Commit e4fed417 authored by Vladislav Sovrasov's avatar Vladislav Sovrasov

Add segmentation and object tracking python tests

parent 0c6e09f0
......@@ -361,7 +361,7 @@ public:
*/
CV_WRAP virtual void detectRegions( InputArray image,
CV_OUT std::vector<std::vector<Point> >& msers,
std::vector<Rect>& bboxes ) = 0;
CV_OUT std::vector<Rect>& bboxes ) = 0;
CV_WRAP virtual void setDelta(int delta) = 0;
CV_WRAP virtual int getDelta() const = 0;
......
......@@ -39,7 +39,7 @@ class camshift_test(NewOpenCVTests):
def prepareRender(self):
self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), True)
self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), deformation = True)
def runTracker(self):
......@@ -53,7 +53,6 @@ class camshift_test(NewOpenCVTests):
while True:
framesCounter += 1
self.frame = self.render.getNextFrame()
vis = self.frame.copy()
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
......@@ -67,11 +66,6 @@ class camshift_test(NewOpenCVTests):
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
self.hist = hist.reshape(-1)
vis_roi = vis[y0:y1, x0:x1]
cv2.bitwise_not(vis_roi, vis_roi)
vis[mask == 0] = 0
self.selection = False
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
......@@ -81,8 +75,6 @@ class camshift_test(NewOpenCVTests):
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
if self.show_backproj:
vis[:] = prob[...,np.newaxis]
trackingRect = np.array(self.track_window)
trackingRect[2] += trackingRect[0]
trackingRect[3] += trackingRect[1]
......
#!/usr/bin/env python
'''
Feature homography
==================
Example of using features2d framework for interactive video homography matching.
ORB features and FLANN matcher are used. The actual tracking is implemented by
PlaneTracker class in plane_tracker.py
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import sys
PY3 = sys.version_info[0] == 3
if PY3:
xrange = range
# local modules
from tst_scene_render import TestSceneRender
def intersectionRate(s1, s2):
x1, y1, x2, y2 = s1
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
area, intersection = cv2.intersectConvexConvex(s1, np.array(s2))
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2)))
from tests_common import NewOpenCVTests
class feature_homography_test(NewOpenCVTests):
render = None
tracker = None
framesCounter = 0
frame = None
def test_feature_homography(self):
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
self.get_sample('samples/data/box.png'), noise = 0.5, speed = 0.5)
self.frame = self.render.getNextFrame()
self.tracker = PlaneTracker()
self.tracker.clear()
self.tracker.add_target(self.frame, self.render.getCurrentRect())
while self.framesCounter < 100:
self.framesCounter += 1
tracked = self.tracker.track(self.frame)
if len(tracked) > 0:
tracked = tracked[0]
self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6)
else:
self.assertEqual(0, 1, 'Tracking error')
self.frame = self.render.getNextFrame()
# built-in modules
from collections import namedtuple
FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
MIN_MATCH_COUNT = 10
'''
image - image to track
rect - tracked rectangle (x1, y1, x2, y2)
keypoints - keypoints detected inside rect
descrs - their descriptors
data - some user-provided data
'''
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
'''
target - reference to PlanarTarget
p0 - matched points coords in target image
p1 - matched points coords in input frame
H - homography matrix from p0 to p1
quad - target bounary quad in input frame
'''
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
class PlaneTracker:
def __init__(self):
self.detector = cv2.ORB_create( nfeatures = 1000 )
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
self.targets = []
self.frame_points = []
def add_target(self, image, rect, data=None):
'''Add a new tracking target.'''
x0, y0, x1, y1 = rect
raw_points, raw_descrs = self.detect_features(image)
points, descs = [], []
for kp, desc in zip(raw_points, raw_descrs):
x, y = kp.pt
if x0 <= x <= x1 and y0 <= y <= y1:
points.append(kp)
descs.append(desc)
descs = np.uint8(descs)
self.matcher.add([descs])
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data)
self.targets.append(target)
def clear(self):
'''Remove all targets'''
self.targets = []
self.matcher.clear()
def track(self, frame):
'''Returns a list of detected TrackedTarget objects'''
self.frame_points, frame_descrs = self.detect_features(frame)
if len(self.frame_points) < MIN_MATCH_COUNT:
return []
matches = self.matcher.knnMatch(frame_descrs, k = 2)
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
if len(matches) < MIN_MATCH_COUNT:
return []
matches_by_id = [[] for _ in xrange(len(self.targets))]
for m in matches:
matches_by_id[m.imgIdx].append(m)
tracked = []
for imgIdx, matches in enumerate(matches_by_id):
if len(matches) < MIN_MATCH_COUNT:
continue
target = self.targets[imgIdx]
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
p1 = [self.frame_points[m.queryIdx].pt for m in matches]
p0, p1 = np.float32((p0, p1))
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
status = status.ravel() != 0
if status.sum() < MIN_MATCH_COUNT:
continue
p0, p1 = p0[status], p1[status]
x0, y0, x1, y1 = target.rect
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
tracked.append(track)
tracked.sort(key = lambda t: len(t.p0), reverse=True)
return tracked
def detect_features(self, frame):
'''detect_features(self, frame) -> keypoints, descrs'''
keypoints, descrs = self.detector.detectAndCompute(frame, None)
if descrs is None: # detectAndCompute returns descs=None if not keypoints found
descrs = []
return keypoints, descrs
\ No newline at end of file
#!/usr/bin/env python
'''
===============================================================================
Interactive Image Segmentation using GrabCut algorithm.
===============================================================================
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import sys
from tests_common import NewOpenCVTests
class grabcut_test(NewOpenCVTests):
def verify(self, mask, exp):
maxDiffRatio = 0.02
expArea = np.count_nonzero(exp)
nonIntersectArea = np.count_nonzero(mask != exp)
curRatio = float(nonIntersectArea) / expArea
return curRatio < maxDiffRatio
def scaleMask(self, mask):
return np.where((mask==cv2.GC_FGD) + (mask==cv2.GC_PR_FGD),255,0).astype('uint8')
def test_grabcut(self):
img = self.get_sample('cv/shared/airplane.png')
mask_prob = self.get_sample("cv/grabcut/mask_probpy.png", 0)
exp_mask1 = self.get_sample("cv/grabcut/exp_mask1py.png", 0)
exp_mask2 = self.get_sample("cv/grabcut/exp_mask2py.png", 0)
if img == None:
self.assertEqual(0, 1, 'Missing test data')
rect = (24, 126, 459, 168)
mask = np.zeros(img.shape[:2], dtype = np.uint8)
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_RECT)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 2, cv2.GC_EVAL)
if mask_prob == None:
mask_prob = mask.copy()
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/mask_probpy.png', mask_prob)
if exp_mask1 == None:
exp_mask1 = self.scaleMask(mask)
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask1py.png', exp_mask1)
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask1), True)
mask = mask_prob
bgdModel = np.zeros((1,65),np.float64)
fgdModel = np.zeros((1,65),np.float64)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_MASK)
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 1, cv2.GC_EVAL)
if exp_mask2 == None:
exp_mask2 = self.scaleMask(mask)
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask2py.png', exp_mask2)
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask2), True)
\ No newline at end of file
#!/usr/bin/env python
'''
Lucas-Kanade homography tracker test
===============================
Uses goodFeaturesToTrack for track initialization and back-tracking for match verification
between frames. Finds homography between reference and current views.
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
#local modules
from tst_scene_render import TestSceneRender
from tests_common import NewOpenCVTests, isPointInRect
lk_params = dict( winSize = (19, 19),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
feature_params = dict( maxCorners = 1000,
qualityLevel = 0.01,
minDistance = 8,
blockSize = 19 )
def checkedTrace(img0, img1, p0, back_threshold = 1.0):
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
status = d < back_threshold
return p1, status
class lk_homography_test(NewOpenCVTests):
render = None
framesCounter = 0
frame = frame0 = None
p0 = None
p1 = None
gray0 = gray1 = None
numFeaturesInRectOnStart = 0
def test_lk_homography(self):
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
self.get_sample('samples/data/box.png'), noise = 0.1, speed = 1.0)
frame = self.render.getNextFrame()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
self.frame0 = frame.copy()
self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
isForegroundHomographyFound = False
if self.p0 is not None:
self.p1 = self.p0
self.gray0 = frame_gray
self.gray1 = frame_gray
currRect = self.render.getCurrentRect()
for (x,y) in self.p0[:,0]:
if isPointInRect((x,y), currRect):
self.numFeaturesInRectOnStart += 1
while self.framesCounter < 200:
self.framesCounter += 1
frame = self.render.getNextFrame()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if self.p0 is not None:
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
self.p1 = p2[trace_status].copy()
self.p0 = self.p0[trace_status].copy()
self.gray1 = frame_gray
if len(self.p0) < 4:
self.p0 = None
continue
H, status = cv2.findHomography(self.p0, self.p1, cv2.RANSAC, 5.0)
goodPointsInRect = 0
goodPointsOutsideRect = 0
for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
if good:
if isPointInRect((x1,y1), self.render.getCurrentRect()):
goodPointsInRect += 1
else: goodPointsOutsideRect += 1
if goodPointsOutsideRect < goodPointsInRect:
isForegroundHomographyFound = True
self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6)
else:
p = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
self.assertEqual(isForegroundHomographyFound, True)
\ No newline at end of file
#!/usr/bin/env python
'''
Lucas-Kanade tracker
====================
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
for track initialization and back-tracking for match verification
between frames.
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
#local modules
from tst_scene_render import TestSceneRender
from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
lk_params = dict( winSize = (15, 15),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
feature_params = dict( maxCorners = 500,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 7 )
def getRectFromPoints(points):
distances = []
for point in points:
distances.append(cv2.norm(point, cv2.NORM_L2))
x0, y0 = points[np.argmin(distances)]
x1, y1 = points[np.argmax(distances)]
return np.array([x0, y0, x1, y1])
class lk_track_test(NewOpenCVTests):
track_len = 10
detect_interval = 5
tracks = []
frame_idx = 0
render = None
def test_lk_track(self):
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'))
self.runTracker()
def runTracker(self):
foregroundPointsNum = 0
while True:
frame = self.render.getNextFrame()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if len(self.tracks) > 0:
img0, img1 = self.prev_gray, frame_gray
p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tr.append([(x, y), self.frame_idx])
if len(tr) > self.track_len:
del tr[0]
new_tracks.append(tr)
self.tracks = new_tracks
if self.frame_idx % self.detect_interval == 0:
goodTracksCount = 0
for tr in self.tracks:
oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1])
newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1])
if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect):
goodTracksCount += 1
if self.frame_idx == self.detect_interval:
foregroundPointsNum = goodTracksCount
fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1)
fgRate = float(goodTracksCount) / (len(self.tracks) + 1)
if self.frame_idx > 0:
self.assertGreater(fgIndex, 0.9)
self.assertGreater(fgRate, 0.2)
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
cv2.circle(mask, (x, y), 5, 0, -1)
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
self.tracks.append([[(x, y), self.frame_idx]])
self.frame_idx += 1
self.prev_gray = frame_gray
if self.frame_idx > 300:
break
\ No newline at end of file
#!/usr/bin/env python
'''
MSER detector test
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
from tests_common import NewOpenCVTests
class mser_test(NewOpenCVTests):
def test_mser(self):
img = self.get_sample('cv/mser/puzzle.png', 0)
smallImg = [
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255]
]
thresharr = [ 0, 70, 120, 180, 255 ]
kDelta = 5
mserExtractor = cv2.MSER_create()
mserExtractor.setDelta(kDelta)
np.random.seed(10)
for i in range(100):
use_big_image = int(np.random.rand(1,1)*7) != 0
invert = int(np.random.rand(1,1)*2) != 0
binarize = int(np.random.rand(1,1)*5) != 0 if use_big_image else False
blur = int(np.random.rand(1,1)*2) != 0
thresh = thresharr[int(np.random.rand(1,1)*5)]
src0 = img if use_big_image else np.array(smallImg).astype('uint8')
src = src0.copy()
kMinArea = 256 if use_big_image else 10
kMaxArea = int(src.shape[0]*src.shape[1]/4)
mserExtractor.setMinArea(kMinArea)
mserExtractor.setMaxArea(kMaxArea)
if invert:
cv2.bitwise_not(src, src)
if binarize:
_, src = cv2.threshold(src, thresh, 255, cv2.THRESH_BINARY)
if blur:
src = cv2.GaussianBlur(src, (5, 5), 1.5, 1.5)
minRegs = 7 if use_big_image else 2
maxRegs = 1000 if use_big_image else 15
if binarize and (thresh == 0 or thresh == 255):
minRegs = maxRegs = 0
msers, boxes = mserExtractor.detectRegions(src)
nmsers = len(msers)
self.assertEqual(nmsers, len(boxes))
self.assertLessEqual(minRegs, nmsers)
self.assertGreaterEqual(maxRegs, nmsers)
\ No newline at end of file
#!/usr/bin/env python
'''
Watershed segmentation
=========
This program demonstrates the watershed segmentation algorithm
in OpenCV: watershed().
Usage
-----
watershed.py [image filename]
Keys
----
1-7 - switch marker color
SPACE - update segmentation
r - reset
a - toggle autoupdate
ESC - exit
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
from tests_common import NewOpenCVTests
class watershed_test(NewOpenCVTests):
def test_watershed(self):
img = self.get_sample('cv/inpaint/orig.png')
markers = self.get_sample('cv/watershed/wshed_exp.png', 0)
refSegments = self.get_sample('cv/watershed/wshed_segments.png')
if img == None or markers == None:
self.assertEqual(0, 1, 'Missing test data')
colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122
cv2.watershed(img, np.int32(markers))
segments = colors[np.maximum(markers, 0)]
if refSegments == None:
refSegments = segments.copy()
cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)
self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)
\ No newline at end of file
......@@ -37,7 +37,7 @@ class NewOpenCVTests(unittest.TestCase):
with open(candidate, 'rb') as f:
filedata = f.read()
if filedata is None:
filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
return None#filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
return self.image_cache[filename]
......@@ -64,10 +64,16 @@ class NewOpenCVTests(unittest.TestCase):
def intersectionRate(s1, s2):
x1, y1, x2, y2 = s1
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
x1, y1, x2, y2 = s2
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
#print(np.array(s2))
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2))
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2)))
\ No newline at end of file
s2 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
area, intersection = cv2.intersectConvexConvex(s1, s2)
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(s2))
def isPointInRect(p, rect):
if rect[0] <= p[0] and rect[1] <=p[1] and p[0] <= rect[2] and p[1] <= rect[3]:
return True
else:
return False
\ No newline at end of file
......@@ -13,41 +13,89 @@ defaultSize = 512
class TestSceneRender():
def __init__(self, bgImg = None, deformation = False, **params):
def __init__(self, bgImg = None, fgImg = None, deformation = False, noise = 0.0, speed = 0.25, **params):
self.time = 0.0
self.timeStep = 1.0 / 30.0
self.foreground = fgImg
self.deformation = deformation
self.noise = noise
self.speed = speed
if bgImg != None:
self.sceneBg = bgImg.copy()
else:
self.sceneBg = np.zeros((defaultSize, defaultSize, 3), np.uint8)
self.sceneBg = np.zeros(defaultSize, defaultSize, np.uint8)
self.w = self.sceneBg.shape[0]
self.h = self.sceneBg.shape[1]
if fgImg != None:
self.foreground = fgImg.copy()
self.center = self.currentCenter = (int(self.w/2 - fgImg.shape[0]/2), int(self.h/2 - fgImg.shape[1]/2))
self.xAmpl = self.sceneBg.shape[0] - (self.center[0] + fgImg.shape[0])
self.yAmpl = self.sceneBg.shape[1] - (self.center[1] + fgImg.shape[1])
self.initialRect = np.array([ (self.h/2, self.w/2), (self.h/2, self.w/2 + self.w/10),
(self.h/2 + self.h/10, self.w/2 + self.w/10), (self.h/2 + self.h/10, self.w/2)]).astype(int)
self.currentRect = self.initialRect
np.random.seed(10)
def getXOffset(self, time):
return int(self.xAmpl*cos(time*self.speed))
def getYOffset(self, time):
return int(self.yAmpl*sin(time*self.speed))
def setInitialRect(self, rect):
self.initialRect = rect
def getRectInTime(self, time):
if self.foreground != None:
tmp = np.array(self.center) + np.array((self.getXOffset(time), self.getYOffset(time)))
x0, y0 = tmp
x1, y1 = tmp + self.foreground.shape[0:2]
return np.array([y0, x0, y1, x1])
else:
x0, y0 = self.initialRect[0] + np.array((self.getXOffset(time), self.getYOffset(time)))
x1, y1 = self.initialRect[2] + np.array((self.getXOffset(time), self.getYOffset(time)))
return np.array([y0, x0, y1, x1])
def getCurrentRect(self):
x0, y0 = self.currentRect[0]
x1, y1 = self.currentRect[2]
return np.array([x0, y0, x1, y1])
if self.foreground != None:
x0 = self.currentCenter[0]
y0 = self.currentCenter[1]
x1 = self.currentCenter[0] + self.foreground.shape[0]
y1 = self.currentCenter[1] + self.foreground.shape[1]
return np.array([y0, x0, y1, x1])
else:
x0, y0 = self.currentRect[0]
x1, y1 = self.currentRect[2]
return np.array([x0, y0, x1, y1])
def getNextFrame(self):
self.time += self.timeStep
img = self.sceneBg.copy()
self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3))
if(self.deformation):
self.currentRect[1:3] += np.int(self.h/20*cos(self.time))
if self.foreground != None:
self.currentCenter = (self.center[0] + self.getXOffset(self.time), self.center[1] + self.getYOffset(self.time))
img[self.currentCenter[0]:self.currentCenter[0]+self.foreground.shape[0],
self.currentCenter[1]:self.currentCenter[1]+self.foreground.shape[1]] = self.foreground
else:
self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3))
if self.deformation:
self.currentRect[1:3] += int(self.h/20*cos(self.time))
cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255))
cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255))
self.time += self.timeStep
if self.noise:
noise = np.zeros(self.sceneBg.shape, np.int8)
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
img = cv2.add(img, noise, dtype=cv2.CV_8UC3)
return img
def resetTime(self):
......@@ -58,7 +106,7 @@ if __name__ == '__main__':
backGr = cv2.imread('../../../samples/data/lena.jpg')
render = TestSceneRender(backGr)
render = TestSceneRender(backGr, noise = 0.5)
while True:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment