Commit df4b67a7 authored by kdrobnyh's avatar kdrobnyh

Merge pull request #1 from Itseez/2.4

Add calculating integral image using IPP
parents f8eb8065 241e2d23
......@@ -50,7 +50,7 @@
#define CV_VERSION_EPOCH 2
#define CV_VERSION_MAJOR 4
#define CV_VERSION_MINOR 6
#define CV_VERSION_REVISION 0
#define CV_VERSION_REVISION 1
#define CVAUX_STR_EXP(__A) #__A
#define CVAUX_STR(__A) CVAUX_STR_EXP(__A)
......
......@@ -525,7 +525,11 @@ BRISK::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& keypoi
bool doOrientation=true;
if (useProvidedKeypoints)
doOrientation = false;
computeDescriptorsAndOrOrientation(_image, _mask, keypoints, _descriptors, true, doOrientation,
// If the user specified cv::noArray(), this will yield false. Otherwise it will return true.
bool doDescriptors = _descriptors.needed();
computeDescriptorsAndOrOrientation(_image, _mask, keypoints, _descriptors, doDescriptors, doOrientation,
useProvidedKeypoints);
}
......
......@@ -220,8 +220,8 @@ CV_IMPL CvCapture * cvCreateCameraCapture (int index)
return capture;
break;
#endif
#ifdef HAVE_VFW
case CV_CAP_VFW:
#ifdef HAVE_VFW
capture = cvCreateCameraCapture_VFW (index);
if (capture)
return capture;
......
......@@ -248,6 +248,8 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
CV_Assert( (img.depth() == CV_8U || img.depth() == CV_32F) &&
img.type() == templ.type() );
CV_Assert( img.rows >= templ.rows && img.cols >= templ.cols);
Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
_result.create(corrSize, CV_32F);
Mat result = _result.getMat();
......
......@@ -834,6 +834,18 @@ namespace cv
CV_EXPORTS void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
/////////////////////////////////// ML ///////////////////////////////////////////
//! Compute closest centers for each lines in source and lable it after center's index
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS void distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers);
//!Does k-means procedure on GPU
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS double kmeans(const oclMat &src, int K, oclMat &bestLabels,
TermCriteria criteria, int attemps, int flags, oclMat &centers);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
......
......@@ -319,7 +319,7 @@ namespace cv
char clVersion[256];
for (unsigned i = 0; i < numPlatforms; ++i)
{
cl_uint numsdev;
cl_uint numsdev = 0;
cl_int status = clGetDeviceIDs(platforms[i], devicetype, 0, NULL, &numsdev);
if(status != CL_DEVICE_NOT_FOUND)
openCLVerifyCall(status);
......
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void distanceToCenters(
int label_step, int K,
__global float *src,
__global int *labels, int dims, int rows,
__global float *centers,
__global float *dists)
{
int gid = get_global_id(1);
float dist, euDist, min;
int minCentroid;
if(gid >= rows)
return;
for(int i = 0 ; i < K; i++)
{
euDist = 0;
for(int j = 0; j < dims; j++)
{
dist = (src[j + gid * dims]
- centers[j + i * dims]);
euDist += dist * dist;
}
if(i == 0)
{
min = euDist;
minCentroid = 0;
}
else if(euDist < min)
{
min = euDist;
minCentroid = i;
}
}
dists[gid] = min;
labels[label_step * gid] = minCentroid;
}
......@@ -73,14 +73,12 @@ void print_info()
#endif
}
std::string workdir;
int main(int argc, char **argv)
{
TS::ptr()->init("ocl");
TS::ptr()->init(".");
InitGoogleTest(&argc, argv);
const char *keys =
"{ h | help | false | print help message }"
"{ w | workdir | ../../../samples/c/| set working directory }"
"{ t | type | gpu | set device type:cpu or gpu}"
"{ p | platform | 0 | set platform id }"
"{ d | device | 0 | set device id }";
......@@ -92,7 +90,6 @@ int main(int argc, char **argv)
cmd.printParams();
return 0;
}
workdir = cmd.get<string>("workdir");
string type = cmd.get<string>("type");
unsigned int pid = cmd.get<unsigned int>("platform");
int device = cmd.get<int>("device");
......
......@@ -50,7 +50,6 @@
using namespace cv;
extern std::string workdir;
PARAM_TEST_CASE(StereoMatchBM, int, int)
{
int n_disp;
......@@ -66,9 +65,9 @@ PARAM_TEST_CASE(StereoMatchBM, int, int)
TEST_P(StereoMatchBM, Regression)
{
Mat left_image = readImage("stereobm/aloe-L.png", IMREAD_GRAYSCALE);
Mat right_image = readImage("stereobm/aloe-R.png", IMREAD_GRAYSCALE);
Mat disp_gold = readImage("stereobm/aloe-disp.png", IMREAD_GRAYSCALE);
Mat left_image = readImage("gpu/stereobm/aloe-L.png", IMREAD_GRAYSCALE);
Mat right_image = readImage("gpu/stereobm/aloe-R.png", IMREAD_GRAYSCALE);
Mat disp_gold = readImage("gpu/stereobm/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp(left_image.size(), CV_8U);
Mat disp;
......@@ -113,9 +112,9 @@ PARAM_TEST_CASE(StereoMatchBP, int, int, int, float, float, float, float)
};
TEST_P(StereoMatchBP, Regression)
{
Mat left_image = readImage("stereobp/aloe-L.png");
Mat right_image = readImage("stereobp/aloe-R.png");
Mat disp_gold = readImage("stereobp/aloe-disp.png", IMREAD_GRAYSCALE);
Mat left_image = readImage("gpu/stereobp/aloe-L.png");
Mat right_image = readImage("gpu/stereobp/aloe-R.png");
Mat disp_gold = readImage("gpu/stereobp/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp;
Mat disp;
......@@ -166,9 +165,9 @@ PARAM_TEST_CASE(StereoMatchConstSpaceBP, int, int, int, int, float, float, float
};
TEST_P(StereoMatchConstSpaceBP, Regression)
{
Mat left_image = readImage("csstereobp/aloe-L.png");
Mat right_image = readImage("csstereobp/aloe-R.png");
Mat disp_gold = readImage("csstereobp/aloe-disp.png", IMREAD_GRAYSCALE);
Mat left_image = readImage("gpu/csstereobp/aloe-L.png");
Mat right_image = readImage("gpu/csstereobp/aloe-R.png");
Mat disp_gold = readImage("gpu/csstereobp/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp;
......
......@@ -48,7 +48,6 @@
////////////////////////////////////////////////////////
// Canny
extern std::string workdir;
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
......@@ -67,7 +66,7 @@ PARAM_TEST_CASE(Canny, AppertureSize, L2gradient)
TEST_P(Canny, Accuracy)
{
cv::Mat img = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat img = readImage("cv/shared/fruits.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
double low_thresh = 50.0;
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Erping Pang, pang_er_ping@163.com
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cvtest;
using namespace testing;
using namespace std;
using namespace cv;
#define OCL_KMEANS_USE_INITIAL_LABELS 1
#define OCL_KMEANS_PP_CENTERS 2
PARAM_TEST_CASE(Kmeans, int, int, int)
{
int type;
int K;
int flags;
cv::Mat src ;
ocl::oclMat d_src, d_dists;
Mat labels, centers;
ocl::oclMat d_labels, d_centers;
cv::RNG rng ;
virtual void SetUp(){
K = GET_PARAM(0);
type = GET_PARAM(1);
flags = GET_PARAM(2);
rng = TS::ptr()->get_rng();
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src.create(size, type);
int row_idx = 0;
const int max_neighbour = MHEIGHT / K - 1;
CV_Assert(K <= MWIDTH);
for(int i = 0; i < K; i++ )
{
Mat center_row_header = src.row(row_idx);
center_row_header.setTo(0);
int nchannel = center_row_header.channels();
for(int j = 0; j < nchannel; j++)
center_row_header.at<float>(0, i*nchannel+j) = 50000.0;
for(int j = 0; (j < max_neighbour) ||
(i == K-1 && j < max_neighbour + MHEIGHT%K); j ++)
{
Mat cur_row_header = src.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header);
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), -200, 200, false);
cur_row_header += tmpmat;
}
row_idx += 1 + max_neighbour;
}
}
};
TEST_P(Kmeans, Mat){
if(flags & KMEANS_USE_INITIAL_LABELS)
{
// inital a given labels
labels.create(src.rows, 1, CV_32S);
int *label = labels.ptr<int>();
for(int i = 0; i < src.rows; i++)
label[i] = rng.uniform(0, K);
d_labels.upload(labels);
}
d_src.upload(src);
for(int j = 0; j < LOOP_TIMES; j++)
{
kmeans(src, K, labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
1, flags, centers);
ocl::kmeans(d_src, K, d_labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
1, flags, d_centers);
Mat dd_labels(d_labels);
Mat dd_centers(d_centers);
if(flags & KMEANS_USE_INITIAL_LABELS)
{
EXPECT_MAT_NEAR(labels, dd_labels, 0);
EXPECT_MAT_NEAR(centers, dd_centers, 1e-3);
}
else
{
int row_idx = 0;
for(int i = 0; i < K; i++)
{
// verify lables with ground truth resutls
int label = labels.at<int>(row_idx);
int header_label = dd_labels.at<int>(row_idx);
for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++)
{
ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0);
ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0);
}
// verify centers
float *center = centers.ptr<float>(label);
float *header_center = dd_centers.ptr<float>(header_label);
for(int t = 0; t < centers.cols; t++)
ASSERT_NEAR(center[t], header_center[t], 1e-3);
row_idx += MHEIGHT/K;
}
}
}
}
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
Values(3, 5, 8),
Values(CV_32FC1, CV_32FC2, CV_32FC4),
Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
#endif
......@@ -45,7 +45,7 @@ TEST_P(MomentsTest, Mat)
{
if(test_contours)
{
Mat src = imread( workdir + "../cpp/pic3.png", IMREAD_GRAYSCALE );
Mat src = readImage( "cv/shared/pic3.png", IMREAD_GRAYSCALE );
ASSERT_FALSE(src.empty());
Mat canny_output;
vector<vector<Point> > contours;
......
......@@ -63,11 +63,8 @@ PARAM_TEST_CASE(HOG, Size, int)
{
winSize = GET_PARAM(0);
type = GET_PARAM(1);
img_rgb = readImage(workdir + "../gpu/road.png");
if(img_rgb.empty())
{
std::cout << "Couldn't read road.png" << std::endl;
}
img_rgb = readImage("gpu/hog/road.png");
ASSERT_FALSE(img_rgb.empty());
}
};
......@@ -211,18 +208,11 @@ PARAM_TEST_CASE(Haar, int, CascadeName)
virtual void SetUp()
{
flags = GET_PARAM(0);
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(1));
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
{
std::cout << "ERROR: Could not load classifier cascade" << std::endl;
return;
}
img = readImage(workdir + "lena.jpg", IMREAD_GRAYSCALE);
if(img.empty())
{
std::cout << "Couldn't read lena.jpg" << std::endl;
return ;
}
cascadeName = (string(cvtest::TS::ptr()->get_data_path()) + "cv/cascadeandhog/cascades/").append(GET_PARAM(1));
ASSERT_TRUE(cascade.load( cascadeName ));
ASSERT_TRUE(cpucascade.load(cascadeName));
img = readImage("cv/shared/lena.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
equalizeHist(img, img);
d_img.upload(img);
}
......
......@@ -75,7 +75,7 @@ PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance)
TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat frame = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty());
int maxCorners = 1000;
......@@ -146,10 +146,10 @@ PARAM_TEST_CASE(TVL1, bool)
TEST_P(TVL1, Accuracy)
{
cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
......@@ -188,10 +188,10 @@ PARAM_TEST_CASE(Sparse, bool, bool)
TEST_P(Sparse, Mat)
{
cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
......@@ -301,10 +301,10 @@ PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
TEST_P(Farneback, Accuracy)
{
cv::Mat frame0 = imread(workdir + "/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = imread(workdir + "/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
double polySigma = polyN <= 5 ? 1.1 : 1.5;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment