Commit e05b6bb6 authored by John Stowers's avatar John Stowers

remove picloud from digits_adjust

the service has been closed since 2013/2014
parent c4c3f1b2
...@@ -6,18 +6,12 @@ Grid search is used to find the best parameters for SVM and KNearest classifiers ...@@ -6,18 +6,12 @@ Grid search is used to find the best parameters for SVM and KNearest classifiers
SVM adjustment follows the guidelines given in SVM adjustment follows the guidelines given in
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Threading or cloud computing (with http://www.picloud.com/)) may be used
to speedup the computation.
Usage: Usage:
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>] digits_adjust.py [--model {svm|knearest}]
--model {svm|knearest} - select the classifier (SVM is the default) --model {svm|knearest} - select the classifier (SVM is the default)
--cloud - use PiCloud computing platform
--env - cloud environment name
''' '''
# TODO cloud env setup tutorial
import numpy as np import numpy as np
import cv2 import cv2
...@@ -25,14 +19,6 @@ from multiprocessing.pool import ThreadPool ...@@ -25,14 +19,6 @@ from multiprocessing.pool import ThreadPool
from digits import * from digits import *
try:
import cloud
have_cloud = True
except ImportError:
have_cloud = False
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
n = len(samples) n = len(samples)
folds = np.array_split(np.arange(n), kfold) folds = np.array_split(np.arange(n), kfold)
...@@ -57,23 +43,10 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None) ...@@ -57,23 +43,10 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None)
class App(object): class App(object):
def __init__(self, usecloud=False, cloud_env=''): def __init__(self):
if usecloud and not have_cloud:
print 'warning: cloud module is not installed, running locally'
usecloud = False
self.usecloud = usecloud
self.cloud_env = cloud_env
if self.usecloud:
print 'uploading dataset to cloud...'
cloud.files.put(DIGITS_FN)
self.preprocess_job = cloud.call(self.preprocess, _env=self.cloud_env)
else:
self._samples, self._labels = self.preprocess() self._samples, self._labels = self.preprocess()
def preprocess(self): def preprocess(self):
if self.usecloud:
cloud.files.get(DIGITS_FN)
digits, labels = load_digits(DIGITS_FN) digits, labels = load_digits(DIGITS_FN)
shuffle = np.random.permutation(len(digits)) shuffle = np.random.permutation(len(digits))
digits, labels = digits[shuffle], labels[shuffle] digits, labels = digits[shuffle], labels[shuffle]
...@@ -82,16 +55,9 @@ class App(object): ...@@ -82,16 +55,9 @@ class App(object):
return samples, labels return samples, labels
def get_dataset(self): def get_dataset(self):
if self.usecloud:
return cloud.result(self.preprocess_job)
else:
return self._samples, self._labels return self._samples, self._labels
def run_jobs(self, f, jobs): def run_jobs(self, f, jobs):
if self.usecloud:
jids = cloud.map(f, jobs, _env=self.cloud_env, _profile=True, _depends_on=self.preprocess_job)
ires = cloud.iresult(jids)
else:
pool = ThreadPool(processes=cv2.getNumberOfCPUs()) pool = ThreadPool(processes=cv2.getNumberOfCPUs())
ires = pool.imap_unordered(f, jobs) ires = pool.imap_unordered(f, jobs)
return ires return ires
...@@ -147,7 +113,7 @@ if __name__ == '__main__': ...@@ -147,7 +113,7 @@ if __name__ == '__main__':
print __doc__ print __doc__
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env=']) args, _ = getopt.getopt(sys.argv[1:], '', ['model='])
args = dict(args) args = dict(args)
args.setdefault('--model', 'svm') args.setdefault('--model', 'svm')
args.setdefault('--env', '') args.setdefault('--env', '')
...@@ -156,7 +122,7 @@ if __name__ == '__main__': ...@@ -156,7 +122,7 @@ if __name__ == '__main__':
sys.exit(1) sys.exit(1)
t = clock() t = clock()
app = App(usecloud='--cloud' in args, cloud_env = args['--env']) app = App()
if args['--model'] == 'knearest': if args['--model'] == 'knearest':
app.adjust_KNearest() app.adjust_KNearest()
else: else:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment