Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
df4b67a7
Commit
df4b67a7
authored
Jul 10, 2013
by
kdrobnyh
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1 from Itseez/2.4
Add calculating integral image using IPP
parents
f8eb8065
241e2d23
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
732 additions
and
45 deletions
+732
-45
version.hpp
modules/core/include/opencv2/core/version.hpp
+1
-1
brisk.cpp
modules/features2d/src/brisk.cpp
+5
-1
cap.cpp
modules/highgui/src/cap.cpp
+1
-1
templmatch.cpp
modules/imgproc/src/templmatch.cpp
+2
-0
ocl.hpp
modules/ocl/include/opencv2/ocl/ocl.hpp
+12
-0
initialization.cpp
modules/ocl/src/initialization.cpp
+1
-1
kmeans.cpp
modules/ocl/src/kmeans.cpp
+438
-0
kmeans_kernel.cl
modules/ocl/src/opencl/kmeans_kernel.cl
+84
-0
main.cpp
modules/ocl/test/main.cpp
+1
-4
test_calib3d.cpp
modules/ocl/test/test_calib3d.cpp
+9
-10
test_canny.cpp
modules/ocl/test/test_canny.cpp
+1
-2
test_kmeans.cpp
modules/ocl/test/test_kmeans.cpp
+162
-0
test_moments.cpp
modules/ocl/test/test_moments.cpp
+1
-1
test_objdetect.cpp
modules/ocl/test/test_objdetect.cpp
+7
-17
test_optflow.cpp
modules/ocl/test/test_optflow.cpp
+7
-7
No files found.
modules/core/include/opencv2/core/version.hpp
View file @
df4b67a7
...
...
@@ -50,7 +50,7 @@
#define CV_VERSION_EPOCH 2
#define CV_VERSION_MAJOR 4
#define CV_VERSION_MINOR 6
#define CV_VERSION_REVISION
0
#define CV_VERSION_REVISION
1
#define CVAUX_STR_EXP(__A) #__A
#define CVAUX_STR(__A) CVAUX_STR_EXP(__A)
...
...
modules/features2d/src/brisk.cpp
View file @
df4b67a7
...
...
@@ -525,7 +525,11 @@ BRISK::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& keypoi
bool
doOrientation
=
true
;
if
(
useProvidedKeypoints
)
doOrientation
=
false
;
computeDescriptorsAndOrOrientation
(
_image
,
_mask
,
keypoints
,
_descriptors
,
true
,
doOrientation
,
// If the user specified cv::noArray(), this will yield false. Otherwise it will return true.
bool
doDescriptors
=
_descriptors
.
needed
();
computeDescriptorsAndOrOrientation
(
_image
,
_mask
,
keypoints
,
_descriptors
,
doDescriptors
,
doOrientation
,
useProvidedKeypoints
);
}
...
...
modules/highgui/src/cap.cpp
View file @
df4b67a7
...
...
@@ -220,8 +220,8 @@ CV_IMPL CvCapture * cvCreateCameraCapture (int index)
return
capture
;
break
;
#endif
#ifdef HAVE_VFW
case
CV_CAP_VFW
:
#ifdef HAVE_VFW
capture
=
cvCreateCameraCapture_VFW
(
index
);
if
(
capture
)
return
capture
;
...
...
modules/imgproc/src/templmatch.cpp
View file @
df4b67a7
...
...
@@ -248,6 +248,8 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
CV_Assert
(
(
img
.
depth
()
==
CV_8U
||
img
.
depth
()
==
CV_32F
)
&&
img
.
type
()
==
templ
.
type
()
);
CV_Assert
(
img
.
rows
>=
templ
.
rows
&&
img
.
cols
>=
templ
.
cols
);
Size
corrSize
(
img
.
cols
-
templ
.
cols
+
1
,
img
.
rows
-
templ
.
rows
+
1
);
_result
.
create
(
corrSize
,
CV_32F
);
Mat
result
=
_result
.
getMat
();
...
...
modules/ocl/include/opencv2/ocl/ocl.hpp
View file @
df4b67a7
...
...
@@ -834,6 +834,18 @@ namespace cv
CV_EXPORTS
void
cornerMinEigenVal_dxdy
(
const
oclMat
&
src
,
oclMat
&
dst
,
oclMat
&
Dx
,
oclMat
&
Dy
,
int
blockSize
,
int
ksize
,
int
bordertype
=
cv
::
BORDER_DEFAULT
);
/////////////////////////////////// ML ///////////////////////////////////////////
//! Compute closest centers for each lines in source and lable it after center's index
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS
void
distanceToCenters
(
oclMat
&
dists
,
oclMat
&
labels
,
const
oclMat
&
src
,
const
oclMat
&
centers
);
//!Does k-means procedure on GPU
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS
double
kmeans
(
const
oclMat
&
src
,
int
K
,
oclMat
&
bestLabels
,
TermCriteria
criteria
,
int
attemps
,
int
flags
,
oclMat
&
centers
);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
...
...
modules/ocl/src/initialization.cpp
View file @
df4b67a7
...
...
@@ -319,7 +319,7 @@ namespace cv
char
clVersion
[
256
];
for
(
unsigned
i
=
0
;
i
<
numPlatforms
;
++
i
)
{
cl_uint
numsdev
;
cl_uint
numsdev
=
0
;
cl_int
status
=
clGetDeviceIDs
(
platforms
[
i
],
devicetype
,
0
,
NULL
,
&
numsdev
);
if
(
status
!=
CL_DEVICE_NOT_FOUND
)
openCLVerifyCall
(
status
);
...
...
modules/ocl/src/kmeans.cpp
0 → 100644
View file @
df4b67a7
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iomanip>
#include "precomp.hpp"
using
namespace
cv
;
using
namespace
ocl
;
namespace
cv
{
namespace
ocl
{
////////////////////////////////////OpenCL kernel strings//////////////////////////
extern
const
char
*
kmeans_kernel
;
}
}
static
void
generateRandomCenter
(
const
vector
<
Vec2f
>&
box
,
float
*
center
,
RNG
&
rng
)
{
size_t
j
,
dims
=
box
.
size
();
float
margin
=
1.
f
/
dims
;
for
(
j
=
0
;
j
<
dims
;
j
++
)
center
[
j
]
=
((
float
)
rng
*
(
1.
f
+
margin
*
2.
f
)
-
margin
)
*
(
box
[
j
][
1
]
-
box
[
j
][
0
])
+
box
[
j
][
0
];
}
// This class is copied from matrix.cpp in core module.
class
KMeansPPDistanceComputer
:
public
ParallelLoopBody
{
public
:
KMeansPPDistanceComputer
(
float
*
_tdist2
,
const
float
*
_data
,
const
float
*
_dist
,
int
_dims
,
size_t
_step
,
size_t
_stepci
)
:
tdist2
(
_tdist2
),
data
(
_data
),
dist
(
_dist
),
dims
(
_dims
),
step
(
_step
),
stepci
(
_stepci
)
{
}
void
operator
()(
const
cv
::
Range
&
range
)
const
{
const
int
begin
=
range
.
start
;
const
int
end
=
range
.
end
;
for
(
int
i
=
begin
;
i
<
end
;
i
++
)
{
tdist2
[
i
]
=
std
::
min
(
normL2Sqr_
(
data
+
step
*
i
,
data
+
stepci
,
dims
),
dist
[
i
]);
}
}
private
:
KMeansPPDistanceComputer
&
operator
=
(
const
KMeansPPDistanceComputer
&
);
// to quiet MSVC
float
*
tdist2
;
const
float
*
data
;
const
float
*
dist
;
const
int
dims
;
const
size_t
step
;
const
size_t
stepci
;
};
/*
k-means center initialization using the following algorithm:
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
*/
static
void
generateCentersPP
(
const
Mat
&
_data
,
Mat
&
_out_centers
,
int
K
,
RNG
&
rng
,
int
trials
)
{
int
i
,
j
,
k
,
dims
=
_data
.
cols
,
N
=
_data
.
rows
;
const
float
*
data
=
(
float
*
)
_data
.
data
;
size_t
step
=
_data
.
step
/
sizeof
(
data
[
0
]);
vector
<
int
>
_centers
(
K
);
int
*
centers
=
&
_centers
[
0
];
vector
<
float
>
_dist
(
N
*
3
);
float
*
dist
=
&
_dist
[
0
],
*
tdist
=
dist
+
N
,
*
tdist2
=
tdist
+
N
;
double
sum0
=
0
;
centers
[
0
]
=
(
unsigned
)
rng
%
N
;
for
(
i
=
0
;
i
<
N
;
i
++
)
{
dist
[
i
]
=
normL2Sqr_
(
data
+
step
*
i
,
data
+
step
*
centers
[
0
],
dims
);
sum0
+=
dist
[
i
];
}
for
(
k
=
1
;
k
<
K
;
k
++
)
{
double
bestSum
=
DBL_MAX
;
int
bestCenter
=
-
1
;
for
(
j
=
0
;
j
<
trials
;
j
++
)
{
double
p
=
(
double
)
rng
*
sum0
,
s
=
0
;
for
(
i
=
0
;
i
<
N
-
1
;
i
++
)
if
(
(
p
-=
dist
[
i
])
<=
0
)
break
;
int
ci
=
i
;
parallel_for_
(
Range
(
0
,
N
),
KMeansPPDistanceComputer
(
tdist2
,
data
,
dist
,
dims
,
step
,
step
*
ci
));
for
(
i
=
0
;
i
<
N
;
i
++
)
{
s
+=
tdist2
[
i
];
}
if
(
s
<
bestSum
)
{
bestSum
=
s
;
bestCenter
=
ci
;
std
::
swap
(
tdist
,
tdist2
);
}
}
centers
[
k
]
=
bestCenter
;
sum0
=
bestSum
;
std
::
swap
(
dist
,
tdist
);
}
for
(
k
=
0
;
k
<
K
;
k
++
)
{
const
float
*
src
=
data
+
step
*
centers
[
k
];
float
*
dst
=
_out_centers
.
ptr
<
float
>
(
k
);
for
(
j
=
0
;
j
<
dims
;
j
++
)
dst
[
j
]
=
src
[
j
];
}
}
void
cv
::
ocl
::
distanceToCenters
(
oclMat
&
dists
,
oclMat
&
labels
,
const
oclMat
&
src
,
const
oclMat
&
centers
)
{
//if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F)
//{
// CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
// return;
//}
Context
*
clCxt
=
src
.
clCxt
;
int
labels_step
=
(
int
)(
labels
.
step
/
labels
.
elemSize
());
string
kernelname
=
"distanceToCenters"
;
int
threadNum
=
src
.
rows
>
256
?
256
:
src
.
rows
;
size_t
localThreads
[
3
]
=
{
1
,
threadNum
,
1
};
size_t
globalThreads
[
3
]
=
{
1
,
src
.
rows
,
1
};
vector
<
pair
<
size_t
,
const
void
*>
>
args
;
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
labels_step
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
centers
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
src
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
labels
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
centers
.
cols
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_int
),
(
void
*
)
&
src
.
rows
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
centers
.
data
));
args
.
push_back
(
make_pair
(
sizeof
(
cl_mem
),
(
void
*
)
&
dists
.
data
));
openCLExecuteKernel
(
clCxt
,
&
kmeans_kernel
,
kernelname
,
globalThreads
,
localThreads
,
args
,
-
1
,
-
1
,
NULL
);
}
///////////////////////////////////k - means /////////////////////////////////////////////////////////
double
cv
::
ocl
::
kmeans
(
const
oclMat
&
_src
,
int
K
,
oclMat
&
_bestLabels
,
TermCriteria
criteria
,
int
attempts
,
int
flags
,
oclMat
&
_centers
)
{
const
int
SPP_TRIALS
=
3
;
bool
isrow
=
_src
.
rows
==
1
&&
_src
.
oclchannels
()
>
1
;
int
N
=
!
isrow
?
_src
.
rows
:
_src
.
cols
;
int
dims
=
(
!
isrow
?
_src
.
cols
:
1
)
*
_src
.
oclchannels
();
int
type
=
_src
.
depth
();
attempts
=
std
::
max
(
attempts
,
1
);
CV_Assert
(
type
==
CV_32F
&&
K
>
0
);
CV_Assert
(
N
>=
K
);
Mat
_labels
;
if
(
flags
&
CV_KMEANS_USE_INITIAL_LABELS
)
{
CV_Assert
(
(
_bestLabels
.
cols
==
1
||
_bestLabels
.
rows
==
1
)
&&
_bestLabels
.
cols
*
_bestLabels
.
rows
==
N
&&
_bestLabels
.
type
()
==
CV_32S
);
_bestLabels
.
download
(
_labels
);
}
else
{
if
(
!
((
_bestLabels
.
cols
==
1
||
_bestLabels
.
rows
==
1
)
&&
_bestLabels
.
cols
*
_bestLabels
.
rows
==
N
&&
_bestLabels
.
type
()
==
CV_32S
&&
_bestLabels
.
isContinuous
()))
_bestLabels
.
create
(
N
,
1
,
CV_32S
);
_labels
.
create
(
_bestLabels
.
size
(),
_bestLabels
.
type
());
}
int
*
labels
=
_labels
.
ptr
<
int
>
();
Mat
data
;
_src
.
download
(
data
);
Mat
centers
(
K
,
dims
,
type
),
old_centers
(
K
,
dims
,
type
),
temp
(
1
,
dims
,
type
);
vector
<
int
>
counters
(
K
);
vector
<
Vec2f
>
_box
(
dims
);
Vec2f
*
box
=
&
_box
[
0
];
double
best_compactness
=
DBL_MAX
,
compactness
=
0
;
RNG
&
rng
=
theRNG
();
int
a
,
iter
,
i
,
j
,
k
;
if
(
criteria
.
type
&
TermCriteria
::
EPS
)
criteria
.
epsilon
=
std
::
max
(
criteria
.
epsilon
,
0.
);
else
criteria
.
epsilon
=
FLT_EPSILON
;
criteria
.
epsilon
*=
criteria
.
epsilon
;
if
(
criteria
.
type
&
TermCriteria
::
COUNT
)
criteria
.
maxCount
=
std
::
min
(
std
::
max
(
criteria
.
maxCount
,
2
),
100
);
else
criteria
.
maxCount
=
100
;
if
(
K
==
1
)
{
attempts
=
1
;
criteria
.
maxCount
=
2
;
}
const
float
*
sample
=
data
.
ptr
<
float
>
();
for
(
j
=
0
;
j
<
dims
;
j
++
)
box
[
j
]
=
Vec2f
(
sample
[
j
],
sample
[
j
]);
for
(
i
=
1
;
i
<
N
;
i
++
)
{
sample
=
data
.
ptr
<
float
>
(
i
);
for
(
j
=
0
;
j
<
dims
;
j
++
)
{
float
v
=
sample
[
j
];
box
[
j
][
0
]
=
std
::
min
(
box
[
j
][
0
],
v
);
box
[
j
][
1
]
=
std
::
max
(
box
[
j
][
1
],
v
);
}
}
for
(
a
=
0
;
a
<
attempts
;
a
++
)
{
double
max_center_shift
=
DBL_MAX
;
for
(
iter
=
0
;;
)
{
swap
(
centers
,
old_centers
);
if
(
iter
==
0
&&
(
a
>
0
||
!
(
flags
&
KMEANS_USE_INITIAL_LABELS
))
)
{
if
(
flags
&
KMEANS_PP_CENTERS
)
generateCentersPP
(
data
,
centers
,
K
,
rng
,
SPP_TRIALS
);
else
{
for
(
k
=
0
;
k
<
K
;
k
++
)
generateRandomCenter
(
_box
,
centers
.
ptr
<
float
>
(
k
),
rng
);
}
}
else
{
if
(
iter
==
0
&&
a
==
0
&&
(
flags
&
KMEANS_USE_INITIAL_LABELS
)
)
{
for
(
i
=
0
;
i
<
N
;
i
++
)
CV_Assert
(
(
unsigned
)
labels
[
i
]
<
(
unsigned
)
K
);
}
// compute centers
centers
=
Scalar
(
0
);
for
(
k
=
0
;
k
<
K
;
k
++
)
counters
[
k
]
=
0
;
for
(
i
=
0
;
i
<
N
;
i
++
)
{
sample
=
data
.
ptr
<
float
>
(
i
);
k
=
labels
[
i
];
float
*
center
=
centers
.
ptr
<
float
>
(
k
);
j
=
0
;
#if CV_ENABLE_UNROLLED
for
(;
j
<=
dims
-
4
;
j
+=
4
)
{
float
t0
=
center
[
j
]
+
sample
[
j
];
float
t1
=
center
[
j
+
1
]
+
sample
[
j
+
1
];
center
[
j
]
=
t0
;
center
[
j
+
1
]
=
t1
;
t0
=
center
[
j
+
2
]
+
sample
[
j
+
2
];
t1
=
center
[
j
+
3
]
+
sample
[
j
+
3
];
center
[
j
+
2
]
=
t0
;
center
[
j
+
3
]
=
t1
;
}
#endif
for
(
;
j
<
dims
;
j
++
)
center
[
j
]
+=
sample
[
j
];
counters
[
k
]
++
;
}
if
(
iter
>
0
)
max_center_shift
=
0
;
for
(
k
=
0
;
k
<
K
;
k
++
)
{
if
(
counters
[
k
]
!=
0
)
continue
;
// if some cluster appeared to be empty then:
// 1. find the biggest cluster
// 2. find the farthest from the center point in the biggest cluster
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
int
max_k
=
0
;
for
(
int
k1
=
1
;
k1
<
K
;
k1
++
)
{
if
(
counters
[
max_k
]
<
counters
[
k1
]
)
max_k
=
k1
;
}
double
max_dist
=
0
;
int
farthest_i
=
-
1
;
float
*
new_center
=
centers
.
ptr
<
float
>
(
k
);
float
*
old_center
=
centers
.
ptr
<
float
>
(
max_k
);
float
*
_old_center
=
temp
.
ptr
<
float
>
();
// normalized
float
scale
=
1.
f
/
counters
[
max_k
];
for
(
j
=
0
;
j
<
dims
;
j
++
)
_old_center
[
j
]
=
old_center
[
j
]
*
scale
;
for
(
i
=
0
;
i
<
N
;
i
++
)
{
if
(
labels
[
i
]
!=
max_k
)
continue
;
sample
=
data
.
ptr
<
float
>
(
i
);
double
dist
=
normL2Sqr_
(
sample
,
_old_center
,
dims
);
if
(
max_dist
<=
dist
)
{
max_dist
=
dist
;
farthest_i
=
i
;
}
}
counters
[
max_k
]
--
;
counters
[
k
]
++
;
labels
[
farthest_i
]
=
k
;
sample
=
data
.
ptr
<
float
>
(
farthest_i
);
for
(
j
=
0
;
j
<
dims
;
j
++
)
{
old_center
[
j
]
-=
sample
[
j
];
new_center
[
j
]
+=
sample
[
j
];
}
}
for
(
k
=
0
;
k
<
K
;
k
++
)
{
float
*
center
=
centers
.
ptr
<
float
>
(
k
);
CV_Assert
(
counters
[
k
]
!=
0
);
float
scale
=
1.
f
/
counters
[
k
];
for
(
j
=
0
;
j
<
dims
;
j
++
)
center
[
j
]
*=
scale
;
if
(
iter
>
0
)
{
double
dist
=
0
;
const
float
*
old_center
=
old_centers
.
ptr
<
float
>
(
k
);
for
(
j
=
0
;
j
<
dims
;
j
++
)
{
double
t
=
center
[
j
]
-
old_center
[
j
];
dist
+=
t
*
t
;
}
max_center_shift
=
std
::
max
(
max_center_shift
,
dist
);
}
}
}
if
(
++
iter
==
MAX
(
criteria
.
maxCount
,
2
)
||
max_center_shift
<=
criteria
.
epsilon
)
break
;
// assign labels
oclMat
_dists
(
1
,
N
,
CV_64F
);
_bestLabels
.
upload
(
_labels
);
_centers
.
upload
(
centers
);
distanceToCenters
(
_dists
,
_bestLabels
,
_src
,
_centers
);
Mat
dists
;
_dists
.
download
(
dists
);
_bestLabels
.
download
(
_labels
);
double
*
dist
=
dists
.
ptr
<
double
>
(
0
);
compactness
=
0
;
for
(
i
=
0
;
i
<
N
;
i
++
)
{
compactness
+=
dist
[
i
];
}
}
if
(
compactness
<
best_compactness
)
{
best_compactness
=
compactness
;
}
}
return
best_compactness
;
}
modules/ocl/src/opencl/kmeans_kernel.cl
0 → 100644
View file @
df4b67a7
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Multicoreware,
Inc.,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Xiaopeng
Fu,
fuxiaopeng2222@163.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
GpuMaterials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
__kernel
void
distanceToCenters
(
int
label_step,
int
K,
__global
float
*src,
__global
int
*labels,
int
dims,
int
rows,
__global
float
*centers,
__global
float
*dists
)
{
int
gid
=
get_global_id
(
1
)
;
float
dist,
euDist,
min
;
int
minCentroid
;
if
(
gid
>=
rows
)
return
;
for
(
int
i
=
0
; i < K; i++)
{
euDist
=
0
;
for
(
int
j
=
0
; j < dims; j++)
{
dist
=
(
src[j
+
gid
*
dims]
-
centers[j
+
i
*
dims]
)
;
euDist
+=
dist
*
dist
;
}
if
(
i
==
0
)
{
min
=
euDist
;
minCentroid
=
0
;
}
else
if
(
euDist
<
min
)
{
min
=
euDist
;
minCentroid
=
i
;
}
}
dists[gid]
=
min
;
labels[label_step
*
gid]
=
minCentroid
;
}
modules/ocl/test/main.cpp
View file @
df4b67a7
...
...
@@ -73,14 +73,12 @@ void print_info()
#endif
}
std
::
string
workdir
;
int
main
(
int
argc
,
char
**
argv
)
{
TS
::
ptr
()
->
init
(
"
ocl
"
);
TS
::
ptr
()
->
init
(
"
.
"
);
InitGoogleTest
(
&
argc
,
argv
);
const
char
*
keys
=
"{ h | help | false | print help message }"
"{ w | workdir | ../../../samples/c/| set working directory }"
"{ t | type | gpu | set device type:cpu or gpu}"
"{ p | platform | 0 | set platform id }"
"{ d | device | 0 | set device id }"
;
...
...
@@ -92,7 +90,6 @@ int main(int argc, char **argv)
cmd
.
printParams
();
return
0
;
}
workdir
=
cmd
.
get
<
string
>
(
"workdir"
);
string
type
=
cmd
.
get
<
string
>
(
"type"
);
unsigned
int
pid
=
cmd
.
get
<
unsigned
int
>
(
"platform"
);
int
device
=
cmd
.
get
<
int
>
(
"device"
);
...
...
modules/ocl/test/test_calib3d.cpp
View file @
df4b67a7
...
...
@@ -50,7 +50,6 @@
using
namespace
cv
;
extern
std
::
string
workdir
;
PARAM_TEST_CASE
(
StereoMatchBM
,
int
,
int
)
{
int
n_disp
;
...
...
@@ -66,9 +65,9 @@ PARAM_TEST_CASE(StereoMatchBM, int, int)
TEST_P
(
StereoMatchBM
,
Regression
)
{
Mat
left_image
=
readImage
(
"stereobm/aloe-L.png"
,
IMREAD_GRAYSCALE
);
Mat
right_image
=
readImage
(
"stereobm/aloe-R.png"
,
IMREAD_GRAYSCALE
);
Mat
disp_gold
=
readImage
(
"stereobm/aloe-disp.png"
,
IMREAD_GRAYSCALE
);
Mat
left_image
=
readImage
(
"
gpu/
stereobm/aloe-L.png"
,
IMREAD_GRAYSCALE
);
Mat
right_image
=
readImage
(
"
gpu/
stereobm/aloe-R.png"
,
IMREAD_GRAYSCALE
);
Mat
disp_gold
=
readImage
(
"
gpu/
stereobm/aloe-disp.png"
,
IMREAD_GRAYSCALE
);
ocl
::
oclMat
d_left
,
d_right
;
ocl
::
oclMat
d_disp
(
left_image
.
size
(),
CV_8U
);
Mat
disp
;
...
...
@@ -113,9 +112,9 @@ PARAM_TEST_CASE(StereoMatchBP, int, int, int, float, float, float, float)
};
TEST_P
(
StereoMatchBP
,
Regression
)
{
Mat
left_image
=
readImage
(
"stereobp/aloe-L.png"
);
Mat
right_image
=
readImage
(
"stereobp/aloe-R.png"
);
Mat
disp_gold
=
readImage
(
"stereobp/aloe-disp.png"
,
IMREAD_GRAYSCALE
);
Mat
left_image
=
readImage
(
"
gpu/
stereobp/aloe-L.png"
);
Mat
right_image
=
readImage
(
"
gpu/
stereobp/aloe-R.png"
);
Mat
disp_gold
=
readImage
(
"
gpu/
stereobp/aloe-disp.png"
,
IMREAD_GRAYSCALE
);
ocl
::
oclMat
d_left
,
d_right
;
ocl
::
oclMat
d_disp
;
Mat
disp
;
...
...
@@ -166,9 +165,9 @@ PARAM_TEST_CASE(StereoMatchConstSpaceBP, int, int, int, int, float, float, float
};
TEST_P
(
StereoMatchConstSpaceBP
,
Regression
)
{
Mat
left_image
=
readImage
(
"csstereobp/aloe-L.png"
);
Mat
right_image
=
readImage
(
"csstereobp/aloe-R.png"
);
Mat
disp_gold
=
readImage
(
"csstereobp/aloe-disp.png"
,
IMREAD_GRAYSCALE
);
Mat
left_image
=
readImage
(
"
gpu/
csstereobp/aloe-L.png"
);
Mat
right_image
=
readImage
(
"
gpu/
csstereobp/aloe-R.png"
);
Mat
disp_gold
=
readImage
(
"
gpu/
csstereobp/aloe-disp.png"
,
IMREAD_GRAYSCALE
);
ocl
::
oclMat
d_left
,
d_right
;
ocl
::
oclMat
d_disp
;
...
...
modules/ocl/test/test_canny.cpp
View file @
df4b67a7
...
...
@@ -48,7 +48,6 @@
////////////////////////////////////////////////////////
// Canny
extern
std
::
string
workdir
;
IMPLEMENT_PARAM_CLASS
(
AppertureSize
,
int
);
IMPLEMENT_PARAM_CLASS
(
L2gradient
,
bool
);
...
...
@@ -67,7 +66,7 @@ PARAM_TEST_CASE(Canny, AppertureSize, L2gradient)
TEST_P
(
Canny
,
Accuracy
)
{
cv
::
Mat
img
=
readImage
(
workdir
+
"fruits.jp
g"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
Mat
img
=
readImage
(
"cv/shared/fruits.pn
g"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
img
.
empty
());
double
low_thresh
=
50.0
;
...
...
modules/ocl/test/test_kmeans.cpp
0 → 100644
View file @
df4b67a7
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Erping Pang, pang_er_ping@163.com
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENCL
using
namespace
cvtest
;
using
namespace
testing
;
using
namespace
std
;
using
namespace
cv
;
#define OCL_KMEANS_USE_INITIAL_LABELS 1
#define OCL_KMEANS_PP_CENTERS 2
PARAM_TEST_CASE
(
Kmeans
,
int
,
int
,
int
)
{
int
type
;
int
K
;
int
flags
;
cv
::
Mat
src
;
ocl
::
oclMat
d_src
,
d_dists
;
Mat
labels
,
centers
;
ocl
::
oclMat
d_labels
,
d_centers
;
cv
::
RNG
rng
;
virtual
void
SetUp
(){
K
=
GET_PARAM
(
0
);
type
=
GET_PARAM
(
1
);
flags
=
GET_PARAM
(
2
);
rng
=
TS
::
ptr
()
->
get_rng
();
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv
::
Size
size
=
cv
::
Size
(
MWIDTH
,
MHEIGHT
);
src
.
create
(
size
,
type
);
int
row_idx
=
0
;
const
int
max_neighbour
=
MHEIGHT
/
K
-
1
;
CV_Assert
(
K
<=
MWIDTH
);
for
(
int
i
=
0
;
i
<
K
;
i
++
)
{
Mat
center_row_header
=
src
.
row
(
row_idx
);
center_row_header
.
setTo
(
0
);
int
nchannel
=
center_row_header
.
channels
();
for
(
int
j
=
0
;
j
<
nchannel
;
j
++
)
center_row_header
.
at
<
float
>
(
0
,
i
*
nchannel
+
j
)
=
50000.0
;
for
(
int
j
=
0
;
(
j
<
max_neighbour
)
||
(
i
==
K
-
1
&&
j
<
max_neighbour
+
MHEIGHT
%
K
);
j
++
)
{
Mat
cur_row_header
=
src
.
row
(
row_idx
+
1
+
j
);
center_row_header
.
copyTo
(
cur_row_header
);
Mat
tmpmat
=
randomMat
(
rng
,
cur_row_header
.
size
(),
cur_row_header
.
type
(),
-
200
,
200
,
false
);
cur_row_header
+=
tmpmat
;
}
row_idx
+=
1
+
max_neighbour
;
}
}
};
TEST_P
(
Kmeans
,
Mat
){
if
(
flags
&
KMEANS_USE_INITIAL_LABELS
)
{
// inital a given labels
labels
.
create
(
src
.
rows
,
1
,
CV_32S
);
int
*
label
=
labels
.
ptr
<
int
>
();
for
(
int
i
=
0
;
i
<
src
.
rows
;
i
++
)
label
[
i
]
=
rng
.
uniform
(
0
,
K
);
d_labels
.
upload
(
labels
);
}
d_src
.
upload
(
src
);
for
(
int
j
=
0
;
j
<
LOOP_TIMES
;
j
++
)
{
kmeans
(
src
,
K
,
labels
,
TermCriteria
(
CV_TERMCRIT_EPS
+
CV_TERMCRIT_ITER
,
100
,
0
),
1
,
flags
,
centers
);
ocl
::
kmeans
(
d_src
,
K
,
d_labels
,
TermCriteria
(
CV_TERMCRIT_EPS
+
CV_TERMCRIT_ITER
,
100
,
0
),
1
,
flags
,
d_centers
);
Mat
dd_labels
(
d_labels
);
Mat
dd_centers
(
d_centers
);
if
(
flags
&
KMEANS_USE_INITIAL_LABELS
)
{
EXPECT_MAT_NEAR
(
labels
,
dd_labels
,
0
);
EXPECT_MAT_NEAR
(
centers
,
dd_centers
,
1e-3
);
}
else
{
int
row_idx
=
0
;
for
(
int
i
=
0
;
i
<
K
;
i
++
)
{
// verify lables with ground truth resutls
int
label
=
labels
.
at
<
int
>
(
row_idx
);
int
header_label
=
dd_labels
.
at
<
int
>
(
row_idx
);
for
(
int
j
=
0
;
(
j
<
MHEIGHT
/
K
)
||
(
i
==
K
-
1
&&
j
<
MHEIGHT
/
K
+
MHEIGHT
%
K
);
j
++
)
{
ASSERT_NEAR
(
labels
.
at
<
int
>
(
row_idx
+
j
),
label
,
0
);
ASSERT_NEAR
(
dd_labels
.
at
<
int
>
(
row_idx
+
j
),
header_label
,
0
);
}
// verify centers
float
*
center
=
centers
.
ptr
<
float
>
(
label
);
float
*
header_center
=
dd_centers
.
ptr
<
float
>
(
header_label
);
for
(
int
t
=
0
;
t
<
centers
.
cols
;
t
++
)
ASSERT_NEAR
(
center
[
t
],
header_center
[
t
],
1e-3
);
row_idx
+=
MHEIGHT
/
K
;
}
}
}
}
INSTANTIATE_TEST_CASE_P
(
OCL_ML
,
Kmeans
,
Combine
(
Values
(
3
,
5
,
8
),
Values
(
CV_32FC1
,
CV_32FC2
,
CV_32FC4
),
Values
(
OCL_KMEANS_USE_INITIAL_LABELS
/*, OCL_KMEANS_PP_CENTERS*/
)));
#endif
modules/ocl/test/test_moments.cpp
View file @
df4b67a7
...
...
@@ -45,7 +45,7 @@ TEST_P(MomentsTest, Mat)
{
if
(
test_contours
)
{
Mat
src
=
imread
(
workdir
+
"../cpp
/pic3.png"
,
IMREAD_GRAYSCALE
);
Mat
src
=
readImage
(
"cv/shared
/pic3.png"
,
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
src
.
empty
());
Mat
canny_output
;
vector
<
vector
<
Point
>
>
contours
;
...
...
modules/ocl/test/test_objdetect.cpp
View file @
df4b67a7
...
...
@@ -63,11 +63,8 @@ PARAM_TEST_CASE(HOG, Size, int)
{
winSize
=
GET_PARAM
(
0
);
type
=
GET_PARAM
(
1
);
img_rgb
=
readImage
(
workdir
+
"../gpu/road.png"
);
if
(
img_rgb
.
empty
())
{
std
::
cout
<<
"Couldn't read road.png"
<<
std
::
endl
;
}
img_rgb
=
readImage
(
"gpu/hog/road.png"
);
ASSERT_FALSE
(
img_rgb
.
empty
());
}
};
...
...
@@ -211,18 +208,11 @@ PARAM_TEST_CASE(Haar, int, CascadeName)
virtual
void
SetUp
()
{
flags
=
GET_PARAM
(
0
);
cascadeName
=
(
workdir
+
"../../data/haarcascades/"
).
append
(
GET_PARAM
(
1
));
if
(
(
!
cascade
.
load
(
cascadeName
))
||
(
!
cpucascade
.
load
(
cascadeName
))
)
{
std
::
cout
<<
"ERROR: Could not load classifier cascade"
<<
std
::
endl
;
return
;
}
img
=
readImage
(
workdir
+
"lena.jpg"
,
IMREAD_GRAYSCALE
);
if
(
img
.
empty
())
{
std
::
cout
<<
"Couldn't read lena.jpg"
<<
std
::
endl
;
return
;
}
cascadeName
=
(
string
(
cvtest
::
TS
::
ptr
()
->
get_data_path
())
+
"cv/cascadeandhog/cascades/"
).
append
(
GET_PARAM
(
1
));
ASSERT_TRUE
(
cascade
.
load
(
cascadeName
));
ASSERT_TRUE
(
cpucascade
.
load
(
cascadeName
));
img
=
readImage
(
"cv/shared/lena.png"
,
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
img
.
empty
());
equalizeHist
(
img
,
img
);
d_img
.
upload
(
img
);
}
...
...
modules/ocl/test/test_optflow.cpp
View file @
df4b67a7
...
...
@@ -75,7 +75,7 @@ PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance)
TEST_P
(
GoodFeaturesToTrack
,
Accuracy
)
{
cv
::
Mat
frame
=
readImage
(
workdir
+
"../gpu
/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
Mat
frame
=
readImage
(
"gpu/opticalflow
/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame
.
empty
());
int
maxCorners
=
1000
;
...
...
@@ -146,10 +146,10 @@ PARAM_TEST_CASE(TVL1, bool)
TEST_P
(
TVL1
,
Accuracy
)
{
cv
::
Mat
frame0
=
readImage
(
workdir
+
"../gpu
/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
Mat
frame0
=
readImage
(
"gpu/opticalflow
/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
workdir
+
"../gpu
/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
Mat
frame1
=
readImage
(
"gpu/opticalflow
/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
ocl
::
OpticalFlowDual_TVL1_OCL
d_alg
;
...
...
@@ -188,10 +188,10 @@ PARAM_TEST_CASE(Sparse, bool, bool)
TEST_P
(
Sparse
,
Mat
)
{
cv
::
Mat
frame0
=
readImage
(
workdir
+
"../gpu
/rubberwhale1.png"
,
useGray
?
cv
::
IMREAD_GRAYSCALE
:
cv
::
IMREAD_COLOR
);
cv
::
Mat
frame0
=
readImage
(
"gpu/opticalflow
/rubberwhale1.png"
,
useGray
?
cv
::
IMREAD_GRAYSCALE
:
cv
::
IMREAD_COLOR
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
readImage
(
workdir
+
"../gpu
/rubberwhale2.png"
,
useGray
?
cv
::
IMREAD_GRAYSCALE
:
cv
::
IMREAD_COLOR
);
cv
::
Mat
frame1
=
readImage
(
"gpu/opticalflow
/rubberwhale2.png"
,
useGray
?
cv
::
IMREAD_GRAYSCALE
:
cv
::
IMREAD_COLOR
);
ASSERT_FALSE
(
frame1
.
empty
());
cv
::
Mat
gray_frame
;
...
...
@@ -301,10 +301,10 @@ PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
TEST_P
(
Farneback
,
Accuracy
)
{
cv
::
Mat
frame0
=
imread
(
workdir
+
"
/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
Mat
frame0
=
readImage
(
"gpu/opticalflow
/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
cv
::
Mat
frame1
=
imread
(
workdir
+
"
/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
cv
::
Mat
frame1
=
readImage
(
"gpu/opticalflow
/rubberwhale2.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
double
polySigma
=
polyN
<=
5
?
1.1
:
1.5
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment