Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e178294b
Commit
e178294b
authored
Feb 12, 2015
by
Erik Karlsson
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Refactoring in preparation for 16-bit implementation of fastNlMeansDenoising
parent
5466e321
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
203 additions
and
168 deletions
+203
-168
denoising.cpp
modules/photo/src/denoising.cpp
+6
-6
fast_nlmeans_denoising_invoker.hpp
modules/photo/src/fast_nlmeans_denoising_invoker.hpp
+43
-43
fast_nlmeans_denoising_invoker_commons.hpp
modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
+107
-73
fast_nlmeans_multi_denoising_invoker.hpp
modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
+47
-46
No files found.
modules/photo/src/denoising.cpp
View file @
e178294b
...
...
@@ -65,17 +65,17 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
switch
(
src
.
type
())
{
case
CV_8U
:
parallel_for_
(
cv
::
Range
(
0
,
src
.
rows
),
FastNlMeansDenoisingInvoker
<
uchar
>
(
FastNlMeansDenoisingInvoker
<
uchar
,
int
,
unsigned
int
>
(
src
,
dst
,
templateWindowSize
,
searchWindowSize
,
h
));
break
;
case
CV_8UC2
:
parallel_for_
(
cv
::
Range
(
0
,
src
.
rows
),
FastNlMeansDenoisingInvoker
<
cv
::
Vec2b
>
(
FastNlMeansDenoisingInvoker
<
cv
::
Vec2b
,
int
,
unsigned
int
>
(
src
,
dst
,
templateWindowSize
,
searchWindowSize
,
h
));
break
;
case
CV_8UC3
:
parallel_for_
(
cv
::
Range
(
0
,
src
.
rows
),
FastNlMeansDenoisingInvoker
<
cv
::
Vec3b
>
(
FastNlMeansDenoisingInvoker
<
cv
::
Vec3b
,
int
,
unsigned
int
>
(
src
,
dst
,
templateWindowSize
,
searchWindowSize
,
h
));
break
;
default
:
...
...
@@ -175,19 +175,19 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
{
case
CV_8U
:
parallel_for_
(
cv
::
Range
(
0
,
srcImgs
[
0
].
rows
),
FastNlMeansMultiDenoisingInvoker
<
uchar
>
(
FastNlMeansMultiDenoisingInvoker
<
uchar
,
int
,
unsigned
int
>
(
srcImgs
,
imgToDenoiseIndex
,
temporalWindowSize
,
dst
,
templateWindowSize
,
searchWindowSize
,
h
));
break
;
case
CV_8UC2
:
parallel_for_
(
cv
::
Range
(
0
,
srcImgs
[
0
].
rows
),
FastNlMeansMultiDenoisingInvoker
<
cv
::
Vec2b
>
(
FastNlMeansMultiDenoisingInvoker
<
cv
::
Vec2b
,
int
,
unsigned
int
>
(
srcImgs
,
imgToDenoiseIndex
,
temporalWindowSize
,
dst
,
templateWindowSize
,
searchWindowSize
,
h
));
break
;
case
CV_8UC3
:
parallel_for_
(
cv
::
Range
(
0
,
srcImgs
[
0
].
rows
),
FastNlMeansMultiDenoisingInvoker
<
cv
::
Vec3b
>
(
FastNlMeansMultiDenoisingInvoker
<
cv
::
Vec3b
,
int
,
unsigned
int
>
(
srcImgs
,
imgToDenoiseIndex
,
temporalWindowSize
,
dst
,
templateWindowSize
,
searchWindowSize
,
h
));
break
;
...
...
modules/photo/src/fast_nlmeans_denoising_invoker.hpp
View file @
e178294b
...
...
@@ -50,7 +50,7 @@
using
namespace
cv
;
template
<
typename
T
>
template
<
typename
T
,
typename
IT
,
typename
UIT
>
struct
FastNlMeansDenoisingInvoker
:
public
ParallelLoopBody
{
...
...
@@ -75,20 +75,20 @@ private:
int
template_window_half_size_
;
int
search_window_half_size_
;
int
fixed_point_mult_
;
IT
fixed_point_mult_
;
int
almost_template_window_size_sq_bin_shift_
;
std
::
vector
<
int
>
almost_dist2weight_
;
std
::
vector
<
IT
>
almost_dist2weight_
;
void
calcDistSumsForFirstElementInRow
(
int
i
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
;
int
i
,
Array2d
<
IT
>&
dist_sums
,
Array3d
<
IT
>&
col_dist_sums
,
Array3d
<
IT
>&
up_col_dist_sums
)
const
;
void
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
;
Array2d
<
IT
>&
dist_sums
,
Array3d
<
IT
>&
col_dist_sums
,
Array3d
<
IT
>&
up_col_dist_sums
)
const
;
};
inline
int
getNearestPowerOf2
(
int
value
)
...
...
@@ -99,8 +99,8 @@ inline int getNearestPowerOf2(int value)
return
p
;
}
template
<
class
T
>
FastNlMeansDenoisingInvoker
<
T
>::
FastNlMeansDenoisingInvoker
(
template
<
class
T
,
typename
IT
,
typename
UIT
>
FastNlMeansDenoisingInvoker
<
T
,
IT
,
UIT
>::
FastNlMeansDenoisingInvoker
(
const
Mat
&
src
,
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
...
...
@@ -117,8 +117,8 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
border_size_
=
search_window_half_size_
+
template_window_half_size_
;
copyMakeBorder
(
src_
,
extended_src_
,
border_size_
,
border_size_
,
border_size_
,
border_size_
,
BORDER_DEFAULT
);
const
int
max_estimate_sum_value
=
search_window_size_
*
search_window_size_
*
255
;
fixed_point_mult_
=
std
::
numeric_limits
<
int
>::
max
()
/
max_estimate_sum_value
;
const
IT
max_estimate_sum_value
=
(
IT
)
search_window_size_
*
(
IT
)
search_window_size_
*
255
;
fixed_point_mult_
=
std
::
numeric_limits
<
IT
>::
max
()
/
max_estimate_sum_value
;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
...
...
@@ -127,7 +127,7 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
almost_template_window_size_sq_bin_shift_
=
getNearestPowerOf2
(
template_window_size_sq
);
double
almost_dist2actual_dist_multiplier
=
((
double
)(
1
<<
almost_template_window_size_sq_bin_shift_
))
/
template_window_size_sq
;
int
max_dist
=
255
*
255
*
sizeof
(
T
);
IT
max_dist
=
255
*
255
*
sizeof
(
T
);
int
almost_max_dist
=
(
int
)(
max_dist
/
almost_dist2actual_dist_multiplier
+
1
);
almost_dist2weight_
.
resize
(
almost_max_dist
);
...
...
@@ -135,7 +135,7 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
for
(
int
almost_dist
=
0
;
almost_dist
<
almost_max_dist
;
almost_dist
++
)
{
double
dist
=
almost_dist
*
almost_dist2actual_dist_multiplier
;
int
weight
=
cvR
ound
(
fixed_point_mult_
*
std
::
exp
(
-
dist
/
(
h
*
h
*
sizeof
(
T
))));
IT
weight
=
(
IT
)
r
ound
(
fixed_point_mult_
*
std
::
exp
(
-
dist
/
(
h
*
h
*
sizeof
(
T
))));
if
(
weight
<
WEIGHT_THRESHOLD
*
fixed_point_mult_
)
weight
=
0
;
...
...
@@ -149,21 +149,21 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
dst_
=
Mat
::
zeros
(
src_
.
size
(),
src_
.
type
());
}
template
<
class
T
>
void
FastNlMeansDenoisingInvoker
<
T
>::
operator
()
(
const
Range
&
range
)
const
template
<
class
T
,
typename
IT
,
typename
UIT
>
void
FastNlMeansDenoisingInvoker
<
T
,
IT
,
UIT
>::
operator
()
(
const
Range
&
range
)
const
{
int
row_from
=
range
.
start
;
int
row_to
=
range
.
end
-
1
;
// sums of cols anf rows for current pixel p
Array2d
<
int
>
dist_sums
(
search_window_size_
,
search_window_size_
);
Array2d
<
IT
>
dist_sums
(
search_window_size_
,
search_window_size_
);
// for lazy calc optimization (sum of cols for current pixel)
Array3d
<
int
>
col_dist_sums
(
template_window_size_
,
search_window_size_
,
search_window_size_
);
Array3d
<
IT
>
col_dist_sums
(
template_window_size_
,
search_window_size_
,
search_window_size_
);
int
first_col_num
=
-
1
;
// last elements of column sum (for each element in row)
Array3d
<
int
>
up_col_dist_sums
(
src_
.
cols
,
search_window_size_
,
search_window_size_
);
Array3d
<
IT
>
up_col_dist_sums
(
src_
.
cols
,
search_window_size_
,
search_window_size_
);
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
{
...
...
@@ -202,9 +202,9 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
int
*
col_dist_sums_row
=
col_dist_sums
.
row_ptr
(
first_col_num
,
y
);
int
*
up_col_dist_sums_row
=
up_col_dist_sums
.
row_ptr
(
j
,
y
);
IT
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
IT
*
col_dist_sums_row
=
col_dist_sums
.
row_ptr
(
first_col_num
,
y
);
IT
*
up_col_dist_sums_row
=
up_col_dist_sums
.
row_ptr
(
j
,
y
);
const
T
*
b_up_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
...
...
@@ -215,7 +215,7 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
dist_sums_row
[
x
]
-=
col_dist_sums_row
[
x
];
int
bx
=
start_bx
+
x
;
col_dist_sums_row
[
x
]
=
up_col_dist_sums_row
[
x
]
+
calcUpDownDist
(
a_up
,
a_down
,
b_up_ptr
[
bx
],
b_down_ptr
[
bx
]);
col_dist_sums_row
[
x
]
=
up_col_dist_sums_row
[
x
]
+
calcUpDownDist
<
T
,
IT
>
(
a_up
,
a_down
,
b_up_ptr
[
bx
],
b_down_ptr
[
bx
]);
dist_sums_row
[
x
]
+=
col_dist_sums_row
[
x
];
up_col_dist_sums_row
[
x
]
=
col_dist_sums_row
[
x
];
...
...
@@ -227,39 +227,39 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
}
// calc weights
int
estimation
[
3
],
weights_sum
=
0
;
IT
estimation
[
3
],
weights_sum
=
0
;
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
0
;
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
const
T
*
cur_row_ptr
=
extended_src_
.
ptr
<
T
>
(
border_size_
+
search_window_y
+
y
);
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
IT
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift_
;
int
weight
=
almost_dist2weight_
[
almostAvgDist
];
int
almostAvgDist
=
(
int
)(
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift_
)
;
IT
weight
=
almost_dist2weight_
[
almostAvgDist
];
weights_sum
+=
weight
;
T
p
=
cur_row_ptr
[
border_size_
+
search_window_x
+
x
];
incWithWeight
(
estimation
,
weight
,
p
);
incWithWeight
<
T
,
IT
>
(
estimation
,
weight
,
p
);
}
}
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
(
(
unsigned
)
estimation
[
channel_num
]
+
weights_sum
/
2
)
/
weights_sum
;
estimation
[
channel_num
]
=
(
static_cast
<
UIT
>
(
estimation
[
channel_num
])
+
weights_sum
/
2
)
/
weights_sum
;
dst_
.
at
<
T
>
(
i
,
j
)
=
saturateCastFromArray
<
T
>
(
estimation
);
dst_
.
at
<
T
>
(
i
,
j
)
=
saturateCastFromArray
<
T
,
IT
>
(
estimation
);
}
}
}
template
<
class
T
>
inline
void
FastNlMeansDenoisingInvoker
<
T
>::
calcDistSumsForFirstElementInRow
(
template
<
class
T
,
typename
IT
,
typename
UIT
>
inline
void
FastNlMeansDenoisingInvoker
<
T
,
IT
,
UIT
>::
calcDistSumsForFirstElementInRow
(
int
i
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
Array2d
<
IT
>&
dist_sums
,
Array3d
<
IT
>&
col_dist_sums
,
Array3d
<
IT
>&
up_col_dist_sums
)
const
{
int
j
=
0
;
...
...
@@ -276,7 +276,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
for
(
int
tx
=
-
template_window_half_size_
;
tx
<=
template_window_half_size_
;
tx
++
)
{
int
dist
=
calcDist
<
T
>
(
extended_src_
,
int
dist
=
calcDist
<
T
,
IT
>
(
extended_src_
,
border_size_
+
i
+
ty
,
border_size_
+
j
+
tx
,
border_size_
+
start_y
+
ty
,
border_size_
+
start_x
+
tx
);
...
...
@@ -288,12 +288,12 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
}
}
template
<
class
T
>
inline
void
FastNlMeansDenoisingInvoker
<
T
>::
calcDistSumsForElementInFirstRow
(
template
<
class
T
,
typename
IT
,
typename
UIT
>
inline
void
FastNlMeansDenoisingInvoker
<
T
,
IT
,
UIT
>::
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
Array2d
<
IT
>&
dist_sums
,
Array3d
<
IT
>&
col_dist_sums
,
Array3d
<
IT
>&
up_col_dist_sums
)
const
{
int
ay
=
border_size_
+
i
;
int
ax
=
border_size_
+
j
+
template_window_half_size_
;
...
...
@@ -312,7 +312,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int
by
=
start_by
+
y
;
int
bx
=
start_bx
+
x
;
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
col_dist_sums
[
new_last_col_num
][
y
][
x
]
+=
calcDist
<
T
>
(
extended_src_
,
ay
+
ty
,
ax
,
by
+
ty
,
bx
);
col_dist_sums
[
new_last_col_num
][
y
][
x
]
+=
calcDist
<
T
,
IT
>
(
extended_src_
,
ay
+
ty
,
ax
,
by
+
ty
,
bx
);
dist_sums
[
y
][
x
]
+=
col_dist_sums
[
new_last_col_num
][
y
][
x
];
up_col_dist_sums
[
j
][
y
][
x
]
=
col_dist_sums
[
new_last_col_num
][
y
][
x
];
...
...
modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
View file @
e178294b
...
...
@@ -44,118 +44,152 @@
using
namespace
cv
;
template
<
typename
T
>
static
inline
int
calcDist
(
const
T
a
,
const
T
b
);
template
<>
inline
int
calcDist
(
const
uchar
a
,
const
uchar
b
)
template
<
typename
T
,
typename
IT
>
struct
calcDist_
{
return
(
a
-
b
)
*
(
a
-
b
);
}
static
inline
IT
f
(
const
T
a
,
const
T
b
);
}
;
template
<
>
inline
int
calcDist
(
const
Vec2b
a
,
const
Vec2b
b
)
template
<
typename
IT
>
struct
calcDist_
<
uchar
,
IT
>
{
return
(
a
[
0
]
-
b
[
0
])
*
(
a
[
0
]
-
b
[
0
])
+
(
a
[
1
]
-
b
[
1
])
*
(
a
[
1
]
-
b
[
1
]);
}
static
inline
IT
f
(
uchar
a
,
uchar
b
)
{
return
(
IT
)(
a
-
b
)
*
(
IT
)(
a
-
b
);
}
};
template
<
>
inline
int
calcDist
(
const
Vec3b
a
,
const
Vec3b
b
)
template
<
typename
IT
>
struct
calcDist_
<
Vec2b
,
IT
>
{
return
(
a
[
0
]
-
b
[
0
])
*
(
a
[
0
]
-
b
[
0
])
+
(
a
[
1
]
-
b
[
1
])
*
(
a
[
1
]
-
b
[
1
])
+
(
a
[
2
]
-
b
[
2
])
*
(
a
[
2
]
-
b
[
2
]);
}
static
inline
IT
f
(
const
Vec2b
a
,
const
Vec2b
b
)
{
return
(
IT
)(
a
[
0
]
-
b
[
0
])
*
(
IT
)(
a
[
0
]
-
b
[
0
])
+
(
IT
)(
a
[
1
]
-
b
[
1
])
*
(
IT
)(
a
[
1
]
-
b
[
1
]);
}
};
template
<
typename
T
>
static
inline
int
calcDist
(
const
Mat
&
m
,
int
i1
,
int
j1
,
int
i2
,
int
j2
)
template
<
typename
IT
>
struct
calcDist_
<
Vec3b
,
IT
>
{
const
T
a
=
m
.
at
<
T
>
(
i1
,
j1
);
const
T
b
=
m
.
at
<
T
>
(
i2
,
j2
);
return
calcDist
<
T
>
(
a
,
b
);
}
static
inline
IT
f
(
const
Vec3b
a
,
const
Vec3b
b
)
{
return
(
IT
)(
a
[
0
]
-
b
[
0
])
*
(
IT
)(
a
[
0
]
-
b
[
0
])
+
(
IT
)(
a
[
1
]
-
b
[
1
])
*
(
IT
)(
a
[
1
]
-
b
[
1
])
+
(
IT
)(
a
[
2
]
-
b
[
2
])
*
(
IT
)(
a
[
2
]
-
b
[
2
]);
}
};
template
<
typename
T
>
static
inline
int
calcUpDownDist
(
T
a_up
,
T
a_down
,
T
b_up
,
T
b_down
)
template
<
typename
T
,
typename
IT
>
static
inline
IT
calcDist
(
const
T
a
,
const
T
b
)
{
return
calcDist
(
a_down
,
b_down
)
-
calcDist
(
a_up
,
b_up
);
return
calcDist
_
<
T
,
IT
>::
f
(
a
,
b
);
}
template
<>
inline
int
calcUpDownDist
(
uchar
a_up
,
uchar
a_down
,
uchar
b_up
,
uchar
b_down
)
template
<
typename
T
,
typename
IT
>
static
inline
IT
calcDist
(
const
Mat
&
m
,
int
i1
,
int
j1
,
int
i2
,
int
j2
)
{
int
A
=
a_down
-
b_down
;
int
B
=
a_up
-
b_up
;
return
(
A
-
B
)
*
(
A
+
B
);
const
T
a
=
m
.
at
<
T
>
(
i1
,
j1
)
;
const
T
b
=
m
.
at
<
T
>
(
i2
,
j2
)
;
return
calcDist
<
T
,
IT
>
(
a
,
b
);
}
template
<
typename
T
>
static
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
T
p
);
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
uchar
p
)
template
<
typename
T
,
typename
IT
>
struct
calcUpDownDist_
{
estimation
[
0
]
+=
weight
*
p
;
}
static
inline
IT
f
(
T
a_up
,
T
a_down
,
T
b_up
,
T
b_down
)
{
return
calcDist
<
T
,
IT
>
(
a_down
,
b_down
)
-
calcDist
<
T
,
IT
>
(
a_up
,
b_up
);
}
};
template
<
>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec2b
p
)
template
<
typename
IT
>
struct
calcUpDownDist_
<
uchar
,
IT
>
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
}
static
inline
IT
f
(
uchar
a_up
,
uchar
a_down
,
uchar
b_up
,
uchar
b_down
)
{
IT
A
=
a_down
-
b_down
;
IT
B
=
a_up
-
b_up
;
return
(
A
-
B
)
*
(
A
+
B
);
}
};
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec3b
p
)
template
<
typename
T
,
typename
IT
>
static
inline
IT
calcUpDownDist
(
T
a_up
,
T
a_down
,
T
b_up
,
T
b_down
)
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
estimation
[
2
]
+=
weight
*
p
[
2
];
}
return
calcUpDownDist_
<
T
,
IT
>::
f
(
a_up
,
a_down
,
b_up
,
b_down
);
};
template
<
>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
int
p
)
template
<
typename
T
,
typename
IT
>
struct
incWithWeight_
{
estimation
[
0
]
+=
weight
*
p
;
}
static
inline
void
f
(
IT
*
estimation
,
IT
weight
,
T
p
)
;
}
;
template
<
>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec2i
p
)
template
<
typename
IT
>
struct
incWithWeight_
<
uchar
,
IT
>
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
}
static
inline
void
f
(
IT
*
estimation
,
IT
weight
,
uchar
p
)
{
estimation
[
0
]
+=
weight
*
p
;
}
};
template
<
>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec3i
p
)
template
<
typename
IT
>
struct
incWithWeight_
<
Vec2b
,
IT
>
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
estimation
[
2
]
+=
weight
*
p
[
2
];
}
static
inline
void
f
(
IT
*
estimation
,
IT
weight
,
Vec2b
p
)
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
}
};
template
<
typename
T
>
static
inline
T
saturateCastFromArray
(
int
*
estimation
);
template
<
typename
IT
>
struct
incWithWeight_
<
Vec3b
,
IT
>
{
static
inline
void
f
(
IT
*
estimation
,
IT
weight
,
Vec3b
p
)
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
estimation
[
2
]
+=
weight
*
p
[
2
];
}
};
template
<>
inline
uchar
saturateCastFromArray
(
int
*
estimation
)
template
<
typename
T
,
typename
IT
>
static
inline
void
incWithWeight
(
IT
*
estimation
,
IT
weight
,
T
p
)
{
return
saturate_cast
<
uchar
>
(
estimation
[
0
]
);
return
incWithWeight_
<
T
,
IT
>::
f
(
estimation
,
weight
,
p
);
}
template
<
>
inline
Vec2b
saturateCastFromArray
(
int
*
estimation
)
template
<
typename
T
,
typename
IT
>
struct
saturateCastFromArray_
{
Vec2b
res
;
res
[
0
]
=
saturate_cast
<
uchar
>
(
estimation
[
0
]);
res
[
1
]
=
saturate_cast
<
uchar
>
(
estimation
[
1
]);
return
res
;
}
static
inline
T
f
(
IT
*
estimation
);
};
template
<
>
inline
Vec3b
saturateCastFromArray
(
int
*
estimation
)
template
<
typename
IT
>
struct
saturateCastFromArray_
<
uchar
,
IT
>
{
Vec3b
res
;
res
[
0
]
=
saturate_cast
<
uchar
>
(
estimation
[
0
]);
res
[
1
]
=
saturate_cast
<
uchar
>
(
estimation
[
1
]);
res
[
2
]
=
saturate_cast
<
uchar
>
(
estimation
[
2
]);
return
res
;
}
static
inline
uchar
f
(
IT
*
estimation
)
{
return
saturate_cast
<
uchar
>
(
estimation
[
0
]);
}
};
template
<
>
inline
int
saturateCastFromArray
(
int
*
estimation
)
template
<
typename
IT
>
struct
saturateCastFromArray_
<
Vec2b
,
IT
>
{
return
estimation
[
0
];
}
static
inline
Vec2b
f
(
IT
*
estimation
)
{
Vec2b
res
;
res
[
0
]
=
saturate_cast
<
uchar
>
(
estimation
[
0
]);
res
[
1
]
=
saturate_cast
<
uchar
>
(
estimation
[
1
]);
return
res
;
}
};
template
<
>
inline
Vec2i
saturateCastFromArray
(
int
*
estimation
)
template
<
typename
IT
>
struct
saturateCastFromArray_
<
Vec3b
,
IT
>
{
estimation
[
1
]
=
0
;
return
Vec2i
(
estimation
);
}
static
inline
Vec3b
f
(
IT
*
estimation
)
{
Vec3b
res
;
res
[
0
]
=
saturate_cast
<
uchar
>
(
estimation
[
0
]);
res
[
1
]
=
saturate_cast
<
uchar
>
(
estimation
[
1
]);
res
[
2
]
=
saturate_cast
<
uchar
>
(
estimation
[
2
]);
return
res
;
}
};
template
<
>
inline
Vec3i
saturateCastFromArray
(
int
*
estimation
)
template
<
typename
T
,
typename
IT
>
static
inline
T
saturateCastFromArray
(
IT
*
estimation
)
{
return
Vec3i
(
estimation
);
return
saturateCastFromArray_
<
T
,
IT
>::
f
(
estimation
);
}
#endif
modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
View file @
e178294b
...
...
@@ -50,7 +50,7 @@
using
namespace
cv
;
template
<
typename
T
>
template
<
typename
T
,
typename
IT
,
typename
UIT
>
struct
FastNlMeansMultiDenoisingInvoker
:
ParallelLoopBody
{
...
...
@@ -81,21 +81,21 @@ private:
int
search_window_half_size_
;
int
temporal_window_half_size_
;
int
fixed_point_mult_
;
IT
fixed_point_mult_
;
int
almost_template_window_size_sq_bin_shift
;
std
::
vector
<
int
>
almost_dist2weight
;
std
::
vector
<
IT
>
almost_dist2weight
;
void
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
;
void
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
IT
>&
dist_sums
,
Array4d
<
IT
>&
col_dist_sums
,
Array4d
<
IT
>&
up_col_dist_sums
)
const
;
void
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
;
Array3d
<
IT
>&
dist_sums
,
Array4d
<
IT
>&
col_dist_sums
,
Array4d
<
IT
>&
up_col_dist_sums
)
const
;
};
template
<
class
T
>
FastNlMeansMultiDenoisingInvoker
<
T
>::
FastNlMeansMultiDenoisingInvoker
(
template
<
class
T
,
typename
IT
,
typename
UIT
>
FastNlMeansMultiDenoisingInvoker
<
T
,
IT
,
UIT
>::
FastNlMeansMultiDenoisingInvoker
(
const
std
::
vector
<
Mat
>&
srcImgs
,
int
imgToDenoiseIndex
,
int
temporalWindowSize
,
...
...
@@ -125,8 +125,9 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
border_size_
,
border_size_
,
border_size_
,
border_size_
,
cv
::
BORDER_DEFAULT
);
main_extended_src_
=
extended_srcs_
[
temporal_window_half_size_
];
const
int
max_estimate_sum_value
=
temporal_window_size_
*
search_window_size_
*
search_window_size_
*
255
;
fixed_point_mult_
=
std
::
numeric_limits
<
int
>::
max
()
/
max_estimate_sum_value
;
const
IT
max_estimate_sum_value
=
(
IT
)
temporal_window_size_
*
(
IT
)
search_window_size_
*
(
IT
)
search_window_size_
*
255
;
fixed_point_mult_
=
std
::
numeric_limits
<
IT
>::
max
()
/
max_estimate_sum_value
;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
...
...
@@ -138,7 +139,7 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
int
almost_template_window_size_sq
=
1
<<
almost_template_window_size_sq_bin_shift
;
double
almost_dist2actual_dist_multiplier
=
(
double
)
almost_template_window_size_sq
/
template_window_size_sq
;
int
max_dist
=
255
*
255
*
sizeof
(
T
);
IT
max_dist
=
255
*
255
*
sizeof
(
T
);
int
almost_max_dist
=
(
int
)
(
max_dist
/
almost_dist2actual_dist_multiplier
+
1
);
almost_dist2weight
.
resize
(
almost_max_dist
);
...
...
@@ -146,7 +147,7 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
for
(
int
almost_dist
=
0
;
almost_dist
<
almost_max_dist
;
almost_dist
++
)
{
double
dist
=
almost_dist
*
almost_dist2actual_dist_multiplier
;
int
weight
=
cvR
ound
(
fixed_point_mult_
*
std
::
exp
(
-
dist
/
(
h
*
h
*
sizeof
(
T
))));
IT
weight
=
(
IT
)
r
ound
(
fixed_point_mult_
*
std
::
exp
(
-
dist
/
(
h
*
h
*
sizeof
(
T
))));
if
(
weight
<
WEIGHT_THRESHOLD
*
fixed_point_mult_
)
weight
=
0
;
...
...
@@ -160,19 +161,19 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
dst_
=
Mat
::
zeros
(
srcImgs
[
0
].
size
(),
srcImgs
[
0
].
type
());
}
template
<
class
T
>
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
operator
()
(
const
Range
&
range
)
const
template
<
class
T
,
typename
IT
,
typename
UIT
>
void
FastNlMeansMultiDenoisingInvoker
<
T
,
IT
,
UIT
>::
operator
()
(
const
Range
&
range
)
const
{
int
row_from
=
range
.
start
;
int
row_to
=
range
.
end
-
1
;
Array3d
<
int
>
dist_sums
(
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
Array3d
<
IT
>
dist_sums
(
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
// for lazy calc optimization
Array4d
<
int
>
col_dist_sums
(
template_window_size_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
Array4d
<
IT
>
col_dist_sums
(
template_window_size_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
int
first_col_num
=
-
1
;
Array4d
<
int
>
up_col_dist_sums
(
cols_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
Array4d
<
IT
>
up_col_dist_sums
(
cols_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
{
...
...
@@ -216,15 +217,15 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
Mat
cur_extended_src
=
extended_srcs_
[
d
];
Array2d
<
int
>
cur_dist_sums
=
dist_sums
[
d
];
Array2d
<
int
>
cur_col_dist_sums
=
col_dist_sums
[
first_col_num
][
d
];
Array2d
<
int
>
cur_up_col_dist_sums
=
up_col_dist_sums
[
j
][
d
];
Array2d
<
IT
>
cur_dist_sums
=
dist_sums
[
d
];
Array2d
<
IT
>
cur_col_dist_sums
=
col_dist_sums
[
first_col_num
][
d
];
Array2d
<
IT
>
cur_up_col_dist_sums
=
up_col_dist_sums
[
j
][
d
];
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
int
*
dist_sums_row
=
cur_dist_sums
.
row_ptr
(
y
);
IT
*
dist_sums_row
=
cur_dist_sums
.
row_ptr
(
y
);
int
*
col_dist_sums_row
=
cur_col_dist_sums
.
row_ptr
(
y
);
int
*
up_col_dist_sums_row
=
cur_up_col_dist_sums
.
row_ptr
(
y
);
IT
*
col_dist_sums_row
=
cur_col_dist_sums
.
row_ptr
(
y
);
IT
*
up_col_dist_sums_row
=
cur_up_col_dist_sums
.
row_ptr
(
y
);
const
T
*
b_up_ptr
=
cur_extended_src
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
cur_extended_src
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
...
...
@@ -234,7 +235,7 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
dist_sums_row
[
x
]
-=
col_dist_sums_row
[
x
];
col_dist_sums_row
[
x
]
=
up_col_dist_sums_row
[
x
]
+
calcUpDownDist
(
a_up
,
a_down
,
b_up_ptr
[
start_bx
+
x
],
b_down_ptr
[
start_bx
+
x
]);
calcUpDownDist
<
T
,
IT
>
(
a_up
,
a_down
,
b_up_ptr
[
start_bx
+
x
],
b_down_ptr
[
start_bx
+
x
]);
dist_sums_row
[
x
]
+=
col_dist_sums_row
[
x
];
up_col_dist_sums_row
[
x
]
=
col_dist_sums_row
[
x
];
...
...
@@ -247,9 +248,9 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
}
// calc weights
int
weights_sum
=
0
;
IT
weights_sum
=
0
;
int
estimation
[
3
];
IT
estimation
[
3
];
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
0
;
...
...
@@ -260,33 +261,33 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
{
const
T
*
cur_row_ptr
=
esrc_d
.
ptr
<
T
>
(
border_size_
+
search_window_y
+
y
);
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
d
,
y
);
IT
*
dist_sums_row
=
dist_sums
.
row_ptr
(
d
,
y
);
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift
;
int
almostAvgDist
=
(
int
)(
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift
)
;
int
weight
=
almost_dist2weight
[
almostAvgDist
];
IT
weight
=
almost_dist2weight
[
almostAvgDist
];
weights_sum
+=
weight
;
T
p
=
cur_row_ptr
[
border_size_
+
search_window_x
+
x
];
incWithWeight
(
estimation
,
weight
,
p
);
incWithWeight
<
T
,
IT
>
(
estimation
,
weight
,
p
);
}
}
}
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
(
(
unsigned
)
estimation
[
channel_num
]
+
weights_sum
/
2
)
/
weights_sum
;
estimation
[
channel_num
]
=
(
static_cast
<
UIT
>
(
estimation
[
channel_num
])
+
weights_sum
/
2
)
/
weights_sum
;
// ????
dst_
.
at
<
T
>
(
i
,
j
)
=
saturateCastFromArray
<
T
>
(
estimation
);
dst_
.
at
<
T
>
(
i
,
j
)
=
saturateCastFromArray
<
T
,
IT
>
(
estimation
);
}
}
}
template
<
class
T
>
inline
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
template
<
class
T
,
typename
IT
,
typename
UIT
>
inline
void
FastNlMeansMultiDenoisingInvoker
<
T
,
IT
,
UIT
>::
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
IT
>&
dist_sums
,
Array4d
<
IT
>&
col_dist_sums
,
Array4d
<
IT
>&
up_col_dist_sums
)
const
{
int
j
=
0
;
...
...
@@ -303,14 +304,14 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
int
start_y
=
i
+
y
-
search_window_half_size_
;
int
start_x
=
j
+
x
-
search_window_half_size_
;
int
*
dist_sums_ptr
=
&
dist_sums
[
d
][
y
][
x
];
int
*
col_dist_sums_ptr
=
&
col_dist_sums
[
0
][
d
][
y
][
x
];
IT
*
dist_sums_ptr
=
&
dist_sums
[
d
][
y
][
x
];
IT
*
col_dist_sums_ptr
=
&
col_dist_sums
[
0
][
d
][
y
][
x
];
int
col_dist_sums_step
=
col_dist_sums
.
step_size
(
0
);
for
(
int
tx
=
-
template_window_half_size_
;
tx
<=
template_window_half_size_
;
tx
++
)
{
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
int
dist
=
calcDist
<
T
>
(
IT
dist
=
calcDist
<
T
,
I
T
>
(
main_extended_src_
.
at
<
T
>
(
border_size_
+
i
+
ty
,
border_size_
+
j
+
tx
),
cur_extended_src
.
at
<
T
>
(
border_size_
+
start_y
+
ty
,
border_size_
+
start_x
+
tx
));
...
...
@@ -325,10 +326,10 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
}
}
template
<
class
T
>
inline
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
template
<
class
T
,
typename
IT
,
typename
UIT
>
inline
void
FastNlMeansMultiDenoisingInvoker
<
T
,
IT
,
UIT
>::
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
IT
>&
dist_sums
,
Array4d
<
IT
>&
col_dist_sums
,
Array4d
<
IT
>&
up_col_dist_sums
)
const
{
int
ay
=
border_size_
+
i
;
int
ax
=
border_size_
+
j
+
template_window_half_size_
;
...
...
@@ -350,10 +351,10 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
int
by
=
start_by
+
y
;
int
bx
=
start_bx
+
x
;
int
*
col_dist_sums_ptr
=
&
col_dist_sums
[
new_last_col_num
][
d
][
y
][
x
];
IT
*
col_dist_sums_ptr
=
&
col_dist_sums
[
new_last_col_num
][
d
][
y
][
x
];
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
*
col_dist_sums_ptr
+=
calcDist
<
T
>
(
*
col_dist_sums_ptr
+=
calcDist
<
T
,
IT
>
(
main_extended_src_
.
at
<
T
>
(
ay
+
ty
,
ax
),
cur_extended_src
.
at
<
T
>
(
by
+
ty
,
bx
));
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment