Commit e496345d authored by Marina Kolpakova's avatar Marina Kolpakova

added lbp cascade test, fixed race conditions problems

parent 248f39e1
......@@ -290,7 +290,7 @@ namespace cv { namespace gpu { namespace device
DevMem2D_<int4> objects,
unsigned int* classified);
int connectedConmonents(DevMem2D_<int4> candidates, int groupThreshold, float grouping_eps, unsigned int* nclasses);
int connectedConmonents(DevMem2D_<int4> candidates, DevMem2D_<int4> objects,int groupThreshold, float grouping_eps, unsigned int* nclasses);
}
}}}
......@@ -308,6 +308,7 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
else
objects.create(1 , defaultObjSearchNum, CV_32SC4);
GpuMat candidates(1 , defaultObjSearchNum, CV_32SC4);
if (maxObjectSize == cv::Size())
maxObjectSize = image.size();
......@@ -317,6 +318,7 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
unsigned int* dclassified;
cudaMalloc(&dclassified, sizeof(int));
cudaMemcpy(dclassified, classified, sizeof(int), cudaMemcpyHostToDevice);
int step;
for( double factor = 1; ; factor *= scaleFactor )
{
......@@ -334,25 +336,22 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
// continue;
cv::gpu::resize(image, scaledImageBuffer, scaledImageSize, 0, 0, CV_INTER_LINEAR);
integral.create(cv::Size(scaledImageSize.width + 1, scaledImageSize.height + 1), CV_32SC1);
cv::gpu::integral(scaledImageBuffer, integral);
int step = (factor <= 2.) + 1;
step = (factor <= 2.) + 1;
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects, dclassified);
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, factor, step, subsetSize, candidates, dclassified);
}
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
GpuMat candidates(1, *classified, objects.type(), objects.ptr());
// std::cout << *classified << " Results: " << cv::Mat(candidates) << std::endl;
if (groupThreshold <= 0 || objects.empty())
return 0;
cv::gpu::device::lbp::connectedConmonents(candidates, groupThreshold, grouping_eps, dclassified);
cv::gpu::device::lbp::connectedConmonents(candidates, objects, groupThreshold, grouping_eps, dclassified);
cudaMemcpy(classified, dclassified, sizeof(int), cudaMemcpyDeviceToHost);
cudaSafeCall( cudaDeviceSynchronize() );
return *classified;
step = *classified;
delete[] classified;
cudaFree(dclassified);
return step;
}
// ============ old fashioned haar cascade ==============================================//
......
......@@ -51,8 +51,8 @@ namespace cv { namespace gpu { namespace device
__global__ void lbp_classify_stump(Stage* stages, int nstages, ClNode* nodes, const float* leaves, const int* subsets, const uchar4* features,
const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, unsigned int* n)
{
int y = threadIdx.x * scale;
int x = blockIdx.x * scale;
int x = threadIdx.x * step;
int y = blockIdx.x * step;
int current_node = 0;
int current_leave = 0;
......@@ -92,7 +92,7 @@ namespace cv { namespace gpu { namespace device
}
template<typename Pr>
__global__ void disjoin(int4* candidates, unsigned int n, int groupThreshold, float grouping_eps, unsigned int* nclasses)
__global__ void disjoin(int4* candidates, int4* objects, unsigned int n, int groupThreshold, float grouping_eps, unsigned int* nclasses)
{
using cv::gpu::device::VecTraits;
unsigned int tid = threadIdx.x;
......@@ -119,7 +119,7 @@ namespace cv { namespace gpu { namespace device
__syncthreads();
atomicInc((unsigned int*)labels + cls, n);
labels[n - 1] = 0;
*nclasses = 0;
int active = labels[tid];
if (active)
......@@ -152,11 +152,9 @@ namespace cv { namespace gpu { namespace device
(n2 > max(3, n1) || n1 < 3) )
break;
}
if( j == n)
{
// printf("founded gpu %d %d %d %d \n", r1[0], r1[1], r1[2], r1[3]);
candidates[atomicInc((unsigned int*)labels + n -1, n)] = VecTraits<int4>::make(r1[0], r1[1], r1[2], r1[3]);
objects[atomicInc(nclasses, n)] = VecTraits<int4>::make(r1[0], r1[1], r1[2], r1[3]);
}
}
}
......@@ -179,11 +177,11 @@ namespace cv { namespace gpu { namespace device
workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects, classified);
}
int connectedConmonents(DevMem2D_<int4> candidates, int groupThreshold, float grouping_eps, unsigned int* nclasses)
int connectedConmonents(DevMem2D_<int4> candidates, DevMem2D_<int4> objects, int groupThreshold, float grouping_eps, unsigned int* nclasses)
{
int threads = candidates.cols;
int smem_amount = threads * sizeof(int) + threads * sizeof(int4);
disjoin<InSameComponint><<<1, threads, smem_amount>>>((int4*)candidates.ptr(), candidates.cols, groupThreshold, grouping_eps, nclasses);
disjoin<InSameComponint><<<1, threads, smem_amount>>>((int4*)candidates.ptr(), (int4*)objects.ptr(), candidates.cols, groupThreshold, grouping_eps, nclasses);
return 0;
}
}
......
......@@ -65,12 +65,12 @@ namespace lbp{
struct InSameComponint
{
public:
__device__ __forceinline__ InSameComponint(float _eps) : eps(_eps * 0.5) {}
__device__ __forceinline__ InSameComponint(float _eps) : eps(_eps) {}
__device__ __forceinline__ InSameComponint(const InSameComponint& other) : eps(other.eps) {}
__device__ __forceinline__ bool operator()(const int4& r1, const int4& r2) const
{
double delta = eps * (min(r1.z, r2.z) + min(r1.w, r2.w));
float delta = eps * (min(r1.z, r2.z) + min(r1.w, r2.w)) * 0.5;
return abs(r1.x - r2.x) <= delta && abs(r1.y - r2.y) <= delta
&& abs(r1.x + r1.z - r2.x - r2.z) <= delta && abs(r1.y + r1.w - r2.y - r2.w) <= delta;
......
......@@ -308,4 +308,57 @@ INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_Read_classifier, testing::Combine(
testing::Values<int>(0)
));
PARAM_TEST_CASE(LBP_classify, cv::gpu::DeviceInfo, int)
{
cv::gpu::DeviceInfo devInfo;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
}
};
TEST_P(LBP_classify, Accuracy)
{
std::string classifierXmlPath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/lbpcascade_frontalface.xml";
std::string imagePath = std::string(cvtest::TS::ptr()->get_data_path()) + "lbpcascade/er.png";
cv::CascadeClassifier cpuClassifier(classifierXmlPath);
ASSERT_FALSE(cpuClassifier.empty());
cv::Mat image = cv::imread(imagePath);
image = image.colRange(0, image.cols / 2);
cv::Mat grey;
cvtColor(image, grey, CV_BGR2GRAY);
ASSERT_FALSE(image.empty());
std::vector<cv::Rect> rects;
cpuClassifier.detectMultiScale(grey, rects);
cv::Mat markedImage = image.clone();
std::vector<cv::Rect>::iterator it = rects.begin();
for (; it != rects.end(); ++it)
cv::rectangle(markedImage, *it, cv::Scalar(255, 0, 0, 255));
cv::gpu::CascadeClassifier_GPU_LBP gpuClassifier;
ASSERT_TRUE(gpuClassifier.load(classifierXmlPath));
cv::gpu::GpuMat gpu_rects, buffer;
cv::gpu::GpuMat tested(grey);
int count = gpuClassifier.detectMultiScale(tested, buffer, gpu_rects);
cv::Mat gpu_f(gpu_rects);
int* gpu_faces = (int*)gpu_f.ptr();
for (int i = 0; i < count; i++)
{
cv::Rect r(gpu_faces[i * 4],gpu_faces[i * 4 + 1],gpu_faces[i * 4 + 2],gpu_faces[i * 4 + 3]);
cv::rectangle(markedImage, r , cv::Scalar(0, 0, 255, 255));
}
}
INSTANTIATE_TEST_CASE_P(GPU_ObjDetect, LBP_classify, testing::Combine(
ALL_DEVICES,
testing::Values<int>(0)
));
} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment