Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
e0df3e27
Commit
e0df3e27
authored
Jun 18, 2012
by
Alexander Mordvintsev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added digits2.py sample (work in progress)
parent
9152d3fe
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
161 additions
and
0 deletions
+161
-0
digits2.py
samples/python2/digits2.py
+161
-0
No files found.
samples/python2/digits2.py
0 → 100644
View file @
e0df3e27
import
numpy
as
np
import
cv2
from
multiprocessing.pool
import
ThreadPool
SZ
=
20
# size of each digit is SZ x SZ
CLASS_N
=
10
def
load_base
(
fn
):
print
'loading "
%
s" ...'
%
fn
digits_img
=
cv2
.
imread
(
fn
,
0
)
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
array
(
digits
)
.
reshape
(
-
1
,
SZ
,
SZ
)
digits
=
np
.
float32
(
digits
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
len
(
digits
)
/
CLASS_N
)
return
digits
,
labels
def
cross_validate
(
model_class
,
params
,
samples
,
labels
,
kfold
=
4
,
pool
=
None
):
n
=
len
(
samples
)
folds
=
np
.
array_split
(
np
.
arange
(
n
),
kfold
)
def
f
(
i
):
model
=
model_class
(
**
params
)
test_idx
=
folds
[
i
]
train_idx
=
list
(
folds
)
train_idx
.
pop
(
i
)
train_idx
=
np
.
hstack
(
train_idx
)
train_samples
,
train_labels
=
samples
[
train_idx
],
labels
[
train_idx
]
test_samples
,
test_labels
=
samples
[
test_idx
],
labels
[
test_idx
]
model
.
train
(
train_samples
,
train_labels
)
resp
=
model
.
predict
(
test_samples
)
score
=
(
resp
!=
test_labels
)
.
mean
()
print
"."
,
return
score
if
pool
is
None
:
scores
=
map
(
f
,
xrange
(
kfold
))
else
:
scores
=
pool
.
map
(
f
,
xrange
(
kfold
))
return
np
.
mean
(
scores
)
class
StatModel
(
object
):
def
load
(
self
,
fn
):
self
.
model
.
load
(
fn
)
def
save
(
self
,
fn
):
self
.
model
.
save
(
fn
)
class
KNearest
(
StatModel
):
def
__init__
(
self
,
k
=
3
):
self
.
k
=
k
@staticmethod
def
adjust
(
samples
,
labels
):
print
'adjusting KNearest ...'
best_err
,
best_k
=
np
.
inf
,
-
1
for
k
in
xrange
(
1
,
11
):
err
=
cross_validate
(
KNearest
,
dict
(
k
=
k
),
samples
,
labels
)
if
err
<
best_err
:
best_err
,
best_k
=
err
,
k
print
'k =
%
d, error:
%.2
f
%%
'
%
(
k
,
err
*
100
)
best_params
=
dict
(
k
=
best_k
)
print
'best params:'
,
best_params
return
best_params
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
KNearest
()
self
.
model
.
train
(
samples
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find_nearest
(
samples
,
self
.
k
)
return
results
.
ravel
()
class
SVM
(
StatModel
):
def
__init__
(
self
,
C
=
1
,
gamma
=
0.5
):
self
.
params
=
dict
(
kernel_type
=
cv2
.
SVM_RBF
,
svm_type
=
cv2
.
SVM_C_SVC
,
C
=
C
,
gamma
=
gamma
)
@staticmethod
def
adjust
(
samples
,
labels
):
Cs
=
np
.
logspace
(
0
,
5
,
10
,
base
=
2
)
gammas
=
np
.
logspace
(
-
7
,
-
2
,
10
,
base
=
2
)
scores
=
np
.
zeros
((
len
(
Cs
),
len
(
gammas
)))
scores
[:]
=
np
.
nan
print
'adjusting SVM (may take a long time) ...'
def
f
(
job
):
i
,
j
=
job
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
samples
,
labels
)
scores
[
i
,
j
]
=
score
nready
=
np
.
isfinite
(
scores
)
.
sum
()
print
'
%
d /
%
d (best error:
%.2
f
%%
, last:
%.2
f
%%
)'
%
(
nready
,
scores
.
size
,
np
.
nanmin
(
scores
)
*
100
,
score
*
100
)
pool
=
ThreadPool
(
processes
=
cv2
.
getNumberOfCPUs
())
pool
.
map
(
f
,
np
.
ndindex
(
*
scores
.
shape
))
print
scores
i
,
j
=
np
.
unravel_index
(
scores
.
argmin
(),
scores
.
shape
)
best_params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
print
'best params:'
,
best_params
print
'best error:
%.2
f
%%
'
%
(
scores
.
min
()
*
100
)
return
best_params
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
SVM
()
self
.
model
.
train
(
samples
,
responses
,
params
=
self
.
params
)
def
predict
(
self
,
samples
):
return
self
.
model
.
predict_all
(
samples
)
.
ravel
()
def
main_adjustSVM
(
samples
,
labels
):
params
=
SVM
.
adjust
(
samples
,
labels
)
print
'training SVM on all samples ...'
model
=
SVN
(
**
params
)
model
.
train
(
samples
,
labels
)
print
'saving "digits_svm.dat" ...'
model
.
save
(
'digits_svm.dat'
)
def
main_adjustKNearest
(
samples
,
labels
):
params
=
KNearest
.
adjust
(
samples
,
labels
)
def
main_showSVM
(
samples
,
labels
):
from
common
import
mosaic
train_n
=
int
(
0.9
*
len
(
samples
))
digits_train
,
digits_test
=
np
.
split
(
samples
[
shuffle
],
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
[
shuffle
],
[
train_n
])
print
'training SVM ...'
model
=
SVM
(
C
=
2.16
,
gamma
=
0.0536
)
model
.
train
(
digits_train
,
labels_train
)
train_err
=
(
model
.
predict
(
digits_train
)
!=
labels_train
)
.
mean
()
resp_test
=
model
.
predict
(
digits_test
)
test_err
=
(
resp_test
!=
labels_test
)
.
mean
()
print
'train errors:
%.2
f
%%
'
%
(
train_err
*
100
)
print
'test errors:
%.2
f
%%
'
%
(
test_err
*
100
)
# visualize test results
vis
=
[]
for
img
,
flag
in
zip
(
digits_test
,
resp_test
==
labels_test
):
img
=
np
.
uint8
(
img
*
255
)
.
reshape
(
SZ
,
SZ
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
if
not
flag
:
img
[
...
,:
2
]
=
0
vis
.
append
(
img
)
vis
=
mosaic
(
25
,
vis
)
cv2
.
imshow
(
'test'
,
vis
)
cv2
.
waitKey
()
if
__name__
==
'__main__'
:
samples
,
labels
=
load_base
(
'digits.png'
)
shuffle
=
np
.
random
.
permutation
(
len
(
samples
))
samples
,
labels
=
samples
[
shuffle
],
labels
[
shuffle
]
#main_adjustSVM(samples, labels)
#main_adjustKNearest(samples, labels)
main_showSVM
(
samples
,
labels
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment