Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e16d89e8
Commit
e16d89e8
authored
Feb 11, 2014
by
Ilya Lavrenov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
some refactoring
parent
edbff688
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
167 additions
and
166 deletions
+167
-166
fast_nlmeans_denoising_invoker.hpp
modules/photo/src/fast_nlmeans_denoising_invoker.hpp
+57
-54
fast_nlmeans_denoising_invoker_commons.hpp
modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
+25
-12
fast_nlmeans_multi_denoising_invoker.hpp
modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
+85
-100
No files found.
modules/photo/src/fast_nlmeans_denoising_invoker.hpp
View file @
e16d89e8
...
...
@@ -51,14 +51,16 @@
using
namespace
cv
;
template
<
typename
T
>
struct
FastNlMeansDenoisingInvoker
:
ParallelLoopBody
{
public
:
struct
FastNlMeansDenoisingInvoker
:
public
ParallelLoopBody
{
public
:
FastNlMeansDenoisingInvoker
(
const
Mat
&
src
,
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
const
float
h
);
void
operator
()
(
const
Range
&
range
)
const
;
private
:
private
:
void
operator
=
(
const
FastNlMeansDenoisingInvoker
&
);
const
Mat
&
src_
;
...
...
@@ -78,15 +80,12 @@ struct FastNlMeansDenoisingInvoker : ParallelLoopBody {
std
::
vector
<
int
>
almost_dist2weight_
;
void
calcDistSumsForFirstElementInRow
(
int
i
,
Array2d
<
int
>&
dist_sums
,
int
i
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
;
void
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
int
i
,
int
j
,
int
first_col_num
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
;
...
...
@@ -95,17 +94,18 @@ struct FastNlMeansDenoisingInvoker : ParallelLoopBody {
inline
int
getNearestPowerOf2
(
int
value
)
{
int
p
=
0
;
while
(
1
<<
p
<
value
)
++
p
;
while
(
1
<<
p
<
value
)
++
p
;
return
p
;
}
template
<
class
T
>
FastNlMeansDenoisingInvoker
<
T
>::
FastNlMeansDenoisingInvoker
(
const
cv
::
Mat
&
src
,
cv
::
Mat
&
dst
,
const
cv
::
Mat
&
src
,
cv
::
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
const
float
h
)
:
src_
(
src
),
dst_
(
dst
)
const
float
h
)
:
src_
(
src
),
dst_
(
dst
)
{
CV_Assert
(
src
.
channels
()
==
sizeof
(
T
));
//T is Vec1b or Vec2b or Vec3b
...
...
@@ -134,7 +134,8 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
almost_dist2weight_
.
resize
(
almost_max_dist
);
const
double
WEIGHT_THRESHOLD
=
0.001
;
for
(
int
almost_dist
=
0
;
almost_dist
<
almost_max_dist
;
almost_dist
++
)
{
for
(
int
almost_dist
=
0
;
almost_dist
<
almost_max_dist
;
almost_dist
++
)
{
double
dist
=
almost_dist
*
almost_dist2actual_dist_multiplier
;
int
weight
=
cvRound
(
fixed_point_mult_
*
std
::
exp
(
-
dist
/
(
h
*
h
*
sizeof
(
T
))));
...
...
@@ -144,15 +145,15 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
almost_dist2weight_
[
almost_dist
]
=
weight
;
}
CV_Assert
(
almost_dist2weight_
[
0
]
==
fixed_point_mult_
);
// additional optimization init end
if
(
dst_
.
empty
())
{
// additional optimization init end
if
(
dst_
.
empty
())
dst_
=
Mat
::
zeros
(
src_
.
size
(),
src_
.
type
());
}
}
template
<
class
T
>
void
FastNlMeansDenoisingInvoker
<
T
>::
operator
()
(
const
Range
&
range
)
const
{
void
FastNlMeansDenoisingInvoker
<
T
>::
operator
()
(
const
Range
&
range
)
const
{
int
row_from
=
range
.
start
;
int
row_to
=
range
.
end
-
1
;
...
...
@@ -164,30 +165,36 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
int
first_col_num
=
-
1
;
Array3d
<
int
>
up_col_dist_sums
(
src_
.
cols
,
search_window_size_
,
search_window_size_
);
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
{
for
(
int
j
=
0
;
j
<
src_
.
cols
;
j
++
)
{
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
{
for
(
int
j
=
0
;
j
<
src_
.
cols
;
j
++
)
{
int
search_window_y
=
i
-
search_window_half_size_
;
int
search_window_x
=
j
-
search_window_half_size_
;
// calc dist_sums
if
(
j
==
0
)
{
if
(
j
==
0
)
{
calcDistSumsForFirstElementInRow
(
i
,
dist_sums
,
col_dist_sums
,
up_col_dist_sums
);
first_col_num
=
0
;
}
else
{
// calc cur dist_sums using previous dist_sums
if
(
i
==
row_from
)
{
}
else
{
// calc cur dist_sums using previous dist_sums
if
(
i
==
row_from
)
{
calcDistSumsForElementInFirstRow
(
i
,
j
,
first_col_num
,
dist_sums
,
col_dist_sums
,
up_col_dist_sums
);
}
else
{
}
else
{
int
ay
=
border_size_
+
i
;
int
ax
=
border_size_
+
j
+
template_window_half_size_
;
int
start_by
=
border_size_
+
i
-
search_window_half_size_
;
int
start_bx
=
border_size_
+
j
-
search_window_half_size_
+
template_window_half_size_
;
int
start_by
=
border_size_
+
i
-
search_window_half_size_
;
int
start_bx
=
border_size_
+
j
-
search_window_half_size_
+
template_window_half_size_
;
T
a_up
=
extended_src_
.
at
<
T
>
(
ay
-
template_window_half_size_
-
1
,
ax
);
T
a_down
=
extended_src_
.
at
<
T
>
(
ay
+
template_window_half_size_
,
ax
);
...
...
@@ -195,20 +202,18 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
// copy class member to local variable for optimization
int
search_window_size
=
search_window_size_
;
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
int
*
col_dist_sums_row
=
col_dist_sums
.
row_ptr
(
first_col_num
,
y
);
int
*
up_col_dist_sums_row
=
up_col_dist_sums
.
row_ptr
(
j
,
y
);
const
T
*
b_up_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_up_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
const
T
*
b_down_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
for
(
int
x
=
0
;
x
<
search_window_size
;
x
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size
;
x
++
)
{
dist_sums_row
[
x
]
-=
col_dist_sums_row
[
x
];
col_dist_sums_row
[
x
]
=
...
...
@@ -233,14 +238,15 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const {
int
weights_sum
=
0
;
int
estimation
[
3
];
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
{
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
0
;
}
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
const
T
*
cur_row_ptr
=
extended_src_
.
ptr
<
T
>
(
border_size_
+
search_window_y
+
y
);
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift_
;
...
...
@@ -269,18 +275,19 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
{
int
j
=
0
;
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
dist_sums
[
y
][
x
]
=
0
;
for
(
int
tx
=
0
;
tx
<
template_window_size_
;
tx
++
)
{
for
(
int
tx
=
0
;
tx
<
template_window_size_
;
tx
++
)
col_dist_sums
[
tx
][
y
][
x
]
=
0
;
}
int
start_y
=
i
+
y
-
search_window_half_size_
;
int
start_x
=
j
+
x
-
search_window_half_size_
;
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
for
(
int
tx
=
-
template_window_half_size_
;
tx
<=
template_window_half_size_
;
tx
++
)
{
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
for
(
int
tx
=
-
template_window_half_size_
;
tx
<=
template_window_half_size_
;
tx
++
)
{
int
dist
=
calcDist
<
T
>
(
extended_src_
,
border_size_
+
i
+
ty
,
border_size_
+
j
+
tx
,
border_size_
+
start_y
+
ty
,
border_size_
+
start_x
+
tx
);
...
...
@@ -288,11 +295,9 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
dist_sums
[
y
][
x
]
+=
dist
;
col_dist_sums
[
tx
+
template_window_half_size_
][
y
][
x
]
+=
dist
;
}
}
up_col_dist_sums
[
j
][
y
][
x
]
=
col_dist_sums
[
template_window_size_
-
1
][
y
][
x
];
}
}
}
template
<
class
T
>
...
...
@@ -312,23 +317,21 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int
new_last_col_num
=
first_col_num
;
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
dist_sums
[
y
][
x
]
-=
col_dist_sums
[
first_col_num
][
y
][
x
];
col_dist_sums
[
new_last_col_num
][
y
][
x
]
=
0
;
int
by
=
start_by
+
y
;
int
bx
=
start_bx
+
x
;
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
col_dist_sums
[
new_last_col_num
][
y
][
x
]
+=
calcDist
<
T
>
(
extended_src_
,
ay
+
ty
,
ax
,
by
+
ty
,
bx
);
}
dist_sums
[
y
][
x
]
+=
col_dist_sums
[
new_last_col_num
][
y
][
x
];
up_col_dist_sums
[
j
][
y
][
x
]
=
col_dist_sums
[
new_last_col_num
][
y
][
x
];
}
}
}
#endif
modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
View file @
e16d89e8
...
...
@@ -46,29 +46,35 @@ using namespace cv;
template
<
typename
T
>
static
inline
int
calcDist
(
const
T
a
,
const
T
b
);
template
<>
inline
int
calcDist
(
const
uchar
a
,
const
uchar
b
)
{
template
<>
inline
int
calcDist
(
const
uchar
a
,
const
uchar
b
)
{
return
(
a
-
b
)
*
(
a
-
b
);
}
template
<>
inline
int
calcDist
(
const
Vec2b
a
,
const
Vec2b
b
)
{
template
<>
inline
int
calcDist
(
const
Vec2b
a
,
const
Vec2b
b
)
{
return
(
a
[
0
]
-
b
[
0
])
*
(
a
[
0
]
-
b
[
0
])
+
(
a
[
1
]
-
b
[
1
])
*
(
a
[
1
]
-
b
[
1
]);
}
template
<>
inline
int
calcDist
(
const
Vec3b
a
,
const
Vec3b
b
)
{
template
<>
inline
int
calcDist
(
const
Vec3b
a
,
const
Vec3b
b
)
{
return
(
a
[
0
]
-
b
[
0
])
*
(
a
[
0
]
-
b
[
0
])
+
(
a
[
1
]
-
b
[
1
])
*
(
a
[
1
]
-
b
[
1
])
+
(
a
[
2
]
-
b
[
2
])
*
(
a
[
2
]
-
b
[
2
]);
}
template
<
typename
T
>
static
inline
int
calcDist
(
const
Mat
&
m
,
int
i1
,
int
j1
,
int
i2
,
int
j2
)
{
template
<
typename
T
>
static
inline
int
calcDist
(
const
Mat
&
m
,
int
i1
,
int
j1
,
int
i2
,
int
j2
)
{
const
T
a
=
m
.
at
<
T
>
(
i1
,
j1
);
const
T
b
=
m
.
at
<
T
>
(
i2
,
j2
);
return
calcDist
<
T
>
(
a
,
b
);
}
template
<
typename
T
>
static
inline
int
calcUpDownDist
(
T
a_up
,
T
a_down
,
T
b_up
,
T
b_down
)
{
template
<
typename
T
>
static
inline
int
calcUpDownDist
(
T
a_up
,
T
a_down
,
T
b_up
,
T
b_down
)
{
return
calcDist
(
a_down
,
b_down
)
-
calcDist
(
a_up
,
b_up
);
}
template
<>
inline
int
calcUpDownDist
(
uchar
a_up
,
uchar
a_down
,
uchar
b_up
,
uchar
b_down
)
{
template
<>
inline
int
calcUpDownDist
(
uchar
a_up
,
uchar
a_down
,
uchar
b_up
,
uchar
b_down
)
{
int
A
=
a_down
-
b_down
;
int
B
=
a_up
-
b_up
;
return
(
A
-
B
)
*
(
A
+
B
);
...
...
@@ -76,16 +82,20 @@ template <> inline int calcUpDownDist(uchar a_up, uchar a_down, uchar b_up, uch
template
<
typename
T
>
static
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
T
p
);
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
uchar
p
)
{
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
uchar
p
)
{
estimation
[
0
]
+=
weight
*
p
;
}
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec2b
p
)
{
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec2b
p
)
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
}
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec3b
p
)
{
template
<>
inline
void
incWithWeight
(
int
*
estimation
,
int
weight
,
Vec3b
p
)
{
estimation
[
0
]
+=
weight
*
p
[
0
];
estimation
[
1
]
+=
weight
*
p
[
1
];
estimation
[
2
]
+=
weight
*
p
[
2
];
...
...
@@ -93,18 +103,21 @@ template <> inline void incWithWeight(int* estimation, int weight, Vec3b p) {
template
<
typename
T
>
static
inline
T
saturateCastFromArray
(
int
*
estimation
);
template
<>
inline
uchar
saturateCastFromArray
(
int
*
estimation
)
{
template
<>
inline
uchar
saturateCastFromArray
(
int
*
estimation
)
{
return
saturate_cast
<
uchar
>
(
estimation
[
0
]);
}
template
<>
inline
Vec2b
saturateCastFromArray
(
int
*
estimation
)
{
template
<>
inline
Vec2b
saturateCastFromArray
(
int
*
estimation
)
{
Vec2b
res
;
res
[
0
]
=
saturate_cast
<
uchar
>
(
estimation
[
0
]);
res
[
1
]
=
saturate_cast
<
uchar
>
(
estimation
[
1
]);
return
res
;
}
template
<>
inline
Vec3b
saturateCastFromArray
(
int
*
estimation
)
{
template
<>
inline
Vec3b
saturateCastFromArray
(
int
*
estimation
)
{
Vec3b
res
;
res
[
0
]
=
saturate_cast
<
uchar
>
(
estimation
[
0
]);
res
[
1
]
=
saturate_cast
<
uchar
>
(
estimation
[
1
]);
...
...
modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
View file @
e16d89e8
...
...
@@ -51,15 +51,17 @@
using
namespace
cv
;
template
<
typename
T
>
struct
FastNlMeansMultiDenoisingInvoker
:
ParallelLoopBody
{
public
:
FastNlMeansMultiDenoisingInvoker
(
const
std
::
vector
<
Mat
>&
srcImgs
,
int
imgToDenoiseIndex
,
int
temporalWindowSize
,
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
const
float
h
);
struct
FastNlMeansMultiDenoisingInvoker
:
ParallelLoopBody
{
public
:
FastNlMeansMultiDenoisingInvoker
(
const
std
::
vector
<
Mat
>&
srcImgs
,
int
imgToDenoiseIndex
,
int
temporalWindowSize
,
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
const
float
h
);
void
operator
()
(
const
Range
&
range
)
const
;
private
:
private
:
void
operator
=
(
const
FastNlMeansMultiDenoisingInvoker
&
);
int
rows_
;
...
...
@@ -83,18 +85,12 @@ struct FastNlMeansMultiDenoisingInvoker : ParallelLoopBody {
int
almost_template_window_size_sq_bin_shift
;
std
::
vector
<
int
>
almost_dist2weight
;
void
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
int
>&
dist_sums
,
void
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
;
void
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
void
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
;
};
...
...
@@ -106,7 +102,8 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
cv
::
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
const
float
h
)
:
dst_
(
dst
),
extended_srcs_
(
srcImgs
.
size
())
const
float
h
)
:
dst_
(
dst
),
extended_srcs_
(
srcImgs
.
size
())
{
CV_Assert
(
srcImgs
.
size
()
>
0
);
CV_Assert
(
srcImgs
[
0
].
channels
()
==
sizeof
(
T
));
...
...
@@ -123,85 +120,84 @@ FastNlMeansMultiDenoisingInvoker<T>::FastNlMeansMultiDenoisingInvoker(
temporal_window_size_
=
temporal_window_half_size_
*
2
+
1
;
border_size_
=
search_window_half_size_
+
template_window_half_size_
;
for
(
int
i
=
0
;
i
<
temporal_window_size_
;
i
++
)
{
copyMakeBorder
(
srcImgs
[
imgToDenoiseIndex
-
temporal_window_half_size_
+
i
],
extended_srcs_
[
i
],
for
(
int
i
=
0
;
i
<
temporal_window_size_
;
i
++
)
copyMakeBorder
(
srcImgs
[
imgToDenoiseIndex
-
temporal_window_half_size_
+
i
],
extended_srcs_
[
i
],
border_size_
,
border_size_
,
border_size_
,
border_size_
,
cv
::
BORDER_DEFAULT
);
}
main_extended_src_
=
extended_srcs_
[
temporal_window_half_size_
];
const
int
max_estimate_sum_value
=
temporal_window_size_
*
search_window_size_
*
search_window_size_
*
255
;
main_extended_src_
=
extended_srcs_
[
temporal_window_half_size_
];
const
int
max_estimate_sum_value
=
temporal_window_size_
*
search_window_size_
*
search_window_size_
*
255
;
fixed_point_mult_
=
std
::
numeric_limits
<
int
>::
max
()
/
max_estimate_sum_value
;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
int
template_window_size_sq
=
template_window_size_
*
template_window_size_
;
almost_template_window_size_sq_bin_shift
=
0
;
while
(
1
<<
almost_template_window_size_sq_bin_shift
<
template_window_size_sq
)
{
while
(
1
<<
almost_template_window_size_sq_bin_shift
<
template_window_size_sq
)
almost_template_window_size_sq_bin_shift
++
;
}
int
almost_template_window_size_sq
=
1
<<
almost_template_window_size_sq_bin_shift
;
double
almost_dist2actual_dist_multiplier
=
((
double
)
almost_template_window_size_sq
)
/
template_window_size_sq
;
double
almost_dist2actual_dist_multiplier
=
(
double
)
almost_template_window_size_sq
/
template_window_size_sq
;
int
max_dist
=
255
*
255
*
sizeof
(
T
);
int
almost_max_dist
=
(
int
)
(
max_dist
/
almost_dist2actual_dist_multiplier
+
1
);
almost_dist2weight
.
resize
(
almost_max_dist
);
const
double
WEIGHT_THRESHOLD
=
0.001
;
for
(
int
almost_dist
=
0
;
almost_dist
<
almost_max_dist
;
almost_dist
++
)
{
for
(
int
almost_dist
=
0
;
almost_dist
<
almost_max_dist
;
almost_dist
++
)
{
double
dist
=
almost_dist
*
almost_dist2actual_dist_multiplier
;
int
weight
=
cvRound
(
fixed_point_mult_
*
std
::
exp
(
-
dist
/
(
h
*
h
*
sizeof
(
T
))));
if
(
weight
<
WEIGHT_THRESHOLD
*
fixed_point_mult_
)
{
if
(
weight
<
WEIGHT_THRESHOLD
*
fixed_point_mult_
)
weight
=
0
;
}
almost_dist2weight
[
almost_dist
]
=
weight
;
}
CV_Assert
(
almost_dist2weight
[
0
]
==
fixed_point_mult_
);
// additional optimization init end
if
(
dst_
.
empty
())
{
// additional optimization init end
if
(
dst_
.
empty
())
dst_
=
Mat
::
zeros
(
srcImgs
[
0
].
size
(),
srcImgs
[
0
].
type
());
}
}
template
<
class
T
>
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
operator
()
(
const
Range
&
range
)
const
{
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
operator
()
(
const
Range
&
range
)
const
{
int
row_from
=
range
.
start
;
int
row_to
=
range
.
end
-
1
;
Array3d
<
int
>
dist_sums
(
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
// for lazy calc optimization
Array4d
<
int
>
col_dist_sums
(
template_window_size_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
Array4d
<
int
>
col_dist_sums
(
template_window_size_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
int
first_col_num
=
-
1
;
Array4d
<
int
>
up_col_dist_sums
(
cols_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
Array4d
<
int
>
up_col_dist_sums
(
cols_
,
temporal_window_size_
,
search_window_size_
,
search_window_size_
);
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
{
for
(
int
j
=
0
;
j
<
cols_
;
j
++
)
{
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
{
for
(
int
j
=
0
;
j
<
cols_
;
j
++
)
{
int
search_window_y
=
i
-
search_window_half_size_
;
int
search_window_x
=
j
-
search_window_half_size_
;
// calc dist_sums
if
(
j
==
0
)
{
if
(
j
==
0
)
{
calcDistSumsForFirstElementInRow
(
i
,
dist_sums
,
col_dist_sums
,
up_col_dist_sums
);
first_col_num
=
0
;
}
else
{
// calc cur dist_sums using previous dist_sums
if
(
i
==
row_from
)
{
}
else
{
// calc cur dist_sums using previous dist_sums
if
(
i
==
row_from
)
{
calcDistSumsForElementInFirstRow
(
i
,
j
,
first_col_num
,
dist_sums
,
col_dist_sums
,
up_col_dist_sums
);
}
else
{
}
else
{
int
ay
=
border_size_
+
i
;
int
ax
=
border_size_
+
j
+
template_window_half_size_
;
...
...
@@ -217,36 +213,31 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
// copy class member to local variable for optimization
int
search_window_size
=
search_window_size_
;
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
Mat
cur_extended_src
=
extended_srcs_
[
d
];
Array2d
<
int
>
cur_dist_sums
=
dist_sums
[
d
];
Array2d
<
int
>
cur_col_dist_sums
=
col_dist_sums
[
first_col_num
][
d
];
Array2d
<
int
>
cur_up_col_dist_sums
=
up_col_dist_sums
[
j
][
d
];
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
int
*
dist_sums_row
=
cur_dist_sums
.
row_ptr
(
y
);
int
*
col_dist_sums_row
=
cur_col_dist_sums
.
row_ptr
(
y
);
int
*
up_col_dist_sums_row
=
cur_up_col_dist_sums
.
row_ptr
(
y
);
const
T
*
b_up_ptr
=
cur_extended_src
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
cur_extended_src
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
const
T
*
b_up_ptr
=
cur_extended_src
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
cur_extended_src
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
for
(
int
x
=
0
;
x
<
search_window_size
;
x
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size
;
x
++
)
{
dist_sums_row
[
x
]
-=
col_dist_sums_row
[
x
];
col_dist_sums_row
[
x
]
=
up_col_dist_sums_row
[
x
]
+
calcUpDownDist
(
a_up
,
a_down
,
b_up_ptr
[
start_bx
+
x
],
b_down_ptr
[
start_bx
+
x
]
);
calcUpDownDist
(
a_up
,
a_down
,
b_up_ptr
[
start_bx
+
x
],
b_down_ptr
[
start_bx
+
x
]);
dist_sums_row
[
x
]
+=
col_dist_sums_row
[
x
];
up_col_dist_sums_row
[
x
]
=
col_dist_sums_row
[
x
];
}
}
}
...
...
@@ -259,19 +250,21 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
int
weights_sum
=
0
;
int
estimation
[
3
];
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
{
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
0
;
}
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
const
Mat
&
esrc_d
=
extended_srcs_
[
d
];
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
const
T
*
cur_row_ptr
=
esrc_d
.
ptr
<
T
>
(
border_size_
+
search_window_y
+
y
);
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
d
,
y
);
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift
;
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift
;
int
weight
=
almost_dist2weight
[
almostAvgDist
];
weights_sum
+=
weight
;
...
...
@@ -293,21 +286,19 @@ void FastNlMeansMultiDenoisingInvoker<T>::operator() (const Range& range) const
template
<
class
T
>
inline
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
calcDistSumsForFirstElementInRow
(
int
i
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
int
i
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
{
int
j
=
0
;
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
Mat
cur_extended_src
=
extended_srcs_
[
d
];
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
dist_sums
[
d
][
y
][
x
]
=
0
;
for
(
int
tx
=
0
;
tx
<
template_window_size_
;
tx
++
)
{
for
(
int
tx
=
0
;
tx
<
template_window_size_
;
tx
++
)
col_dist_sums
[
tx
][
d
][
y
][
x
]
=
0
;
}
int
start_y
=
i
+
y
-
search_window_half_size_
;
int
start_x
=
j
+
x
-
search_window_half_size_
;
...
...
@@ -315,14 +306,13 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
int
*
dist_sums_ptr
=
&
dist_sums
[
d
][
y
][
x
];
int
*
col_dist_sums_ptr
=
&
col_dist_sums
[
0
][
d
][
y
][
x
];
int
col_dist_sums_step
=
col_dist_sums
.
step_size
(
0
);
for
(
int
tx
=
-
template_window_half_size_
;
tx
<=
template_window_half_size_
;
tx
++
)
{
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
for
(
int
tx
=
-
template_window_half_size_
;
tx
<=
template_window_half_size_
;
tx
++
)
{
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
int
dist
=
calcDist
<
T
>
(
main_extended_src_
.
at
<
T
>
(
border_size_
+
i
+
ty
,
border_size_
+
j
+
tx
),
cur_extended_src
.
at
<
T
>
(
border_size_
+
start_y
+
ty
,
border_size_
+
start_x
+
tx
)
);
main_extended_src_
.
at
<
T
>
(
border_size_
+
i
+
ty
,
border_size_
+
j
+
tx
),
cur_extended_src
.
at
<
T
>
(
border_size_
+
start_y
+
ty
,
border_size_
+
start_x
+
tx
));
*
dist_sums_ptr
+=
dist
;
*
col_dist_sums_ptr
+=
dist
;
...
...
@@ -333,17 +323,12 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForFirstElementInRo
up_col_dist_sums
[
j
][
d
][
y
][
x
]
=
col_dist_sums
[
template_window_size_
-
1
][
d
][
y
][
x
];
}
}
}
}
template
<
class
T
>
inline
void
FastNlMeansMultiDenoisingInvoker
<
T
>::
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
int
i
,
int
j
,
int
first_col_num
,
Array3d
<
int
>&
dist_sums
,
Array4d
<
int
>&
col_dist_sums
,
Array4d
<
int
>&
up_col_dist_sums
)
const
{
int
ay
=
border_size_
+
i
;
int
ax
=
border_size_
+
j
+
template_window_half_size_
;
...
...
@@ -353,10 +338,12 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
int
new_last_col_num
=
first_col_num
;
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
for
(
int
d
=
0
;
d
<
temporal_window_size_
;
d
++
)
{
Mat
cur_extended_src
=
extended_srcs_
[
d
];
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
{
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
for
(
int
y
=
0
;
y
<
search_window_size_
;
y
++
)
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
dist_sums
[
d
][
y
][
x
]
-=
col_dist_sums
[
first_col_num
][
d
][
y
][
x
];
col_dist_sums
[
new_last_col_num
][
d
][
y
][
x
]
=
0
;
...
...
@@ -364,12 +351,11 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
int
bx
=
start_bx
+
x
;
int
*
col_dist_sums_ptr
=
&
col_dist_sums
[
new_last_col_num
][
d
][
y
][
x
];
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
*
col_dist_sums_ptr
+=
calcDist
<
T
>
(
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
{
*
col_dist_sums_ptr
+=
calcDist
<
T
>
(
main_extended_src_
.
at
<
T
>
(
ay
+
ty
,
ax
),
cur_extended_src
.
at
<
T
>
(
by
+
ty
,
bx
)
);
cur_extended_src
.
at
<
T
>
(
by
+
ty
,
bx
));
}
dist_sums
[
d
][
y
][
x
]
+=
col_dist_sums
[
new_last_col_num
][
d
][
y
][
x
];
...
...
@@ -377,7 +363,6 @@ inline void FastNlMeansMultiDenoisingInvoker<T>::calcDistSumsForElementInFirstRo
up_col_dist_sums
[
j
][
d
][
y
][
x
]
=
col_dist_sums
[
new_last_col_num
][
d
][
y
][
x
];
}
}
}
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment