
...
...
modules/dnn/test/test_onnx_importer.cpp
View file @
e8c7d617
...
@@ -405,6 +405,8 @@ TEST_P(Test_ONNX_layers, Reshape)
...
@@ -405,6 +405,8 @@ TEST_P(Test_ONNX_layers, Reshape)
TEST_P
(
Test_ONNX_layers
,
Squeeze
)
TEST_P
(
Test_ONNX_layers
,
Squeeze
)
{
{
if
(
backend
==
DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
&&
target
==
DNN_TARGET_MYRIAD
)
applyTestTag
(
CV_TEST_TAG_DNN_SKIP_IE_MYRIAD
,
CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER
);
testONNXModels
(
"squeeze"
);
testONNXModels
(
"squeeze"
);
}
}
...
@@ -451,6 +453,16 @@ TEST_P(Test_ONNX_layers, Split_EltwiseMax)
...
@@ -451,6 +453,16 @@ TEST_P(Test_ONNX_layers, Split_EltwiseMax)
testONNXModels
(
"split_max"
);
testONNXModels
(
"split_max"
);
}
}
TEST_P
(
Test_ONNX_layers
,
LSTM
)
{
testONNXModels
(
"lstm"
,
npy
,
0
,
0
,
false
,
false
);
}
TEST_P
(
Test_ONNX_layers
,
LSTM_bidirectional
)
{
testONNXModels
(
"lstm_bidirectional"
,
npy
,
0
,
0
,
false
,
false
);
}
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
Test_ONNX_layers
,
dnnBackendsAndTargets
());
INSTANTIATE_TEST_CASE_P
(
/*nothing*/
,
Test_ONNX_layers
,
dnnBackendsAndTargets
());
class
Test_ONNX_nets
:
public
Test_ONNX_layers
class
Test_ONNX_nets
:
public
Test_ONNX_layers
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment