Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e83ff354
Commit
e83ff354
authored
Oct 10, 2012
by
daniil.osokin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added TBB for kmeans (patch #1261: thanks to Boris Mansencal)
parent
a245161d
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
96 additions
and
20 deletions
+96
-20
matrix.cpp
modules/core/src/matrix.cpp
+96
-20
No files found.
modules/core/src/matrix.cpp
View file @
e83ff354
...
...
@@ -2428,6 +2428,41 @@ static void generateRandomCenter(const vector<Vec2f>& box, float* center, RNG& r
center
[
j
]
=
((
float
)
rng
*
(
1.
f
+
margin
*
2.
f
)
-
margin
)
*
(
box
[
j
][
1
]
-
box
[
j
][
0
])
+
box
[
j
][
0
];
}
class
KMeansPPDistanceComputer
{
public
:
KMeansPPDistanceComputer
(
float
*
_tdist2
,
const
float
*
_data
,
const
float
*
_dist
,
int
_dims
,
size_t
_step
,
size_t
_stepci
)
:
tdist2
(
_tdist2
),
data
(
_data
),
dist
(
_dist
),
dims
(
_dims
),
step
(
_step
),
stepci
(
_stepci
)
{
}
void
operator
()(
const
cv
::
BlockedRange
&
range
)
const
{
const
int
begin
=
range
.
begin
();
const
int
end
=
range
.
end
();
for
(
int
i
=
begin
;
i
<
end
;
i
++
)
{
tdist2
[
i
]
=
std
::
min
(
normL2Sqr_
(
data
+
step
*
i
,
data
+
stepci
,
dims
),
dist
[
i
]);
}
}
private
:
float
*
tdist2
;
const
float
*
data
;
const
float
*
dist
;
const
int
dims
;
const
size_t
step
;
const
size_t
stepci
;
};
/*
k-means center initialization using the following algorithm:
...
...
@@ -2465,9 +2500,11 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
if
(
(
p
-=
dist
[
i
])
<=
0
)
break
;
int
ci
=
i
;
parallel_for
(
BlockedRange
(
0
,
N
),
KMeansPPDistanceComputer
(
tdist2
,
data
,
dist
,
dims
,
step
,
step
*
ci
));
for
(
i
=
0
;
i
<
N
;
i
++
)
{
tdist2
[
i
]
=
std
::
min
(
normL2Sqr_
(
data
+
step
*
i
,
data
+
step
*
ci
,
dims
),
dist
[
i
]);
s
+=
tdist2
[
i
];
}
...
...
@@ -2492,6 +2529,59 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
}
}
class
KMeansDistanceComputer
{
public
:
KMeansDistanceComputer
(
double
*
_distances
,
int
*
_labels
,
const
Mat
&
_data
,
const
Mat
&
_centers
)
:
distances
(
_distances
),
labels
(
_labels
),
data
(
_data
),
centers
(
_centers
)
{
CV_DbgAssert
(
centers
.
cols
==
data
.
cols
);
}
void
operator
()(
const
BlockedRange
&
range
)
const
{
const
int
begin
=
range
.
begin
();
const
int
end
=
range
.
end
();
const
int
K
=
centers
.
rows
;
const
int
dims
=
centers
.
cols
;
const
float
*
sample
;
for
(
int
i
=
begin
;
i
<
end
;
++
i
)
{
sample
=
data
.
ptr
<
float
>
(
i
);
int
k_best
=
0
;
double
min_dist
=
DBL_MAX
;
for
(
int
k
=
0
;
k
<
K
;
k
++
)
{
const
float
*
center
=
centers
.
ptr
<
float
>
(
k
);
const
double
dist
=
normL2Sqr_
(
sample
,
center
,
dims
);
if
(
min_dist
>
dist
)
{
min_dist
=
dist
;
k_best
=
k
;
}
}
distances
[
i
]
=
min_dist
;
labels
[
i
]
=
k_best
;
}
}
private
:
double
*
distances
;
int
*
labels
;
const
Mat
&
data
;
const
Mat
&
centers
;
};
}
double
cv
::
kmeans
(
InputArray
_data
,
int
K
,
...
...
@@ -2536,7 +2626,6 @@ double cv::kmeans( InputArray _data, int K,
vector
<
int
>
counters
(
K
);
vector
<
Vec2f
>
_box
(
dims
);
Vec2f
*
box
=
&
_box
[
0
];
double
best_compactness
=
DBL_MAX
,
compactness
=
0
;
RNG
&
rng
=
theRNG
();
int
a
,
iter
,
i
,
j
,
k
;
...
...
@@ -2711,27 +2800,14 @@ double cv::kmeans( InputArray _data, int K,
break
;
// assign labels
Mat
dists
(
1
,
N
,
CV_64F
);
double
*
dist
=
dists
.
ptr
<
double
>
(
0
);
parallel_for
(
BlockedRange
(
0
,
N
),
KMeansDistanceComputer
(
dist
,
labels
,
data
,
centers
));
compactness
=
0
;
for
(
i
=
0
;
i
<
N
;
i
++
)
{
sample
=
data
.
ptr
<
float
>
(
i
);
int
k_best
=
0
;
double
min_dist
=
DBL_MAX
;
for
(
k
=
0
;
k
<
K
;
k
++
)
{
const
float
*
center
=
centers
.
ptr
<
float
>
(
k
);
double
dist
=
normL2Sqr_
(
sample
,
center
,
dims
);
if
(
min_dist
>
dist
)
{
min_dist
=
dist
;
k_best
=
k
;
}
}
compactness
+=
min_dist
;
labels
[
i
]
=
k_best
;
compactness
+=
dist
[
i
];
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment