Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e6062532
Commit
e6062532
authored
Feb 22, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10918 from pengli:dnn
parents
203ac0f8
e7d35d51
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
67 additions
and
22 deletions
+67
-22
convolution_layer.cpp
modules/dnn/src/layers/convolution_layer.cpp
+2
-8
normalize_bbox_layer.cpp
modules/dnn/src/layers/normalize_bbox_layer.cpp
+12
-0
pooling_layer.cpp
modules/dnn/src/layers/pooling_layer.cpp
+3
-0
test_backends.cpp
modules/dnn/test/test_backends.cpp
+2
-6
test_caffe_importer.cpp
modules/dnn/test/test_caffe_importer.cpp
+14
-7
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+34
-1
No files found.
modules/dnn/src/layers/convolution_layer.cpp
View file @
e6062532
...
...
@@ -824,15 +824,9 @@ public:
for
(
int
i
=
0
;
i
<
inputs
.
size
();
++
i
)
CV_Assert
(
inputs
[
i
].
u
!=
outputs
[
0
].
u
);
int
inpH
=
inputs
[
0
].
size
[
2
];
int
inpW
=
inputs
[
0
].
size
[
3
];
int
out_h
=
(
inpH
+
2
*
pad
.
height
-
(
dilation
.
height
*
(
kernel
.
height
-
1
)
+
1
))
/
stride
.
height
+
1
;
int
out_w
=
(
inpW
+
2
*
pad
.
width
-
(
dilation
.
width
*
(
kernel
.
width
-
1
)
+
1
))
/
stride
.
width
+
1
;
if
(
out_h
!=
outputs
[
0
].
size
[
2
]
||
out_w
!=
outputs
[
0
].
size
[
3
])
if
(
padMode
==
"SAME"
)
return
false
;
int
group
=
inputs
[
0
].
size
[
1
]
/
umat_blobs
[
0
].
size
[
1
];
if
(
convolutionOp
.
empty
())
{
OCL4DNNConvConfig
config
;
...
...
@@ -842,7 +836,7 @@ public:
config
.
pad
=
pad
;
config
.
stride
=
stride
;
config
.
dilation
=
dilation
;
config
.
group
=
group
;
config
.
group
=
inputs
[
0
].
size
[
1
]
/
umat_blobs
[
0
].
size
[
1
]
;
config
.
bias_term
=
(
hasBias
())
?
true
:
false
;
convolutionOp
=
Ptr
<
OCL4DNNConvSpatial
<
float
>
>
(
new
OCL4DNNConvSpatial
<
float
>
(
config
));
...
...
modules/dnn/src/layers/normalize_bbox_layer.cpp
View file @
e6062532
...
...
@@ -105,6 +105,18 @@ public:
float
norm
=
pow
(
absSum
,
1.0
f
/
pnorm
);
multiply
(
src
,
1.0
f
/
norm
,
dst
);
}
else
{
Mat
norm
;
reduce
(
buffer
,
norm
,
0
,
REDUCE_SUM
);
norm
+=
epsilon
;
// compute inverted norm to call multiply instead divide
cv
::
pow
(
norm
,
-
1.0
f
/
pnorm
,
norm
);
repeat
(
norm
,
channels
,
1
,
buffer
);
multiply
(
src
,
buffer
,
dst
);
}
if
(
!
blobs
.
empty
())
{
...
...
modules/dnn/src/layers/pooling_layer.cpp
View file @
e6062532
...
...
@@ -145,6 +145,9 @@ public:
inps
.
getUMatVector
(
inputs
);
outs
.
getUMatVector
(
outputs
);
if
(
type
==
AVE
&&
padMode
==
"SAME"
)
return
false
;
if
(
poolOp
.
empty
())
{
OCL4DNNPoolConfig
config
;
...
...
modules/dnn/test/test_backends.cpp
View file @
e6062532
...
...
@@ -222,9 +222,7 @@ TEST_P(DNNTestNetwork, OpenFace)
TEST_P
(
DNNTestNetwork
,
opencv_face_detector
)
{
if
(
backend
==
DNN_BACKEND_HALIDE
||
backend
==
DNN_BACKEND_DEFAULT
&&
target
==
DNN_TARGET_OPENCL
)
throw
SkipTestException
(
""
);
if
(
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
Mat
img
=
imread
(
findDataFile
(
"gpu/lbpcascade/er.png"
,
false
));
Mat
inp
=
blobFromImage
(
img
,
1.0
,
Size
(),
Scalar
(
104.0
,
177.0
,
123.0
),
false
,
false
);
processNet
(
"dnn/opencv_face_detector.caffemodel"
,
"dnn/opencv_face_detector.prototxt"
,
...
...
@@ -233,9 +231,7 @@ TEST_P(DNNTestNetwork, opencv_face_detector)
TEST_P
(
DNNTestNetwork
,
Inception_v2_SSD_TensorFlow
)
{
if
(
backend
==
DNN_BACKEND_DEFAULT
&&
target
==
DNN_TARGET_OPENCL
||
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
if
(
backend
==
DNN_BACKEND_HALIDE
)
throw
SkipTestException
(
""
);
Mat
sample
=
imread
(
findDataFile
(
"dnn/street.png"
,
false
));
Mat
inp
=
blobFromImage
(
sample
,
1.0
f
/
127.5
,
Size
(
300
,
300
),
Scalar
(
127.5
,
127.5
,
127.5
),
false
);
processNet
(
"dnn/ssd_inception_v2_coco_2017_11_17.pb"
,
"dnn/ssd_inception_v2_coco_2017_11_17.pbtxt"
,
...
...
modules/dnn/test/test_caffe_importer.cpp
View file @
e6062532
...
...
@@ -456,16 +456,21 @@ TEST(Test_Caffe, multiple_inputs)
normAssert
(
out
,
first_image
+
second_image
);
}
typedef
testing
::
TestWithParam
<
std
::
string
>
opencv_face_detector
;
CV_ENUM
(
DNNTarget
,
DNN_TARGET_CPU
,
DNN_TARGET_OPENCL
)
typedef
testing
::
TestWithParam
<
tuple
<
std
::
string
,
DNNTarget
>
>
opencv_face_detector
;
TEST_P
(
opencv_face_detector
,
Accuracy
)
{
std
::
string
proto
=
findDataFile
(
"dnn/opencv_face_detector.prototxt"
,
false
);
std
::
string
model
=
findDataFile
(
GetParam
(),
false
);
std
::
string
model
=
findDataFile
(
get
<
0
>
(
GetParam
()),
false
);
dnn
::
Target
targetId
=
(
dnn
::
Target
)(
int
)
get
<
1
>
(
GetParam
());
Net
net
=
readNetFromCaffe
(
proto
,
model
);
Mat
img
=
imread
(
findDataFile
(
"gpu/lbpcascade/er.png"
,
false
));
Mat
blob
=
blobFromImage
(
img
,
1.0
,
Size
(),
Scalar
(
104.0
,
177.0
,
123.0
),
false
,
false
);
net
.
setPreferableBackend
(
DNN_BACKEND_DEFAULT
);
net
.
setPreferableTarget
(
targetId
);
net
.
setInput
(
blob
);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
...
...
@@ -479,11 +484,13 @@ TEST_P(opencv_face_detector, Accuracy)
0.95097077
,
0.51901293
,
0.45863652
,
0.5777427
,
0.5347801
);
normAssert
(
out
.
reshape
(
1
,
out
.
total
()
/
7
).
rowRange
(
0
,
6
).
colRange
(
2
,
7
),
ref
);
}
INSTANTIATE_TEST_CASE_P
(
Test_Caffe
,
opencv_face_detector
,
Values
(
"dnn/opencv_face_detector.caffemodel"
,
"dnn/opencv_face_detector_fp16.caffemodel"
));
INSTANTIATE_TEST_CASE_P
(
Test_Caffe
,
opencv_face_detector
,
Combine
(
Values
(
"dnn/opencv_face_detector.caffemodel"
,
"dnn/opencv_face_detector_fp16.caffemodel"
),
Values
(
DNN_TARGET_CPU
,
DNN_TARGET_OPENCL
)
)
);
TEST
(
Test_Caffe
,
FasterRCNN_and_RFCN
)
{
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
e6062532
...
...
@@ -317,11 +317,44 @@ OCL_TEST(Test_TensorFlow, MobileNet_SSD)
std
::
vector
<
Mat
>
output
;
net
.
forward
(
output
,
outNames
);
normAssert
(
target
[
0
].
reshape
(
1
,
1
),
output
[
0
].
reshape
(
1
,
1
)
,
""
,
1e-5
,
1.5e-4
);
normAssert
(
target
[
0
].
reshape
(
1
,
1
),
output
[
0
].
reshape
(
1
,
1
));
normAssert
(
target
[
1
].
reshape
(
1
,
1
),
output
[
1
].
reshape
(
1
,
1
),
""
,
1e-5
,
3e-4
);
normAssert
(
target
[
2
].
reshape
(
1
,
1
),
output
[
2
].
reshape
(
1
,
1
),
""
,
4e-5
,
1e-2
);
}
OCL_TEST
(
Test_TensorFlow
,
Inception_v2_SSD
)
{
std
::
string
proto
=
findDataFile
(
"dnn/ssd_inception_v2_coco_2017_11_17.pbtxt"
,
false
);
std
::
string
model
=
findDataFile
(
"dnn/ssd_inception_v2_coco_2017_11_17.pb"
,
false
);
Net
net
=
readNetFromTensorflow
(
model
,
proto
);
Mat
img
=
imread
(
findDataFile
(
"dnn/street.png"
,
false
));
Mat
blob
=
blobFromImage
(
img
,
1.0
f
/
127.5
,
Size
(
300
,
300
),
Scalar
(
127.5
,
127.5
,
127.5
),
true
,
false
);
net
.
setPreferableBackend
(
DNN_BACKEND_DEFAULT
);
net
.
setPreferableTarget
(
DNN_TARGET_OPENCL
);
net
.
setInput
(
blob
);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat
out
=
net
.
forward
();
out
=
out
.
reshape
(
1
,
out
.
total
()
/
7
);
Mat
detections
;
for
(
int
i
=
0
;
i
<
out
.
rows
;
++
i
)
{
if
(
out
.
at
<
float
>
(
i
,
2
)
>
0.5
)
detections
.
push_back
(
out
.
row
(
i
).
colRange
(
1
,
7
));
}
Mat
ref
=
(
Mat_
<
float
>
(
5
,
6
)
<<
1
,
0.90176028
,
0.19872092
,
0.36311883
,
0.26461923
,
0.63498729
,
3
,
0.93569964
,
0.64865261
,
0.45906419
,
0.80675775
,
0.65708131
,
3
,
0.75838411
,
0.44668293
,
0.45907149
,
0.49459291
,
0.52197015
,
10
,
0.95932811
,
0.38349164
,
0.32528657
,
0.40387636
,
0.39165527
,
10
,
0.93973452
,
0.66561931
,
0.37841269
,
0.68074018
,
0.42907384
);
normAssert
(
detections
,
ref
);
}
TEST
(
Test_TensorFlow
,
lstm
)
{
runTensorFlowNet
(
"lstm"
,
DNN_TARGET_CPU
,
true
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment