Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e43997db
Commit
e43997db
authored
Dec 20, 2017
by
LaurentBerger
Committed by
Vadim Pisarevsky
Dec 20, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Calcerror uses now weighted samples (#10346)
* Calcerror uses now sample weights * catree comment in #10319
parent
b8a24b36
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
14 additions
and
21 deletions
+14
-21
ann_mlp.cpp
modules/ml/src/ann_mlp.cpp
+1
-16
inner_functions.cpp
modules/ml/src/inner_functions.cpp
+13
-5
No files found.
modules/ml/src/ann_mlp.cpp
View file @
e43997db
...
...
@@ -155,7 +155,7 @@ int SimulatedAnnealingSolver::run()
if
(
newEnergy
<
previousEnergy
)
{
previousEnergy
=
newEnergy
;
//???
exchange++;
exchange
++
;
}
else
{
...
...
@@ -405,21 +405,6 @@ public:
param2
=
0.1
;
params
.
bpMomentScale
=
std
::
min
(
param2
,
1.
);
}
/* else if (method == ANN_MLP::ANNEAL)
{
if (param1 <= 0)
param1 = 10;
if (param2 <= 0 || param2>param1)
param2 = 0.1;
if (param3 <= 0 || param3 >=1)
param3 = 0.95;
if (param4 <= 0)
param4 = 10;
params.initialT = param1;
params.finalT = param2;
params.coolingRatio = param3;
params.itePerStep = param4;
}*/
}
int
getTrainMethod
()
const
...
...
modules/ml/src/inner_functions.cpp
View file @
e43997db
...
...
@@ -94,26 +94,29 @@ public:
int
idxErr
=
range
.
start
;
CV_TRACE_FUNCTION_SKIP_NESTED
();
Mat
samples
=
data
->
getSamples
();
Mat
weights
=
testerr
?
data
->
getTestSampleWeights
()
:
data
->
getTrainSampleWeights
();
int
layout
=
data
->
getLayout
();
Mat
sidx
=
testerr
?
data
->
getTestSampleIdx
()
:
data
->
getTrainSampleIdx
();
const
int
*
sidx_ptr
=
sidx
.
ptr
<
int
>
();
bool
isclassifier
=
s
.
isClassifier
();
Mat
responses
=
data
->
getResponses
();
int
responses_type
=
responses
.
type
();
double
err
=
0
;
const
float
*
sw
=
weights
.
empty
()
?
0
:
weights
.
ptr
<
float
>
();
for
(
int
i
=
range
.
start
;
i
<
range
.
end
;
i
++
)
{
int
si
=
sidx_ptr
?
sidx_ptr
[
i
]
:
i
;
double
sweight
=
sw
?
static_cast
<
double
>
(
sw
[
i
])
:
1.
;
Mat
sample
=
layout
==
ROW_SAMPLE
?
samples
.
row
(
si
)
:
samples
.
col
(
si
);
float
val
=
s
.
predict
(
sample
);
float
val0
=
(
responses_type
==
CV_32S
)
?
(
float
)
responses
.
at
<
int
>
(
si
)
:
responses
.
at
<
float
>
(
si
);
if
(
isclassifier
)
err
+=
fabs
(
val
-
val0
)
>
FLT_EPSILON
;
err
+=
sweight
*
fabs
(
val
-
val0
)
>
FLT_EPSILON
;
else
err
+=
(
val
-
val0
)
*
(
val
-
val0
);
err
+=
sweight
*
(
val
-
val0
)
*
(
val
-
val0
);
if
(
!
resp
.
empty
())
resp
.
at
<
float
>
(
i
)
=
val
;
}
...
...
@@ -133,12 +136,17 @@ float StatModel::calcError(const Ptr<TrainData>& data, bool testerr, OutputArray
CV_TRACE_FUNCTION_SKIP_NESTED
();
Mat
samples
=
data
->
getSamples
();
Mat
sidx
=
testerr
?
data
->
getTestSampleIdx
()
:
data
->
getTrainSampleIdx
();
Mat
weights
=
testerr
?
data
->
getTestSampleWeights
()
:
data
->
getTrainSampleWeights
();
int
n
=
(
int
)
sidx
.
total
();
bool
isclassifier
=
isClassifier
();
Mat
responses
=
data
->
getResponses
();
if
(
n
==
0
)
{
n
=
data
->
getNSamples
();
weights
=
data
->
getTrainSampleWeights
();
testerr
=
false
;
}
if
(
n
==
0
)
return
-
FLT_MAX
;
...
...
@@ -155,11 +163,11 @@ float StatModel::calcError(const Ptr<TrainData>& data, bool testerr, OutputArray
for
(
size_t
i
=
0
;
i
<
errStrip
.
size
();
i
++
)
err
+=
errStrip
[
i
];
float
weightSum
=
weights
.
empty
()
?
n
:
static_cast
<
float
>
(
sum
(
weights
)(
0
));
if
(
_resp
.
needed
())
resp
.
copyTo
(
_resp
);
return
(
float
)(
err
/
n
*
(
isclassifier
?
100
:
1
));
return
(
float
)(
err
/
weightSum
*
(
isclassifier
?
100
:
1
));
}
/* Calculates upper triangular matrix S, where A is a symmetrical matrix A=S'*S */
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment