Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
dfb348ef
Commit
dfb348ef
authored
Jan 31, 2017
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #8081 from mshabunin:fix-kmeans-compactness
parents
0aab7c6f
b417b4db
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
68 additions
and
28 deletions
+68
-28
kmeans.cpp
modules/core/src/kmeans.cpp
+19
-12
test_math.cpp
modules/core/test/test_math.cpp
+42
-15
kmeans.cpp
samples/cpp/kmeans.cpp
+7
-1
No files found.
modules/core/src/kmeans.cpp
View file @
dfb348ef
...
...
@@ -165,11 +165,13 @@ public:
KMeansDistanceComputer
(
double
*
_distances
,
int
*
_labels
,
const
Mat
&
_data
,
const
Mat
&
_centers
)
const
Mat
&
_centers
,
bool
_onlyDistance
=
false
)
:
distances
(
_distances
),
labels
(
_labels
),
data
(
_data
),
centers
(
_centers
)
centers
(
_centers
),
onlyDistance
(
_onlyDistance
)
{
}
...
...
@@ -183,6 +185,12 @@ public:
for
(
int
i
=
begin
;
i
<
end
;
++
i
)
{
const
float
*
sample
=
data
.
ptr
<
float
>
(
i
);
if
(
onlyDistance
)
{
const
float
*
center
=
centers
.
ptr
<
float
>
(
labels
[
i
]);
distances
[
i
]
=
normL2Sqr
(
sample
,
center
,
dims
);
continue
;
}
int
k_best
=
0
;
double
min_dist
=
DBL_MAX
;
...
...
@@ -210,6 +218,7 @@ private:
int
*
labels
;
const
Mat
&
data
;
const
Mat
&
centers
;
bool
onlyDistance
;
};
}
...
...
@@ -259,6 +268,7 @@ double cv::kmeans( InputArray _data, int K,
Mat
centers
(
K
,
dims
,
type
),
old_centers
(
K
,
dims
,
type
),
temp
(
1
,
dims
,
type
);
std
::
vector
<
int
>
counters
(
K
);
std
::
vector
<
Vec2f
>
_box
(
dims
);
Mat
dists
(
1
,
N
,
CV_64F
);
Vec2f
*
box
=
&
_box
[
0
];
double
best_compactness
=
DBL_MAX
,
compactness
=
0
;
RNG
&
rng
=
theRNG
();
...
...
@@ -430,19 +440,16 @@ double cv::kmeans( InputArray _data, int K,
}
}
if
(
++
iter
==
MAX
(
criteria
.
maxCount
,
2
)
||
max_center_shift
<=
criteria
.
epsilon
)
break
;
bool
isLastIter
=
(
++
iter
==
MAX
(
criteria
.
maxCount
,
2
)
||
max_center_shift
<=
criteria
.
epsilon
);
// assign labels
Mat
dists
(
1
,
N
,
CV_64F
)
;
dists
=
0
;
double
*
dist
=
dists
.
ptr
<
double
>
(
0
);
parallel_for_
(
Range
(
0
,
N
),
KMeansDistanceComputer
(
dist
,
labels
,
data
,
centers
));
compactness
=
0
;
for
(
i
=
0
;
i
<
N
;
i
++
)
{
compactness
+=
dist
[
i
];
}
parallel_for_
(
Range
(
0
,
N
),
KMeansDistanceComputer
(
dist
,
labels
,
data
,
centers
,
isLastIter
));
compactness
=
sum
(
dists
)[
0
];
if
(
isLastIter
)
break
;
}
if
(
compactness
<
best_compactness
)
...
...
modules/core/test/test_math.cpp
View file @
dfb348ef
...
...
@@ -2748,21 +2748,23 @@ public:
protected
:
void
run
(
int
inVariant
)
{
RNG
&
rng
=
ts
->
get_rng
();
int
i
,
iter
=
0
,
N
=
0
,
N0
=
0
,
K
=
0
,
dims
=
0
;
Mat
labels
;
try
{
RNG
&
rng
=
theRNG
();
const
int
MAX_DIM
=
5
;
int
MAX_POINTS
=
100
,
maxIter
=
100
;
for
(
iter
=
0
;
iter
<
maxIter
;
iter
++
)
{
ts
->
update_context
(
this
,
iter
,
true
);
dims
=
rng
.
uniform
(
inVariant
==
MAT_1_N_CDIM
?
2
:
1
,
MAX_DIM
+
1
);
N
=
rng
.
uniform
(
1
,
MAX_POINTS
+
1
);
N
=
rng
.
uniform
(
2
,
MAX_POINTS
+
1
);
N0
=
rng
.
uniform
(
1
,
MAX
(
N
/
10
,
2
));
K
=
rng
.
uniform
(
1
,
N
+
1
);
Mat
centers
;
if
(
inVariant
==
VECTOR
)
{
dims
=
2
;
...
...
@@ -2775,7 +2777,7 @@ protected:
data
[
i
]
=
data0
[
rng
.
uniform
(
0
,
N0
)];
kmeans
(
data
,
K
,
labels
,
TermCriteria
(
TermCriteria
::
MAX_ITER
+
TermCriteria
::
EPS
,
30
,
0
),
5
,
KMEANS_PP_CENTERS
);
5
,
KMEANS_PP_CENTERS
,
centers
);
}
else
{
...
...
@@ -2820,27 +2822,23 @@ protected:
}
kmeans
(
data
,
K
,
labels
,
TermCriteria
(
TermCriteria
::
MAX_ITER
+
TermCriteria
::
EPS
,
30
,
0
),
5
,
KMEANS_PP_CENTERS
);
5
,
KMEANS_PP_CENTERS
,
centers
);
}
ASSERT_EQ
(
centers
.
rows
,
K
);
ASSERT_EQ
(
labels
.
rows
,
N
);
Mat
hist
(
K
,
1
,
CV_32S
,
Scalar
(
0
));
for
(
i
=
0
;
i
<
N
;
i
++
)
{
int
l
=
labels
.
at
<
int
>
(
i
);
CV_Assert
(
0
<=
l
&&
l
<
K
);
ASSERT_GE
(
l
,
0
);
ASSERT_LT
(
l
,
K
);
hist
.
at
<
int
>
(
l
)
++
;
}
for
(
i
=
0
;
i
<
K
;
i
++
)
CV_Assert
(
hist
.
at
<
int
>
(
i
)
!=
0
);
}
ASSERT_GT
(
hist
.
at
<
int
>
(
i
),
0
);
}
catch
(...)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"context: iteration=%d, N=%d, N0=%d, K=%d
\n
"
,
iter
,
N
,
N0
,
K
);
std
::
cout
<<
labels
<<
std
::
endl
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_MISMATCH
);
}
}
};
...
...
@@ -2859,6 +2857,35 @@ TEST_P(Core_KMeans_InputVariants, singular)
INSTANTIATE_TEST_CASE_P
(
AllVariants
,
Core_KMeans_InputVariants
,
KMeansInputVariant
::
all
());
TEST
(
Core_KMeans
,
compactness
)
{
const
int
N
=
1024
;
const
int
attempts
=
4
;
const
TermCriteria
crit
=
TermCriteria
(
TermCriteria
::
COUNT
,
5
,
0
);
// low number of iterations
cvtest
::
TS
&
ts
=
*
cvtest
::
TS
::
ptr
();
for
(
int
K
=
1
;
K
<=
N
;
K
*=
2
)
{
Mat
data
(
N
,
1
,
CV_32FC2
);
cvtest
::
randUni
(
ts
.
get_rng
(),
data
,
Scalar
(
-
200
,
-
200
),
Scalar
(
200
,
200
));
Mat
labels
,
centers
;
double
compactness
=
kmeans
(
data
,
K
,
labels
,
crit
,
attempts
,
KMEANS_PP_CENTERS
,
centers
);
centers
=
centers
.
reshape
(
2
);
EXPECT_EQ
(
labels
.
rows
,
N
);
EXPECT_EQ
(
centers
.
rows
,
K
);
EXPECT_GE
(
compactness
,
0.0
);
double
expected
=
0.0
;
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
l
=
labels
.
at
<
int
>
(
i
);
Point2f
d
=
data
.
at
<
Point2f
>
(
i
)
-
centers
.
at
<
Point2f
>
(
l
);
expected
+=
d
.
x
*
d
.
x
+
d
.
y
*
d
.
y
;
}
EXPECT_NEAR
(
expected
,
compactness
,
expected
*
1e-8
);
if
(
K
==
N
)
EXPECT_DOUBLE_EQ
(
compactness
,
0.0
);
}
}
TEST
(
CovariationMatrixVectorOfMat
,
accuracy
)
{
unsigned
int
col_problem_size
=
8
,
row_problem_size
=
8
,
vector_size
=
16
;
...
...
samples/cpp/kmeans.cpp
View file @
dfb348ef
...
...
@@ -53,7 +53,7 @@ int main( int /*argc*/, char** /*argv*/ )
randShuffle
(
points
,
1
,
&
rng
);
kmeans
(
points
,
clusterCount
,
labels
,
double
compactness
=
kmeans
(
points
,
clusterCount
,
labels
,
TermCriteria
(
TermCriteria
::
EPS
+
TermCriteria
::
COUNT
,
10
,
1.0
),
3
,
KMEANS_PP_CENTERS
,
centers
);
...
...
@@ -65,6 +65,12 @@ int main( int /*argc*/, char** /*argv*/ )
Point
ipt
=
points
.
at
<
Point2f
>
(
i
);
circle
(
img
,
ipt
,
2
,
colorTab
[
clusterIdx
],
FILLED
,
LINE_AA
);
}
for
(
i
=
0
;
i
<
centers
.
rows
;
++
i
)
{
Point2f
c
=
centers
.
at
<
Point2f
>
(
i
);
circle
(
img
,
c
,
40
,
colorTab
[
i
],
1
,
LINE_AA
);
}
cout
<<
"Compactness: "
<<
compactness
<<
endl
;
imshow
(
"clusters"
,
img
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment