Commit e38ea3a8 authored by Alexander Nesterov's avatar Alexander Nesterov

Update detect QRCode algorithm

parent 625d20b9
......@@ -670,6 +670,21 @@ public:
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
};
class CV_EXPORTS QRCodeDetector
{
public:
QRCodeDetector();
~QRCodeDetector();
void setEpsX(double epsX);
void setEpsY(double epsY);
bool detect(InputArray in, OutputArray points) const;
protected:
struct Impl;
Ptr<Impl> p;
};
/** @brief Detect QR code in image and return minimum area of quadrangle that describes QR code.
@param in Matrix of the type CV_8UC1 containing an image where QR code are detected.
@param points Output vector of vertices of a quadrangle of minimal area that describes QR code.
......
......@@ -15,45 +15,52 @@
namespace cv
{
using std::vector;
class QRDecode
{
public:
void init(Mat src, double eps_vertical_ = 0.19, double eps_horizontal_ = 0.09);
public:
void init(Mat src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
void binarization();
bool localization();
bool transformation();
Mat getBinBarcode() { return bin_barcode; }
Mat getLocalizationBarcode() { return local_barcode; }
Mat getTransformationBarcode() { return transform_barcode; }
std::vector<Point> getTransformationPoints() { return transformation_points; }
Mat getStraightBarcode() { return straight_barcode; }
protected:
std::vector<Vec3d> searchVerticalLines();
std::vector<Vec3d> separateHorizontalLines(std::vector<Vec3d> list_lines);
std::vector<Vec3d> pointClustering(std::vector<Vec3d> list_lines);
void fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len);
Point getTransformationPoint(Point left, Point center, double cos_angle_rotation,
bool right_rotate = true);
Point intersectionLines(Point a1, Point a2, Point b1, Point b2);
std::vector<Point> getQuadrilateral(std::vector<Point> angle_list);
double getQuadrilateralArea(Point a, Point b, Point c, Point d);
double getCosVectors(Point a, Point b, Point c);
Mat barcode, bin_barcode, local_barcode, transform_barcode, straight_barcode;
std::vector<Point> localization_points, transformation_points;
std::vector<double> localization_length;
double experimental_area;
double eps_vertical, eps_horizontal;
std::vector<Vec3d> result;
std::vector<double> test_lines;
uint8_t next_pixel, future_pixel;
double length, weight;
vector<Point2f> getTransformationPoints() { return transformation_points; }
protected:
bool computeTransformationPoints();
vector<Vec3d> searchVerticalLines();
vector<Point2f> separateHorizontalLines(vector<Vec3d> list_lines);
void fixationPoints(vector<Point2f> &local_point);
Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
double getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d);
double getTriangleArea(Point2f a, Point2f b, Point2f c);
double getCosVectors(Point2f a, Point2f b, Point2f c);
Mat barcode, bin_barcode, straight_barcode;
vector<Point2f> localization_points, transformation_points;
double experimental_area, eps_vertical, eps_horizontal, coeff_expansion;
};
void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_)
{
double min_side = std::min(src.size().width, src.size().height);
if (min_side < 512.0)
{
coeff_expansion = 512.0 / min_side;
int width = static_cast<int>(src.size().width * coeff_expansion);
int height = static_cast<int>(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size);
}
else
{
coeff_expansion = 1.0;
barcode = src;
}
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
}
......@@ -65,37 +72,12 @@ void QRDecode::binarization()
threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU);
}
bool QRDecode::localization()
{
cvtColor(bin_barcode, local_barcode, COLOR_GRAY2RGB);
Point begin, end;
std::vector<Vec3d> list_lines_x = searchVerticalLines();
if (list_lines_x.empty()) return false;
std::vector<Vec3d> list_lines_y = separateHorizontalLines(list_lines_x);
if (list_lines_y.empty()) return false;
std::vector<Vec3d> result_point = pointClustering(list_lines_y);
if (result_point.empty()) return false;
for (int i = 0; i < 3; i++)
{
localization_points.push_back(
Point(static_cast<int>(result_point[i][0]),
static_cast<int>(result_point[i][1] + result_point[i][2])));
localization_length.push_back(result_point[i][2]);
}
fixationPoints(localization_points, localization_length);
if (localization_points.size() != 3) { return false; }
return true;
}
std::vector<Vec3d> QRDecode::searchVerticalLines()
vector<Vec3d> QRDecode::searchVerticalLines()
{
result.clear();
vector<Vec3d> result;
int temp_length = 0;
uint8_t next_pixel, future_pixel;
vector<double> test_lines;
for (int x = 0; x < bin_barcode.rows; x++)
{
......@@ -125,7 +107,7 @@ std::vector<Vec3d> QRDecode::searchVerticalLines()
if (test_lines.size() == 5)
{
length = 0.0; weight = 0.0;
double length = 0.0, weight = 0.0;
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
......@@ -147,16 +129,17 @@ std::vector<Vec3d> QRDecode::searchVerticalLines()
return result;
}
std::vector<Vec3d> QRDecode::separateHorizontalLines(std::vector<Vec3d> list_lines)
vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
{
result.clear();
vector<Vec3d> result;
int temp_length = 0;
int x, y;
uint8_t next_pixel, future_pixel;
vector<double> test_lines;
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2);
y = static_cast<int>(list_lines[pnt][1]);
int x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2);
int y = static_cast<int>(list_lines[pnt][1]);
// --------------- Search horizontal up-lines --------------- //
test_lines.clear();
......@@ -195,7 +178,7 @@ std::vector<Vec3d> QRDecode::separateHorizontalLines(std::vector<Vec3d> list_lin
if (test_lines.size() == 6)
{
length = 0.0; weight = 0.0;
double length = 0.0, weight = 0.0;
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
......@@ -204,83 +187,26 @@ std::vector<Vec3d> QRDecode::separateHorizontalLines(std::vector<Vec3d> list_lin
if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); }
else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); }
}
}
if(weight < eps_horizontal)
{
result.push_back(list_lines[pnt]);
}
}
return result;
}
std::vector<Vec3d> QRDecode::pointClustering(std::vector<Vec3d> list_lines)
{
std::vector<Vec3d> centers;
std::vector<Point> clusters[3];
double weight_clusters[3] = {0.0, 0.0, 0.0};
Point basis[3], temp_pnt;
double temp_norm = 0.0, temp_compute_norm, distance[3];
basis[0] = Point(static_cast<int>(list_lines[0][1]), static_cast<int>(list_lines[0][0]));
for (size_t i = 1; i < list_lines.size(); i++)
{
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
temp_compute_norm = norm(basis[0] - temp_pnt);
if (temp_norm < temp_compute_norm)
{
basis[1] = temp_pnt;
temp_norm = temp_compute_norm;
}
}
for (size_t i = 1; i < list_lines.size(); i++)
{
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
temp_compute_norm = norm(basis[0] - temp_pnt) + norm(basis[1] - temp_pnt);
if (temp_norm < temp_compute_norm)
{
basis[2] = temp_pnt;
temp_norm = temp_compute_norm;
}
}
for (size_t i = 0; i < list_lines.size(); i++)
{
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
distance[0] = norm(basis[0] - temp_pnt);
distance[1] = norm(basis[1] - temp_pnt);
distance[2] = norm(basis[2] - temp_pnt);
if (distance[0] < distance[1] && distance[0] < distance[2])
{
clusters[0].push_back(temp_pnt);
weight_clusters[0] += list_lines[i][2];
}
else if (distance[1] < distance[0] && distance[1] < distance[2])
vector<Point2f> point2f_result;
for (size_t i = 0; i < result.size(); i++)
{
clusters[1].push_back(temp_pnt);
weight_clusters[1] += list_lines[i][2];
point2f_result.push_back(
Point2f(static_cast<float>(result[i][1]),
static_cast<float>(result[i][0] + result[i][2] / 2)));
}
else
{
clusters[2].push_back(temp_pnt);
weight_clusters[2] += list_lines[i][2];
}
}
for (int i = 0; i < 3; i++)
{
basis[i] = Point(0, 0);
for (size_t j = 0; j < clusters[i].size(); j++) { basis[i] += clusters[i][j]; }
basis[i] = basis[i] / static_cast<int>(clusters[i].size());
weight = weight_clusters[i] / (2 * clusters[i].size());
centers.push_back(Vec3d(basis[i].x, basis[i].y, weight));
}
return centers;
return point2f_result;
}
void QRDecode::fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len)
void QRDecode::fixationPoints(vector<Point2f> &local_point)
{
double cos_angles[3], norm_triangl[3];
......@@ -295,176 +221,236 @@ void QRDecode::fixationPoints(std::vector<Point> &local_point, std::vector<doubl
cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2))
/ (2 * norm_triangl[0] * norm_triangl[1]);
int i_min_cos =
size_t i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
Point temp_pnt;
double tmp_len;
temp_pnt = local_point[0];
tmp_len = local_len[0];
local_point[0] = local_point[i_min_cos];
local_len[0] = local_len[i_min_cos];
local_point[i_min_cos] = temp_pnt;
local_len[i_min_cos] = tmp_len;
Mat vector_mult(Size(3, 3), CV_32FC1);
vector_mult.at<float>(0, 0) = 1;
vector_mult.at<float>(1, 0) = 1;
vector_mult.at<float>(2, 0) = 1;
vector_mult.at<float>(0, 1) = static_cast<float>((local_point[1] - local_point[0]).x);
vector_mult.at<float>(1, 1) = static_cast<float>((local_point[1] - local_point[0]).y);
vector_mult.at<float>(0, 2) = static_cast<float>((local_point[2] - local_point[0]).x);
vector_mult.at<float>(1, 2) = static_cast<float>((local_point[2] - local_point[0]).y);
double res_vect_mult = determinant(vector_mult);
if (res_vect_mult < 0)
{
temp_pnt = local_point[1];
tmp_len = local_len[1];
local_point[1] = local_point[2];
local_len[1] = local_len[2];
local_point[2] = temp_pnt;
local_len[2] = tmp_len;
std::swap(local_point[0], local_point[i_min_cos]);
Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
if( determinant(m) > 0 )
{
std::swap(local_point[1], local_point[2]);
}
}
bool QRDecode::transformation()
bool QRDecode::localization()
{
cvtColor(bin_barcode, transform_barcode, COLOR_GRAY2RGB);
Point2f begin, end;
vector<Vec3d> list_lines_x = searchVerticalLines();
if( list_lines_x.empty() ) { return false; }
vector<Point2f> list_lines_y = separateHorizontalLines(list_lines_x);
if( list_lines_y.empty() ) { return false; }
vector<Point2f> centers;
Mat labels;
kmeans(list_lines_y, 3, labels,
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
3, KMEANS_PP_CENTERS, localization_points);
fixationPoints(localization_points);
if (localization_points.size() != 3) { return false; }
Point red = localization_points[0];
Point green = localization_points[1];
Point blue = localization_points[2];
Point adj_b_r_pnt, adj_r_b_pnt, adj_g_r_pnt, adj_r_g_pnt;
Point line_r_b_pnt, line_r_g_pnt, norm_r_b_pnt, norm_r_g_pnt;
adj_b_r_pnt = getTransformationPoint(blue, red, -1);
adj_r_b_pnt = getTransformationPoint(red, blue, -1);
adj_g_r_pnt = getTransformationPoint(green, red, -1);
adj_r_g_pnt = getTransformationPoint(red, green, -1);
line_r_b_pnt = getTransformationPoint(red, blue, -0.91);
line_r_g_pnt = getTransformationPoint(red, green, -0.91);
norm_r_b_pnt = getTransformationPoint(red, blue, 0.0, true);
norm_r_g_pnt = getTransformationPoint(red, green, 0.0, false);
transformation_points.push_back(intersectionLines(
adj_r_g_pnt, line_r_g_pnt, adj_r_b_pnt, line_r_b_pnt));
transformation_points.push_back(intersectionLines(
adj_b_r_pnt, norm_r_g_pnt, adj_r_g_pnt, line_r_g_pnt));
transformation_points.push_back(intersectionLines(
norm_r_b_pnt, adj_g_r_pnt, adj_b_r_pnt, norm_r_g_pnt));
transformation_points.push_back(intersectionLines(
norm_r_b_pnt, adj_g_r_pnt, adj_r_b_pnt, line_r_b_pnt));
experimental_area = getQuadrilateralArea(transformation_points[0],
transformation_points[1],
transformation_points[2],
transformation_points[3]);
std::vector<Point> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
int max_length_norm = -1;
size_t transform_size = transformation_points.size();
for (size_t i = 0; i < transform_size; i++)
if (coeff_expansion > 1.0)
{
int width = static_cast<int>(bin_barcode.size().width / coeff_expansion);
int height = static_cast<int>(bin_barcode.size().height / coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size);
bin_barcode = intermediate.clone();
for (size_t i = 0; i < localization_points.size(); i++)
{
int len_norm = static_cast<int>(norm(transformation_points[i % transform_size] -
transformation_points[(i + 1) % transform_size]));
if (max_length_norm < len_norm) { max_length_norm = len_norm; }
localization_points[i] /= coeff_expansion;
}
}
std::vector<Point> perspective_points;
perspective_points.push_back(Point(0, 0));
perspective_points.push_back(Point(0, max_length_norm));
perspective_points.push_back(Point(max_length_norm, max_length_norm));
perspective_points.push_back(Point(max_length_norm, 0));
// warpPerspective(bin_barcode, straight_barcode,
// findHomography(transformation_points, perspective_points),
// Size(max_length_norm, max_length_norm));
for (size_t i = 0; i < localization_points.size(); i++)
{
for (size_t j = i + 1; j < localization_points.size(); j++)
{
if (norm(localization_points[i] - localization_points[j]) < 10)
{
return false;
}
}
}
return true;
}
Point QRDecode::getTransformationPoint(Point left, Point center, double cos_angle_rotation,
bool right_rotate)
bool QRDecode::computeTransformationPoints()
{
Point temp_pnt, prev_pnt(0, 0), next_pnt, start_pnt(center);
double temp_delta, min_delta;
int steps = 0;
if (localization_points.size() != 3) { return false; }
future_pixel = 255;
while(true)
vector<Point> locations, non_zero_elem[3], newHull;
vector<Point2f> new_non_zero_elem[3];
for (size_t i = 0; i < 3; i++)
{
min_delta = std::numeric_limits<double>::max();
for (int i = -1; i < 2; i++)
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t next_pixel, future_pixel = 255;
int count_test_lines = 0, index = static_cast<int>(localization_points[i].x);
for (; index < bin_barcode.cols - 1; index++)
{
for (int j = -1; j < 2; j++)
next_pixel = bin_barcode.at<uint8_t>(
static_cast<int>(localization_points[i].y), index + 1);
if (next_pixel == future_pixel)
{
if (i == 0 && j == 0) { continue; }
temp_pnt = Point(start_pnt.x + i, start_pnt.y + j);
temp_delta = abs(getCosVectors(left, center, temp_pnt) - cos_angle_rotation);
if (temp_delta < min_delta && prev_pnt != temp_pnt)
future_pixel = 255 - future_pixel;
count_test_lines++;
if (count_test_lines == 2)
{
next_pnt = temp_pnt;
min_delta = temp_delta;
floodFill(bin_barcode, mask,
Point(index + 1, static_cast<int>(localization_points[i].y)), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
break;
}
}
}
prev_pnt = start_pnt;
start_pnt = next_pnt;
next_pixel = bin_barcode.at<uint8_t>(start_pnt.y, start_pnt.x);
if (next_pixel == future_pixel)
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, non_zero_elem[i]);
newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
}
convexHull(Mat(newHull), locations);
for (size_t i = 0; i < locations.size(); i++)
{
future_pixel = 255 - future_pixel;
steps++;
if (steps == 3) { break; }
for (size_t j = 0; j < 3; j++)
{
for (size_t k = 0; k < non_zero_elem[j].size(); k++)
{
if (locations[i] == non_zero_elem[j][k])
{
new_non_zero_elem[j].push_back(locations[i]);
}
}
}
}
double pentagon_diag_norm = -1;
Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
{
double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
if (temp_norm > pentagon_diag_norm)
{
down_left_edge_point = new_non_zero_elem[1][i];
up_right_edge_point = new_non_zero_elem[2][j];
pentagon_diag_norm = temp_norm;
}
}
}
if (down_left_edge_point == Point2f(0, 0) ||
up_right_edge_point == Point2f(0, 0)) { return false; }
if (cos_angle_rotation == 0.0)
double max_area = -1;
up_left_edge_point = new_non_zero_elem[0][0];
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
Mat vector_mult(Size(3, 3), CV_32FC1);
vector_mult.at<float>(0, 0) = 1;
vector_mult.at<float>(1, 0) = 1;
vector_mult.at<float>(2, 0) = 1;
vector_mult.at<float>(0, 1) = static_cast<float>((left - center).x);
vector_mult.at<float>(1, 1) = static_cast<float>((left - center).y);
vector_mult.at<float>(0, 2) = static_cast<float>((left - start_pnt).x);
vector_mult.at<float>(1, 2) = static_cast<float>((left - start_pnt).y);
double res_vect_mult = determinant(vector_mult);
if (( right_rotate && res_vect_mult < 0) ||
(!right_rotate && res_vect_mult > 0))
double temp_area = getTriangleArea(new_non_zero_elem[0][i],
down_left_edge_point,
up_right_edge_point);
if (max_area < temp_area)
{
start_pnt = getTransformationPoint(start_pnt, center, -1);
up_left_edge_point = new_non_zero_elem[0][i];
max_area = temp_area;
}
}
return start_pnt;
Point2f down_max_delta_point, up_max_delta_point;
double norm_down_max_delta = -1, norm_up_max_delta = -1;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i])
+ norm(down_left_edge_point - new_non_zero_elem[1][i]);
if (norm_down_max_delta < temp_norm_delta)
{
down_max_delta_point = new_non_zero_elem[1][i];
norm_down_max_delta = temp_norm_delta;
}
}
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i])
+ norm(up_right_edge_point - new_non_zero_elem[2][i]);
if (norm_up_max_delta < temp_norm_delta)
{
up_max_delta_point = new_non_zero_elem[2][i];
norm_up_max_delta = temp_norm_delta;
}
}
transformation_points.push_back(down_left_edge_point);
transformation_points.push_back(up_left_edge_point);
transformation_points.push_back(up_right_edge_point);
transformation_points.push_back(
intersectionLines(down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
experimental_area = getQuadrilateralArea(transformation_points[0],
transformation_points[1],
transformation_points[2],
transformation_points[3]);
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
return true;
}
Point QRDecode::intersectionLines(Point a1, Point a2, Point b1, Point b2)
Point2f QRDecode::intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2)
{
Point result_square_angle(
static_cast<int>(
static_cast<double>
Point2f result_square_angle(
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) -
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x))),
static_cast<int>(
static_cast<double>
(a1.y - a2.y) * (b1.x - b2.x)),
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) -
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x)))
(a1.y - a2.y) * (b1.x - b2.x))
);
return result_square_angle;
}
std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
// test function (if true then ------> else <------ )
bool QRDecode::testBypassRoute(vector<Point2f> hull, int start, int finish)
{
int index_hull = start, next_index_hull, hull_size = (int)hull.size();
double test_length[2] = { 0.0, 0.0 };
do
{
next_index_hull = index_hull + 1;
if (next_index_hull == hull_size) { next_index_hull = 0; }
test_length[0] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
index_hull = start;
do
{
next_index_hull = index_hull - 1;
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
test_length[1] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
if (test_length[0] < test_length[1]) { return true; } else { return false; }
}
vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
{
size_t angle_size = angle_list.size();
uint8_t value, mask_value;
Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
Mat fill_bin_barcode = bin_barcode.clone();
for (size_t i = 0; i < angle_size; i++)
{
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
......@@ -475,119 +461,91 @@ std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1));
if (value == 0 && mask_value == 0)
{
floodFill(bin_barcode, mask, line_iter.pos(), 255);
floodFill(fill_bin_barcode, mask, line_iter.pos(), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
}
}
}
std::vector<Point> locations;
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1),
Range(1, bin_barcode.cols - 1));
vector<Point> locations;
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
cv::findNonZero(mask_roi, locations);
for (size_t i = 0; i < angle_list.size(); i++)
{
locations.push_back(angle_list[i]);
int x = static_cast<int>(angle_list[i].x);
int y = static_cast<int>(angle_list[i].y);
locations.push_back(Point(x, y));
}
std::vector< std::vector<Point> > hull(1), approx_hull(1);
convexHull(Mat(locations), hull[0]);
int hull_size = static_cast<int>(hull[0].size());
Point min_pnt;
std::vector<Point> min_abc;
double min_abs_cos_abc, abs_cos_abc;
for (int count = 0; count < 4; count++)
{
min_abs_cos_abc = std::numeric_limits<double>::max();
vector<Point> integer_hull;
convexHull(Mat(locations), integer_hull);
int hull_size = (int)integer_hull.size();
vector<Point2f> hull(hull_size);
for (int i = 0; i < hull_size; i++)
{
Point a = hull[0][ i % hull_size];
Point b = hull[0][(i + 1) % hull_size];
Point c = hull[0][(i + 2) % hull_size];
abs_cos_abc = abs(getCosVectors(a, b, c));
bool flag_detect = true;
for (size_t j = 0; j < min_abc.size(); j++)
{
if (min_abc[j] == b) { flag_detect = false; break; }
float x = static_cast<float>(integer_hull[i].x);
float y = static_cast<float>(integer_hull[i].y);
hull[i] = Point2f(x, y);
}
if (flag_detect && (abs_cos_abc < min_abs_cos_abc))
{
min_pnt = b;
min_abs_cos_abc = abs_cos_abc;
}
}
min_abc.push_back(min_pnt);
}
int min_abc_size = static_cast<int>(min_abc.size());
std::vector<int> index_min_abc(min_abc_size);
for (int i = 0; i < min_abc_size; i++)
{
for (int j = 0; j < hull_size; j++)
{
if (hull[0][j] == min_abc[i]) { index_min_abc[i] = j; break; }
}
}
std::vector<Point> result_hull_point(angle_size);
double min_norm, temp_norm;
vector<Point2f> result_hull_point(angle_size);
double min_norm;
for (size_t i = 0; i < angle_size; i++)
{
min_norm = std::numeric_limits<double>::max();
Point closest_pnt;
for (int j = 0; j < min_abc_size; j++)
for (int j = 0; j < hull_size; j++)
{
if (min_norm > norm(hull[0][index_min_abc[j]] - angle_list[i]))
double temp_norm = norm(hull[j] - angle_list[i]);
if (min_norm > temp_norm)
{
min_norm = norm(hull[0][index_min_abc[j]] - angle_list[i]);
closest_pnt = hull[0][index_min_abc[j]];
min_norm = temp_norm;
closest_pnt = hull[j];
}
}
result_hull_point[i] = closest_pnt;
}
int start_line[2] = {0, 0}, finish_line[2] = {0, 0}, unstable_pnt = 0;
int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0;
for (int i = 0; i < hull_size; i++)
{
if (result_hull_point[3] == hull[0][i]) { start_line[0] = i; }
if (result_hull_point[2] == hull[0][i]) { finish_line[0] = start_line[1] = i; }
if (result_hull_point[1] == hull[0][i]) { finish_line[1] = i; }
if (result_hull_point[0] == hull[0][i]) { unstable_pnt = i; }
if (result_hull_point[2] == hull[i]) { start_line[0] = i; }
if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; }
if (result_hull_point[0] == hull[i]) { finish_line[1] = i; }
if (result_hull_point[3] == hull[i]) { unstable_pnt = i; }
}
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull, count_points;
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull;
Point result_side_begin[4], result_side_end[4];
bool bypass_orientation = testBypassRoute(hull, start_line[0], finish_line[0]);
bool extra_bypass_orientation;
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[0];
count_points = abs(start_line[0] - finish_line[0]);
do
{
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; }
if (bypass_orientation) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[2]) >
norm(hull[0][index_hull] - angle_list[3]) ? angle_list[3] : angle_list[2];
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) >
norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
Point intrsc_line_hull =
intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
angle_list[2], angle_list[3]);
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt);
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[1], angle_list[2]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[0][index_hull] - hull[0][next_index_hull]) >
norm(angle_list[2] - angle_list[3]) / 10)
norm(hull[index_hull] - hull[next_index_hull]) >
norm(angle_list[1] - angle_list[2]) / 10)
{
min_norm = temp_norm;
result_side_begin[0] = hull[0][index_hull];
result_side_end[0] = hull[0][next_index_hull];
result_side_begin[0] = hull[index_hull];
result_side_end[0] = hull[next_index_hull];
}
......@@ -597,71 +555,56 @@ std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
if (min_norm == std::numeric_limits<double>::max())
{
result_side_begin[0] = angle_list[2];
result_side_end[0] = angle_list[3];
result_side_begin[0] = angle_list[1];
result_side_end[0] = angle_list[2];
}
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[1];
count_points = abs(start_line[1] - finish_line[1]);
bypass_orientation = testBypassRoute(hull, start_line[1], finish_line[1]);
do
{
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; }
if (bypass_orientation) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[1]) >
norm(hull[0][index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) >
norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0];
Point intrsc_line_hull =
intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
angle_list[1], angle_list[2]);
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt);
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[0], angle_list[1]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[0][index_hull] - hull[0][next_index_hull]) >
norm(angle_list[1] - angle_list[2]) / 20)
norm(hull[index_hull] - hull[next_index_hull]) >
norm(angle_list[0] - angle_list[1]) / 20)
{
min_norm = temp_norm;
result_side_begin[1] = hull[0][index_hull];
result_side_end[1] = hull[0][next_index_hull];
result_side_begin[1] = hull[index_hull];
result_side_end[1] = hull[next_index_hull];
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[1]);
if (min_norm == std::numeric_limits<double>::max())
{
result_side_begin[1] = angle_list[1];
result_side_end[1] = angle_list[2];
result_side_begin[1] = angle_list[0];
result_side_end[1] = angle_list[1];
}
double test_norm[4] = { 0.0, 0.0, 0.0, 0.0 };
int test_index[4];
for (int i = 0; i < 4; i++)
{
test_index[i] = (i < 2) ? static_cast<int>(start_line[0])
: static_cast<int>(finish_line[1]);
do
{
next_index_hull = ((i + 1) % 2 != 0) ? test_index[i] + 1 : test_index[i] - 1;
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
test_norm[i] += norm(hull[0][next_index_hull] - hull[0][unstable_pnt]);
test_index[i] = next_index_hull;
}
while(test_index[i] != unstable_pnt);
}
bypass_orientation = testBypassRoute(hull, start_line[0], unstable_pnt);
extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt);
std::vector<Point> result_angle_list(4), test_result_angle_list(4);
vector<Point2f> result_angle_list(4), test_result_angle_list(4);
double min_area = std::numeric_limits<double>::max(), test_area;
index_hull = start_line[0];
do
{
if (test_norm[0] < test_norm[1]) { next_index_hull = index_hull + 1; }
if (bypass_orientation) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
......@@ -670,7 +613,7 @@ std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
extra_index_hull = finish_line[1];
do
{
if (test_norm[2] < test_norm[3]) { extra_next_index_hull = extra_index_hull + 1; }
if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; }
else { extra_next_index_hull = extra_index_hull - 1; }
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
......@@ -681,13 +624,14 @@ std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
result_side_begin[1], result_side_end[1]);
test_result_angle_list[1]
= intersectionLines(result_side_begin[1], result_side_end[1],
hull[0][extra_index_hull], hull[0][extra_next_index_hull]);
hull[extra_index_hull], hull[extra_next_index_hull]);
test_result_angle_list[2]
= intersectionLines(hull[0][extra_index_hull], hull[0][extra_next_index_hull],
hull[0][index_hull], hull[0][next_index_hull]);
= intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull],
hull[index_hull], hull[next_index_hull]);
test_result_angle_list[3]
= intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
= intersectionLines(hull[index_hull], hull[next_index_hull],
result_side_begin[0], result_side_end[0]);
test_area = getQuadrilateralArea(test_result_angle_list[0],
test_result_angle_list[1],
test_result_angle_list[2],
......@@ -721,8 +665,6 @@ std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
if (norm(result_angle_list[3] - angle_list[3]) >
norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; }
return result_angle_list;
}
......@@ -733,16 +675,16 @@ std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
// / |
// a --------------- d
double QRDecode::getQuadrilateralArea(Point a, Point b, Point c, Point d)
double QRDecode::getQuadrilateralArea(Point2f a, Point2f b, Point2f c, Point2f d)
{
double length_sides[4], perimeter = 0.0, result_area = 1.0;
length_sides[0] = norm(a - b); length_sides[1] = norm(b - c);
length_sides[2] = norm(c - d); length_sides[3] = norm(d - a);
for (int i = 0; i < 4; i++) { perimeter += length_sides[i]; }
for (size_t i = 0; i < 4; i++) { perimeter += length_sides[i]; }
perimeter /= 2;
for (int i = 0; i < 4; i++)
for (size_t i = 0; i < 4; i++)
{
result_area *= (perimeter - length_sides[i]);
}
......@@ -752,27 +694,116 @@ double QRDecode::getQuadrilateralArea(Point a, Point b, Point c, Point d)
return result_area;
}
// b
// / |
// / |
// / |
// / S |
// / |
// a ----- c
double QRDecode::getTriangleArea(Point2f a, Point2f b, Point2f c)
{
double length_sides[3], perimeter = 0.0, triangle_area = 1.0;
length_sides[0] = norm(a - b);
length_sides[1] = norm(b - c);
length_sides[2] = norm(c - a);
for (size_t i = 0; i < 3; i++) { perimeter += length_sides[i]; }
perimeter /= 2;
for (size_t i = 0; i < 3; i++)
{
triangle_area *= (perimeter - length_sides[i]);
}
triangle_area += sqrt(triangle_area);
return triangle_area;
}
// / | b
// / |
// / |
// a/ | c
double QRDecode::getCosVectors(Point a, Point b, Point c)
double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c)
{
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y)
/ (norm(a - b) * norm(c - b));
}
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x, double eps_y)
bool QRDecode::transformation()
{
if(!computeTransformationPoints()) { return false; }
double max_length_norm = -1;
size_t transform_size = transformation_points.size();
for (size_t i = 0; i < transform_size; i++)
{
double len_norm = norm(transformation_points[i % transform_size] -
transformation_points[(i + 1) % transform_size]);
max_length_norm = std::max(max_length_norm, len_norm);
}
Point2f transformation_points_[] =
{
transformation_points[0],
transformation_points[1],
transformation_points[2],
transformation_points[3]
};
Point2f perspective_points[] =
{
Point2f(0.f, 0.f), Point2f(0.f, (float)max_length_norm),
Point2f((float)max_length_norm, (float)max_length_norm),
Point2f((float)max_length_norm, 0.f)
};
Mat H = getPerspectiveTransform(transformation_points_, perspective_points);
warpPerspective(bin_barcode, straight_barcode, H,
Size(static_cast<int>(max_length_norm),
static_cast<int>(max_length_norm)));
return true;
}
struct QRCodeDetector::Impl
{
public:
Impl() { epsX = 0.2; epsY = 0.1; }
~Impl() {}
double epsX, epsY;
};
QRCodeDetector::QRCodeDetector() : p(new Impl) {}
QRCodeDetector::~QRCodeDetector() {}
void QRCodeDetector::setEpsX(double epsX) { p->epsX = epsX; }
void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; }
bool QRCodeDetector::detect(InputArray in, OutputArray points) const
{
CV_Assert(in.isMat());
CV_Assert(in.getMat().type() == CV_8UC1);
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
CV_Assert(inarr.type() == CV_8UC1);
QRDecode qrdec;
qrdec.init(in.getMat(), eps_x, eps_y);
qrdec.init(inarr, p->epsX, p->epsY);
qrdec.binarization();
if (!qrdec.localization()) { return false; }
if (!qrdec.transformation()) { return false; }
points = qrdec.getTransformationPoints();
vector<Point2f> pnts2f = qrdec.getTransformationPoints();
Mat(pnts2f).convertTo(points, points.fixedType() ? points.type() : CV_32FC2);
return true;
}
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x, double eps_y)
{
QRCodeDetector qrdetector;
qrdetector.setEpsX(eps_x);
qrdetector.setEpsY(eps_y);
return qrdetector.detect(in, points);
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
TEST(Objdetect_QRCode, regression)
namespace opencv_test
{
String qrcode_images_name[] = {
"20110817_030.jpg",
"20110817_048.jpg",
"img_20120226_161648.jpg",
"img_2714.jpg",
"img_2716.jpg",
"img_3011.jpg",
"img_3029.jpg",
"img_3070.jpg",
"qr_test_030.jpg"
};
// #define UPDATE_QRCODE_TEST_DATA
#ifdef UPDATE_QRCODE_TEST_DATA
TEST(Objdetect_QRCode, generate_test_data)
{
String root = cvtest::TS::ptr()->get_data_path() + "qrcode/";
// String cascades[] =
// {
// root + "haarcascade_frontalface_alt.xml",
// root + "lbpcascade_frontalface.xml",
// String()
// };
// vector<Rect> objects;
// RNG rng((uint64)-1);
// for( int i = 0; !cascades[i].empty(); i++ )
// {
// printf("%d. %s\n", i, cascades[i].c_str());
// CascadeClassifier cascade(cascades[i]);
// for( int j = 0; j < 100; j++ )
// {
// int width = rng.uniform(1, 100);
// int height = rng.uniform(1, 100);
// Mat img(height, width, CV_8U);
// randu(img, 0, 256);
// cascade.detectMultiScale(img, objects);
// }
// }
String dataset_config = cvtest::TS::ptr()->get_data_path() + "qrcode/dataset_config.json";
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "test_images" << "[";
size_t images_count = sizeof(qrcode_images_name) / sizeof(String);
for (size_t i = 0; i < images_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_name[i];
String image_path = root + qrcode_images_name[i];
std::vector<Point> transform;
Mat src = imread(image_path, IMREAD_GRAYSCALE);
EXPECT_TRUE(detectQRCode(src, transform));
file_config << "x" << "[:";
for (size_t j = 0; j < transform.size(); j++) { file_config << transform[j].x; }
file_config << "]";
file_config << "y" << "[:";
for (size_t j = 0; j < transform.size(); j++) { file_config << transform[j].y; }
file_config << "]" << "}";
}
file_config << "]";
file_config.release();
}
}} // namespace
#else
typedef testing::TestWithParam< String > Objdetect_QRCode;
TEST_P(Objdetect_QRCode, regression)
{
String root = cvtest::TS::ptr()->get_data_path() + "qrcode/";
String dataset_config = cvtest::TS::ptr()->get_data_path() + "qrcode/dataset_config.json";
FileStorage file_config(dataset_config, FileStorage::READ);
const int pixels_error = 3;
std::vector<Point> corners;
String image_path = root + String(GetParam());
Mat src = imread(image_path, IMREAD_GRAYSCALE);
EXPECT_TRUE(detectQRCode(src, corners));
if (file_config.isOpened())
{
FileNode images_list = file_config["test_images"];
int index = 0, images_count = static_cast<int>(images_list.size());
ASSERT_GT(images_count, 0);
bool runTestsFlag = false;
String name_current_image = String(GetParam());
for (; index < images_count; index++)
{
String name_test_image = images_list[index]["image_name"];
if (name_test_image == name_current_image)
{
for (int i = 0; i < 4; i++)
{
int x = images_list[index]["x"][i];
int y = images_list[index]["y"][i];
EXPECT_NEAR(x, corners[i].x, pixels_error);
EXPECT_NEAR(y, corners[i].y, pixels_error);
}
runTestsFlag = true;
}
}
if (!runTestsFlag)
{
std::cout << "Not found results for " << name_current_image;
std::cout << " image in dataset_config.json file." << std::endl;
}
file_config.release();
}
else
{
std::cout << " Not found dataset_config.json file." << std::endl;
}
}
INSTANTIATE_TEST_CASE_P(objdetect, Objdetect_QRCode, testing::ValuesIn(qrcode_images_name));
TEST(Objdetect_QRCode, not_found_qrcode)
{
std::vector<Point> corners;
Mat zero_image = Mat::zeros(256, 256, CV_8UC1);
EXPECT_FALSE(detectQRCode(zero_image, corners));
}
#endif
} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment