Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e3b42bf9
Commit
e3b42bf9
authored
Jan 04, 2018
by
Li Peng
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
batch_norm and blank layer ocl implementation
Signed-off-by:
Li Peng
<
peng.li@intel.com
>
parent
67f9406c
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
97 additions
and
1 deletion
+97
-1
batch_norm_layer.cpp
modules/dnn/src/layers/batch_norm_layer.cpp
+65
-0
blank_layer.cpp
modules/dnn/src/layers/blank_layer.cpp
+15
-1
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+7
-0
test_torch_importer.cpp
modules/dnn/test/test_torch_importer.cpp
+10
-0
No files found.
modules/dnn/src/layers/batch_norm_layer.cpp
View file @
e3b42bf9
...
...
@@ -22,6 +22,7 @@ class BatchNormLayerImpl : public BatchNormLayer
{
public
:
Mat
weights_
,
bias_
;
Mat
weightMat
,
biasMat
;
BatchNormLayerImpl
(
const
LayerParams
&
params
)
{
...
...
@@ -96,17 +97,81 @@ public:
return
true
;
}
void
finalize
(
const
std
::
vector
<
Mat
*>
&
inputs
,
std
::
vector
<
Mat
>
&
outputs
)
{
if
(
inputs
[
0
]
->
dims
==
4
)
{
int
groups
=
inputs
[
0
]
->
size
[
0
];
int
channels
=
inputs
[
0
]
->
size
[
1
];
int
rows
=
inputs
[
0
]
->
size
[
2
];
int
cols
=
inputs
[
0
]
->
size
[
3
];
MatShape
s
=
shape
(
groups
*
channels
,
rows
*
cols
);
weightMat
=
Mat
(
s
[
0
],
s
[
1
],
CV_32FC1
);
biasMat
=
Mat
(
s
[
0
],
s
[
1
],
CV_32FC1
);
for
(
int
n
=
0
;
n
<
s
[
0
];
n
++
)
{
weightMat
.
row
(
n
).
setTo
(
weights_
.
at
<
float
>
(
n
%
channels
));
biasMat
.
row
(
n
).
setTo
(
bias_
.
at
<
float
>
(
n
%
channels
));
}
}
}
virtual
bool
supportBackend
(
int
backendId
)
{
return
backendId
==
DNN_BACKEND_DEFAULT
||
backendId
==
DNN_BACKEND_HALIDE
&&
haveHalide
();
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
CV_Assert
(
blobs
.
size
()
>=
2
);
CV_Assert
(
inputs
.
size
()
==
1
);
UMat
&
inpBlob
=
inputs
[
0
];
CV_Assert
(
inpBlob
.
dims
==
2
||
inpBlob
.
dims
==
4
);
int
groups
=
inpBlob
.
size
[
0
];
int
channels
=
inpBlob
.
size
[
1
];
int
rows
=
inpBlob
.
dims
>
2
?
inpBlob
.
size
[
2
]
:
1
;
int
cols
=
inpBlob
.
dims
>
2
?
inpBlob
.
size
[
3
]
:
1
;
for
(
size_t
ii
=
0
;
ii
<
outputs
.
size
();
ii
++
)
{
if
(
inpBlob
.
dims
==
2
)
{
UMat
&
src
=
inputs
[
ii
];
UMat
&
dst
=
outputs
[
ii
];
multiply
(
src
,
weights_
,
dst
);
add
(
dst
,
bias_
,
dst
);
}
else
{
MatShape
s
=
shape
(
groups
*
channels
,
rows
*
cols
);
UMat
src
=
inputs
[
ii
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
UMat
dst
=
outputs
[
ii
].
reshape
(
1
,
s
.
size
(),
&
s
[
0
]);
multiply
(
src
,
weightMat
,
dst
);
add
(
dst
,
biasMat
,
dst
);
}
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
...
...
modules/dnn/src/layers/blank_layer.cpp
View file @
e3b42bf9
...
...
@@ -63,8 +63,22 @@ public:
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inputs
,
OutputArrayOfArrays
outputs
,
OutputArrayOfArrays
internals
)
bool
forward_ocl
(
InputArrayOfArrays
inputs
_
,
OutputArrayOfArrays
outputs_
,
OutputArrayOfArrays
internals_
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inputs_
.
getUMatVector
(
inputs
);
outputs_
.
getUMatVector
(
outputs
);
for
(
int
i
=
0
,
n
=
outputs
.
size
();
i
<
n
;
++
i
)
{
void
*
src_handle
=
inputs
[
i
].
handle
(
ACCESS_READ
);
void
*
dst_handle
=
outputs
[
i
].
handle
(
ACCESS_WRITE
);
if
(
src_handle
!=
dst_handle
)
inputs
[
i
].
copyTo
(
outputs
[
i
]);
}
return
true
;
}
#endif
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
e3b42bf9
...
...
@@ -152,6 +152,13 @@ TEST(Test_TensorFlow, batch_norm)
runTensorFlowNet
(
"batch_norm_text"
,
DNN_TARGET_CPU
,
true
);
}
OCL_TEST
(
Test_TensorFlow
,
batch_norm
)
{
runTensorFlowNet
(
"batch_norm"
,
DNN_TARGET_OPENCL
);
runTensorFlowNet
(
"fused_batch_norm"
,
DNN_TARGET_OPENCL
);
runTensorFlowNet
(
"batch_norm_text"
,
DNN_TARGET_OPENCL
,
true
);
}
TEST
(
Test_TensorFlow
,
pooling
)
{
runTensorFlowNet
(
"max_pool_even"
);
...
...
modules/dnn/test/test_torch_importer.cpp
View file @
e3b42bf9
...
...
@@ -170,6 +170,11 @@ TEST(Torch_Importer, run_batch_norm)
runTorchNet
(
"net_batch_norm"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
}
OCL_TEST
(
Torch_Importer
,
run_batch_norm
)
{
runTorchNet
(
"net_batch_norm"
,
DNN_TARGET_OPENCL
,
""
,
false
,
true
);
}
TEST
(
Torch_Importer
,
net_prelu
)
{
runTorchNet
(
"net_prelu"
);
...
...
@@ -242,6 +247,11 @@ TEST(Torch_Importer, net_non_spatial)
runTorchNet
(
"net_non_spatial"
,
DNN_TARGET_CPU
,
""
,
false
,
true
);
}
OCL_TEST
(
Torch_Importer
,
net_non_spatial
)
{
runTorchNet
(
"net_non_spatial"
,
DNN_TARGET_OPENCL
,
""
,
false
,
true
);
}
TEST
(
Torch_Importer
,
ENet_accuracy
)
{
Net
net
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment