Commit e6b1ccdc authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

removed old reduce implementation

parent e8f9762e
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_REDUCTION_DETAIL_HPP__
#define __OPENCV_GPU_REDUCTION_DETAIL_HPP__
namespace cv { namespace gpu { namespace device
{
namespace utility_detail
{
///////////////////////////////////////////////////////////////////////////////
// Reductor
template <int n> struct WarpReductor
{
template <typename T, typename Op> static __device__ __forceinline__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
if (tid < n)
data[tid] = partial_reduction;
if (n > 32) __syncthreads();
if (n > 32)
{
if (tid < n - 32)
data[tid] = partial_reduction = op(partial_reduction, data[tid + 32]);
if (tid < 16)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 16]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1]);
}
}
else if (n > 16)
{
if (tid < n - 16)
data[tid] = partial_reduction = op(partial_reduction, data[tid + 16]);
if (tid < 8)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1]);
}
}
else if (n > 8)
{
if (tid < n - 8)
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8]);
if (tid < 4)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1]);
}
}
else if (n > 4)
{
if (tid < n - 4)
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4]);
if (tid < 2)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1]);
}
}
else if (n > 2)
{
if (tid < n - 2)
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2]);
if (tid < 2)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1]);
}
}
}
};
template <> struct WarpReductor<64>
{
template <typename T, typename Op> static __device__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
data[tid] = partial_reduction;
__syncthreads();
if (tid < 32)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 32]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 16]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1 ]);
}
}
};
template <> struct WarpReductor<32>
{
template <typename T, typename Op> static __device__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
data[tid] = partial_reduction;
if (tid < 16)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 16]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1 ]);
}
}
};
template <> struct WarpReductor<16>
{
template <typename T, typename Op> static __device__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
data[tid] = partial_reduction;
if (tid < 8)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1 ]);
}
}
};
template <> struct WarpReductor<8>
{
template <typename T, typename Op> static __device__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
data[tid] = partial_reduction;
if (tid < 4)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2 ]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1 ]);
}
}
};
template <bool warp> struct ReductionDispatcher;
template <> struct ReductionDispatcher<true>
{
template <int n, typename T, typename Op> static __device__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
WarpReductor<n>::reduce(data, partial_reduction, tid, op);
}
};
template <> struct ReductionDispatcher<false>
{
template <int n, typename T, typename Op> static __device__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
if (tid < n)
data[tid] = partial_reduction;
__syncthreads();
if (n == 512) { if (tid < 256) { data[tid] = partial_reduction = op(partial_reduction, data[tid + 256]); } __syncthreads(); }
if (n >= 256) { if (tid < 128) { data[tid] = partial_reduction = op(partial_reduction, data[tid + 128]); } __syncthreads(); }
if (n >= 128) { if (tid < 64) { data[tid] = partial_reduction = op(partial_reduction, data[tid + 64]); } __syncthreads(); }
if (tid < 32)
{
data[tid] = partial_reduction = op(partial_reduction, data[tid + 32]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 16]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 8]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 4]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 2]);
data[tid] = partial_reduction = op(partial_reduction, data[tid + 1]);
}
}
};
///////////////////////////////////////////////////////////////////////////////
// PredValWarpReductor
template <int n> struct PredValWarpReductor;
template <> struct PredValWarpReductor<64>
{
template <typename T, typename V, typename Pred>
static __device__ void reduce(T& myData, V& myVal, volatile T* sdata, V* sval, int tid, const Pred& pred)
{
if (tid < 32)
{
myData = sdata[tid];
myVal = sval[tid];
T reg = sdata[tid + 32];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 32];
}
reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 16];
}
reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 1];
}
}
}
};
template <> struct PredValWarpReductor<32>
{
template <typename T, typename V, typename Pred>
static __device__ void reduce(T& myData, V& myVal, volatile T* sdata, V* sval, int tid, const Pred& pred)
{
if (tid < 16)
{
myData = sdata[tid];
myVal = sval[tid];
T reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 16];
}
reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 1];
}
}
}
};
template <> struct PredValWarpReductor<16>
{
template <typename T, typename V, typename Pred>
static __device__ void reduce(T& myData, V& myVal, volatile T* sdata, V* sval, int tid, const Pred& pred)
{
if (tid < 8)
{
myData = sdata[tid];
myVal = sval[tid];
T reg = reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 1];
}
}
}
};
template <> struct PredValWarpReductor<8>
{
template <typename T, typename V, typename Pred>
static __device__ void reduce(T& myData, V& myVal, volatile T* sdata, V* sval, int tid, const Pred& pred)
{
if (tid < 4)
{
myData = sdata[tid];
myVal = sval[tid];
T reg = reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 1];
}
}
}
};
template <bool warp> struct PredValReductionDispatcher;
template <> struct PredValReductionDispatcher<true>
{
template <int n, typename T, typename V, typename Pred> static __device__ void reduce(T& myData, V& myVal, volatile T* sdata, V* sval, int tid, const Pred& pred)
{
PredValWarpReductor<n>::reduce(myData, myVal, sdata, sval, tid, pred);
}
};
template <> struct PredValReductionDispatcher<false>
{
template <int n, typename T, typename V, typename Pred> static __device__ void reduce(T& myData, V& myVal, volatile T* sdata, V* sval, int tid, const Pred& pred)
{
myData = sdata[tid];
myVal = sval[tid];
if (n >= 512 && tid < 256)
{
T reg = sdata[tid + 256];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 256];
}
__syncthreads();
}
if (n >= 256 && tid < 128)
{
T reg = sdata[tid + 128];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 128];
}
__syncthreads();
}
if (n >= 128 && tid < 64)
{
T reg = sdata[tid + 64];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 64];
}
__syncthreads();
}
if (tid < 32)
{
if (n >= 64)
{
T reg = sdata[tid + 32];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 32];
}
}
if (n >= 32)
{
T reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 16];
}
}
if (n >= 16)
{
T reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 8];
}
}
if (n >= 8)
{
T reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 4];
}
}
if (n >= 4)
{
T reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 2];
}
}
if (n >= 2)
{
T reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval[tid] = myVal = sval[tid + 1];
}
}
}
}
};
///////////////////////////////////////////////////////////////////////////////
// PredVal2WarpReductor
template <int n> struct PredVal2WarpReductor;
template <> struct PredVal2WarpReductor<64>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 32)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = sdata[tid + 32];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 32];
sval2[tid] = myVal2 = sval2[tid + 32];
}
reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 16];
sval2[tid] = myVal2 = sval2[tid + 16];
}
reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <> struct PredVal2WarpReductor<32>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 16)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 16];
sval2[tid] = myVal2 = sval2[tid + 16];
}
reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <> struct PredVal2WarpReductor<16>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 8)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <> struct PredVal2WarpReductor<8>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 4)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <bool warp> struct PredVal2ReductionDispatcher;
template <> struct PredVal2ReductionDispatcher<true>
{
template <int n, typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
PredVal2WarpReductor<n>::reduce(myData, myVal1, myVal2, sdata, sval1, sval2, tid, pred);
}
};
template <> struct PredVal2ReductionDispatcher<false>
{
template <int n, typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
if (n >= 512 && tid < 256)
{
T reg = sdata[tid + 256];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 256];
sval2[tid] = myVal2 = sval2[tid + 256];
}
__syncthreads();
}
if (n >= 256 && tid < 128)
{
T reg = sdata[tid + 128];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 128];
sval2[tid] = myVal2 = sval2[tid + 128];
}
__syncthreads();
}
if (n >= 128 && tid < 64)
{
T reg = sdata[tid + 64];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 64];
sval2[tid] = myVal2 = sval2[tid + 64];
}
__syncthreads();
}
if (tid < 32)
{
if (n >= 64)
{
T reg = sdata[tid + 32];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 32];
sval2[tid] = myVal2 = sval2[tid + 32];
}
}
if (n >= 32)
{
T reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 16];
sval2[tid] = myVal2 = sval2[tid + 16];
}
}
if (n >= 16)
{
T reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
}
if (n >= 8)
{
T reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
}
if (n >= 4)
{
T reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
}
if (n >= 2)
{
T reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
}
};
} // namespace utility_detail
}}} // namespace cv { namespace gpu { namespace device
#endif // __OPENCV_GPU_REDUCTION_DETAIL_HPP__
...@@ -45,7 +45,6 @@ ...@@ -45,7 +45,6 @@
#include "saturate_cast.hpp" #include "saturate_cast.hpp"
#include "datamov_utils.hpp" #include "datamov_utils.hpp"
#include "detail/reduction_detail.hpp"
namespace cv { namespace gpu { namespace device namespace cv { namespace gpu { namespace device
{ {
...@@ -156,29 +155,6 @@ namespace cv { namespace gpu { namespace device ...@@ -156,29 +155,6 @@ namespace cv { namespace gpu { namespace device
} }
}; };
///////////////////////////////////////////////////////////////////////////////
// Reduction
template <int n, typename T, typename Op> __device__ __forceinline__ void reduce_old(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
StaticAssert<n >= 8 && n <= 512>::check();
utility_detail::ReductionDispatcher<n <= 64>::reduce<n>(data, partial_reduction, tid, op);
}
template <int n, typename T, typename V, typename Pred>
__device__ __forceinline__ void reducePredVal(volatile T* sdata, T& myData, V* sval, V& myVal, int tid, const Pred& pred)
{
StaticAssert<n >= 8 && n <= 512>::check();
utility_detail::PredValReductionDispatcher<n <= 64>::reduce<n>(myData, myVal, sdata, sval, tid, pred);
}
template <int n, typename T, typename V1, typename V2, typename Pred>
__device__ __forceinline__ void reducePredVal2(volatile T* sdata, T& myData, V1* sval1, V1& myVal1, V2* sval2, V2& myVal2, int tid, const Pred& pred)
{
StaticAssert<n >= 8 && n <= 512>::check();
utility_detail::PredVal2ReductionDispatcher<n <= 64>::reduce<n>(myData, myVal1, myVal2, sdata, sval1, sval2, tid, pred);
}
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
// Solve linear system // Solve linear system
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment