Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
dcdd6af5
Commit
dcdd6af5
authored
Dec 19, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10341 from pengli:dnn
parents
badc3bd3
3b84acfc
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
453 additions
and
4 deletions
+453
-4
prior_box_layer.cpp
modules/dnn/src/layers/prior_box_layer.cpp
+106
-0
ocl4dnn.hpp
modules/dnn/src/ocl4dnn/include/ocl4dnn.hpp
+5
-0
ocl4dnn_conv_spatial.cpp
modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
+98
-2
conv_layer_spatial.cl
modules/dnn/src/opencl/conv_layer_spatial.cl
+57
-2
prior_box.cl
modules/dnn/src/opencl/prior_box.cl
+148
-0
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+39
-0
No files found.
modules/dnn/src/layers/prior_box_layer.cpp
View file @
dcdd6af5
...
...
@@ -45,6 +45,7 @@
#include <float.h>
#include <algorithm>
#include <cmath>
#include "opencl_kernels_dnn.hpp"
namespace
cv
{
...
...
@@ -270,11 +271,108 @@ public:
return
false
;
}
#ifdef HAVE_OPENCL
bool
forward_ocl
(
InputArrayOfArrays
inps
,
OutputArrayOfArrays
outs
,
OutputArrayOfArrays
internals
)
{
std
::
vector
<
UMat
>
inputs
;
std
::
vector
<
UMat
>
outputs
;
inps
.
getUMatVector
(
inputs
);
outs
.
getUMatVector
(
outputs
);
int
_layerWidth
=
inputs
[
0
].
size
[
3
];
int
_layerHeight
=
inputs
[
0
].
size
[
2
];
int
_imageWidth
=
inputs
[
1
].
size
[
3
];
int
_imageHeight
=
inputs
[
1
].
size
[
2
];
float
stepX
,
stepY
;
if
(
_stepX
==
0
||
_stepY
==
0
)
{
stepX
=
static_cast
<
float
>
(
_imageWidth
)
/
_layerWidth
;
stepY
=
static_cast
<
float
>
(
_imageHeight
)
/
_layerHeight
;
}
else
{
stepX
=
_stepX
;
stepY
=
_stepY
;
}
if
(
umat_offsetsX
.
empty
())
{
Mat
offsetsX
(
1
,
_offsetsX
.
size
(),
CV_32FC1
,
&
_offsetsX
[
0
]);
Mat
offsetsY
(
1
,
_offsetsX
.
size
(),
CV_32FC1
,
&
_offsetsY
[
0
]);
Mat
aspectRatios
(
1
,
_aspectRatios
.
size
(),
CV_32FC1
,
&
_aspectRatios
[
0
]);
Mat
variance
(
1
,
_variance
.
size
(),
CV_32FC1
,
&
_variance
[
0
]);
offsetsX
.
copyTo
(
umat_offsetsX
);
offsetsY
.
copyTo
(
umat_offsetsY
);
aspectRatios
.
copyTo
(
umat_aspectRatios
);
variance
.
copyTo
(
umat_variance
);
int
real_numPriors
=
_numPriors
/
pow
(
2
,
_offsetsX
.
size
()
-
1
);
umat_scales
=
UMat
(
1
,
&
real_numPriors
,
CV_32F
,
1.0
f
);
}
size_t
nthreads
=
_layerHeight
*
_layerWidth
;
ocl
::
Kernel
kernel
(
"prior_box"
,
ocl
::
dnn
::
prior_box_oclsrc
);
kernel
.
set
(
0
,
(
int
)
nthreads
);
kernel
.
set
(
1
,
(
float
)
stepX
);
kernel
.
set
(
2
,
(
float
)
stepY
);
kernel
.
set
(
3
,
(
float
)
_minSize
);
kernel
.
set
(
4
,
(
float
)
_maxSize
);
kernel
.
set
(
5
,
ocl
::
KernelArg
::
PtrReadOnly
(
umat_offsetsX
));
kernel
.
set
(
6
,
ocl
::
KernelArg
::
PtrReadOnly
(
umat_offsetsY
));
kernel
.
set
(
7
,
(
int
)
_offsetsX
.
size
());
kernel
.
set
(
8
,
ocl
::
KernelArg
::
PtrReadOnly
(
umat_aspectRatios
));
kernel
.
set
(
9
,
(
int
)
_aspectRatios
.
size
());
kernel
.
set
(
10
,
ocl
::
KernelArg
::
PtrReadOnly
(
umat_scales
));
kernel
.
set
(
11
,
ocl
::
KernelArg
::
PtrWriteOnly
(
outputs
[
0
]));
kernel
.
set
(
12
,
(
int
)
_layerHeight
);
kernel
.
set
(
13
,
(
int
)
_layerWidth
);
kernel
.
set
(
14
,
(
int
)
_imageHeight
);
kernel
.
set
(
15
,
(
int
)
_imageWidth
);
kernel
.
run
(
1
,
&
nthreads
,
NULL
,
false
);
// clip the prior's coordidate such that it is within [0, 1]
if
(
_clip
)
{
Mat
mat
=
outputs
[
0
].
getMat
(
ACCESS_READ
);
int
aspect_count
=
(
_maxSize
>
0
)
?
1
:
0
;
int
offset
=
nthreads
*
4
*
_offsetsX
.
size
()
*
(
1
+
aspect_count
+
_aspectRatios
.
size
());
float
*
outputPtr
=
mat
.
ptr
<
float
>
()
+
offset
;
int
_outChannelSize
=
_layerHeight
*
_layerWidth
*
_numPriors
*
4
;
for
(
size_t
d
=
0
;
d
<
_outChannelSize
;
++
d
)
{
outputPtr
[
d
]
=
std
::
min
<
float
>
(
std
::
max
<
float
>
(
outputPtr
[
d
],
0.
),
1.
);
}
}
// set the variance.
{
ocl
::
Kernel
kernel
(
"set_variance"
,
ocl
::
dnn
::
prior_box_oclsrc
);
int
offset
=
total
(
shape
(
outputs
[
0
]),
2
);
size_t
nthreads
=
_layerHeight
*
_layerWidth
*
_numPriors
;
kernel
.
set
(
0
,
(
int
)
nthreads
);
kernel
.
set
(
1
,
(
int
)
offset
);
kernel
.
set
(
2
,
(
int
)
_variance
.
size
());
kernel
.
set
(
3
,
ocl
::
KernelArg
::
PtrReadOnly
(
umat_variance
));
kernel
.
set
(
4
,
ocl
::
KernelArg
::
PtrWriteOnly
(
outputs
[
0
]));
if
(
!
kernel
.
run
(
1
,
&
nthreads
,
NULL
,
false
))
return
false
;
}
return
true
;
}
#endif
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
CV_OCL_RUN
((
preferableTarget
==
DNN_TARGET_OPENCL
)
&&
OCL_PERFORMANCE_CHECK
(
ocl
::
Device
::
getDefault
().
isIntel
()),
forward_ocl
(
inputs_arr
,
outputs_arr
,
internals_arr
))
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
...
...
@@ -441,6 +539,14 @@ private:
std
::
vector
<
float
>
_offsetsX
;
std
::
vector
<
float
>
_offsetsY
;
#ifdef HAVE_OPENCL
UMat
umat_offsetsX
;
UMat
umat_offsetsY
;
UMat
umat_aspectRatios
;
UMat
umat_scales
;
UMat
umat_variance
;
#endif
bool
_flip
;
bool
_clip
;
bool
_explicitSizes
;
...
...
modules/dnn/src/ocl4dnn/include/ocl4dnn.hpp
View file @
dcdd6af5
...
...
@@ -215,6 +215,9 @@ class OCL4DNNConvSpatial
bool
createGEMMLikeConvKernel
(
int32_t
blockWidth
,
int32_t
blockHeight
,
int32_t
blockDepth
);
bool
createDWConvKernel
(
int32_t
blockWidth
,
int32_t
blockHeight
,
int32_t
blockDepth
);
void
CreateSubBuffer
(
const
UMat
&
buffer
,
UMat
&
sub_buffer
,
int32_t
offset
,
int32_t
size
,
bool
write_only
);
bool
convolve
(
const
UMat
&
bottom
,
UMat
&
top
,
...
...
@@ -282,6 +285,8 @@ class OCL4DNNConvSpatial
int32_t
M_
;
bool
tuned_
;
bool
dwconv_
;
std
::
string
key_
,
key_sanitized_
;
std
::
string
short_key_
;
std
::
string
kernel_name_
;
...
...
modules/dnn/src/ocl4dnn/src/ocl4dnn_conv_spatial.cpp
View file @
dcdd6af5
...
...
@@ -103,6 +103,7 @@ OCL4DNNConvSpatial<Dtype>::OCL4DNNConvSpatial(OCL4DNNConvConfig config)
top_dim_
=
num_output_
*
output_w_
*
output_h_
;
cache_path_
=
utils
::
getConfigurationParameterString
(
"OPENCV_OCL4DNN_CONFIG_PATH"
,
""
);
dwconv_
=
(
num_output_
==
channels_
&&
channels_
==
group_
);
use_cache_path_
=
false
;
if
(
!
cache_path_
.
empty
())
...
...
@@ -203,7 +204,8 @@ void OCL4DNNConvSpatial<Dtype>::collectCommonInformation()
typedef
enum
{
KERNEL_TYPE_INTEL_IDLF
=
2
,
KERNEL_TYPE_BASIC
=
4
,
KERNEL_TYPE_GEMM_LIKE
=
5
KERNEL_TYPE_GEMM_LIKE
=
5
,
KERNEL_TYPE_DWCONV
=
6
}
ocl4dnnConvSpatialKernelType_t
;
template
<
typename
Dtype
>
...
...
@@ -313,6 +315,7 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType,
if
(
clOptionSupport
(
"-cl-no-subgroup-ifp"
))
options_
<<
" -cl-no-subgroup-ifp "
;
addDef
(
"KERNEL_GEMM_LIKE"
);
addDef
(
"INPUT_DEPTH"
,
channels_
);
addDef
(
"WIDTH1"
,
M_
);
addDef
(
"OUT_PADDING_LEFT"
,
0
);
...
...
@@ -329,6 +332,28 @@ void OCL4DNNConvSpatial<Dtype>::setupKernelDetails(int32_t kernelType,
setFusionDefine
(
fused_activ_
,
fused_eltwise_
);
src_
=
ocl
::
dnn
::
conv_layer_spatial_oclsrc
;
}
else
if
(
kernelType
==
KERNEL_TYPE_DWCONV
)
{
kernelUKey
=
generateSpecificKey
(
KERNEL_TYPE_DWCONV
,
blockM
,
blockK
,
blockN
);
kernel_name_
=
"DWCONV_"
;
kernel_name_
+=
kernelUKey
.
c_str
();
options_
<<
" -cl-fast-relaxed-math "
;
if
(
clOptionSupport
(
"-cl-no-subgroup-ifp"
))
options_
<<
" -cl-no-subgroup-ifp "
;
addDef
(
"KERNEL_DWCONV"
);
addDef
(
"KERNEL_SIZE"
,
kernel_w_
*
kernel_h_
);
addDef
(
"KERNEL_W"
,
kernel_w_
);
addDef
(
"KERNEL_H"
,
kernel_h_
);
addDef
(
"APPLY_BIAS"
,
bias_term_
);
addDef
(
"OUTPUT_Z"
,
num_output_
*
num_
);
addDef
(
"CHANNELS"
,
num_output_
);
setFusionDefine
(
fused_activ_
,
fused_eltwise_
);
options_
<<
" -D DWCONV="
<<
kernel_name_
;
src_
=
cv
::
ocl
::
dnn
::
conv_layer_spatial_oclsrc
;
}
}
template
<
typename
Dtype
>
...
...
@@ -906,6 +931,33 @@ bool OCL4DNNConvSpatial<float>::convolve(const UMat &bottom, UMat &top,
return
false
;
}
}
}
else
if
(
config
->
kernelType
==
KERNEL_TYPE_DWCONV
)
{
ocl
::
Kernel
kernel
(
config
->
kernelName
.
c_str
(),
program
);
if
(
kernel
.
empty
())
return
false
;
cl_uint
argIdx
=
0
;
setFusionArg
(
fused_activ_
,
fused_eltwise_
,
kernel
,
argIdx
);
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
bottom
));
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
weight
));
if
(
bias_term_
)
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrReadOnly
(
bias
));
kernel
.
set
(
argIdx
++
,
ocl
::
KernelArg
::
PtrWriteOnly
(
top
));
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
width_
);
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
height_
);
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
output_w_
);
kernel
.
set
(
argIdx
++
,
(
uint16_t
)
output_h_
);
size_t
global_size
[
3
];
global_size
[
0
]
=
output_w_
;
global_size
[
1
]
=
output_h_
;
global_size
[
2
]
=
num_output_
*
num_
;
if
(
!
kernel
.
run
(
3
,
global_size
,
NULL
,
false
))
{
std
::
cout
<<
"DWCONV kernel run failed."
<<
std
::
endl
;
return
false
;
}
}
else
{
for
(
int32_t
n
=
0
;
n
<
numImages
;
++
n
)
{
for
(
int32_t
g
=
0
;
g
<
group_
;
++
g
)
{
...
...
@@ -1222,6 +1274,39 @@ bool OCL4DNNConvSpatial<float>::createIDLFKernel(int32_t blockWidth,
return
false
;
}
template
<>
bool
OCL4DNNConvSpatial
<
float
>::
createDWConvKernel
(
int32_t
blockWidth
,
int32_t
blockHeight
,
int32_t
blockDepth
)
{
if
(
!
dwconv_
)
return
false
;
int
workItemOutput
[
3
]
=
{
1
,
1
,
1
};
size_t
local_size
[
3
]
=
{
1
,
1
,
1
};
size_t
global_size
[
3
];
global_size
[
0
]
=
divUp
(
output_w_
,
workItemOutput
[
0
]);
global_size
[
1
]
=
divUp
(
output_h_
,
workItemOutput
[
1
]);
global_size
[
2
]
=
divUp
(
M_
*
num_
,
workItemOutput
[
2
]);
kernelType_
=
KERNEL_TYPE_DWCONV
;
blockM_
=
blockWidth
;
blockK_
=
blockHeight
;
blockN_
=
blockDepth
;
setupKernel
();
ocl
::
Program
program
=
compileKernel
();
if
(
program
.
ptr
())
{
kernelQueue
.
push_back
(
makePtr
<
kernelConfig
>
(
kernel_name_
,
&
global_size
[
0
],
&
local_size
[
0
],
&
workItemOutput
[
0
],
false
,
KERNEL_TYPE_DWCONV
));
return
true
;
}
else
return
false
;
}
template
<>
bool
OCL4DNNConvSpatial
<
float
>::
createConvolutionKernel
(
int32_t
kernelType
,
int32_t
blockWidth
,
...
...
@@ -1238,6 +1323,8 @@ bool OCL4DNNConvSpatial<float>::createConvolutionKernel(int32_t kernelType,
return
createBasicKernel
(
blockWidth
,
blockHeight
,
blockDepth
);
else
if
(
kernelType
==
KERNEL_TYPE_GEMM_LIKE
)
return
createGEMMLikeConvKernel
(
blockWidth
,
blockHeight
,
blockDepth
);
else
if
(
kernelType
==
KERNEL_TYPE_DWCONV
)
return
createDWConvKernel
(
blockWidth
,
blockHeight
,
blockDepth
);
else
CV_Assert
(
0
&&
"Internal error"
);
return
false
;
...
...
@@ -1246,7 +1333,16 @@ bool OCL4DNNConvSpatial<float>::createConvolutionKernel(int32_t kernelType,
template
<>
void
OCL4DNNConvSpatial
<
float
>::
generateTunerItems
(
std
::
vector
<
cv
::
Ptr
<
tunerParam
>
>
&
tunerItems
)
{
if
(
ocl
::
Device
::
getDefault
().
intelSubgroupsSupport
())
{
if
(
ocl
::
Device
::
getDefault
().
intelSubgroupsSupport
())
{
//depth_wise kernels
if
(
dwconv_
)
{
tunerItems
.
push_back
(
makePtr
<
tunerParam
>
(
KERNEL_TYPE_DWCONV
,
1
,
1
,
1
));
if
(
group_
>
8
)
return
;
}
/* IDLF kernels are using Intel specific extension which make
them intel only. */
// Generates static key_
...
...
modules/dnn/src/opencl/conv_layer_spatial.cl
View file @
dcdd6af5
...
...
@@ -383,7 +383,7 @@ convolve_simd(
}
}
#el
se //
KERNEL_GEMM_LIKE
#el
if defined
KERNEL_GEMM_LIKE
#if APPLY_BIAS
// Dtype bias[4];
...
...
@@ -1501,4 +1501,59 @@ __kernel void Conv_Interleaved(GEMM_LIKE_KERNEL_ARGS)
INTERLEAVED_SIMD16_OUTPUT
(
dst,
out_offset,
0
)
;
}
#
endif
#
endif
//
KERNEL_BASIC/IDLF/GEMM_LIKE
#
elif
defined
KERNEL_DWCONV
__kernel
void
DWCONV
(
ELTWISE_DATA_ARG
NEGATIVE_SLOPE_ARG
__global
Dtype*
image_data,
__global
Dtype*
kernel_data,
BIAS_KERNEL_ARG
__global
Dtype*
convolved_image,
const
ushort
input_width,
const
ushort
input_height,
const
ushort
output_width,
const
ushort
output_height
)
{
const
int
outputX
=
get_global_id
(
0
)
;
const
int
outputY
=
get_global_id
(
1
)
;
const
int
outputZ
=
get_global_id
(
2
)
;
if
(
outputX
<
output_width
&&
outputY
<
output_height
)
{
Dtype
sum
=
0.
;
const
int
org_y
=
outputY
*
STRIDE_Y
-
INPUT_PAD_H
;
const
int
org_x
=
outputX
*
STRIDE_X
-
INPUT_PAD_W
;
const
int
currentKernelOffset
=
KERNEL_SIZE*
(
outputZ%CHANNELS
)
;
const
int
biasIndex=outputZ%CHANNELS
;
const
int
local_image_offset
=
org_y*input_width
+
org_x
;
const
int
imageSize
=
input_width*input_height
;
__global
Dtype*
image_dataPtrFloat
=
(
image_data
+
(
imageSize*outputZ
+
local_image_offset
))
;
__global
Dtype*
kernel_dataPtrFloat
=
(
kernel_data
+
(
currentKernelOffset
))
;
for
(
int
y
=
0
; y < KERNEL_H; y++)
{
for
(
int
x
=
0
; x < KERNEL_W; x++)
{
if
(
!
(
org_y
+
y
*
DILATION_Y
>=
0
&&
org_y
+
y
*
DILATION_Y
<
input_height
&&
org_x
+
x
*
DILATION_X
>=
0
&&
org_x
+
x
*
DILATION_X
<
input_width
))
{
continue
;
}
sum
+=
image_dataPtrFloat[x
*
DILATION_X]
*
kernel_dataPtrFloat[x]
;
}
image_dataPtrFloat
+=
input_width
*
DILATION_Y
;
kernel_dataPtrFloat
+=
KERNEL_W
;
}
#
if
APPLY_BIAS
int
offset
=
outputZ*output_height*output_width
+
outputY*output_width
+
outputX
;
ACTIVATION_FUNCTION
(
convolved_image,
offset,
sum
+
biases_base[biasIndex],
biasIndex
)
;
#
else
int
offset
=
outputZ*output_height*output_width
+
outputY*output_width
+
outputX
;
ACTIVATION_FUNCTION
(
convolved_image,
offset,
sum,
biasIndex
)
;
#
endif
}
}
#
endif
//
KERNEL_BASIC/IDLF/GEMM_LIKE/DWCONV
modules/dnn/src/opencl/prior_box.cl
0 → 100644
View file @
dcdd6af5
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
c
)
2016-2017
Fabian
David
Tschopp,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
define
Dtype
float
#
define
Dtype4
float4
__kernel
void
prior_box
(
const
int
nthreads,
const
Dtype
stepX,
const
Dtype
stepY,
const
Dtype
_minSize,
const
Dtype
_maxSize,
__global
const
Dtype*
_offsetsX,
__global
const
Dtype*
_offsetsY,
const
int
offsetsX_size,
__global
const
Dtype*
_aspectRatios,
const
int
aspectRatios_size,
__global
const
Dtype*
scales,
__global
Dtype*
dst,
const
int
_layerHeight,
const
int
_layerWidth,
const
int
imgHeight,
const
int
imgWidth
)
{
for
(
int
index
=
get_global_id
(
0
)
; index < nthreads; index += get_global_size(0))
{
int
w
=
index
%
_layerWidth
;
int
h
=
index
/
_layerWidth
;
__global
Dtype*
outputPtr
;
int
aspect_count
=
(
_maxSize
>
0
)
?
1
:
0
;
outputPtr
=
dst
+
index
*
4
*
offsetsX_size
*
(
1
+
aspect_count
+
aspectRatios_size
)
;
Dtype
_boxWidth,
_boxHeight
;
Dtype4
vec
;
_boxWidth
=
_boxHeight
=
_minSize
*
scales[0]
;
for
(
int
i
=
0
; i < offsetsX_size; ++i)
{
float
center_x
=
(
w
+
_offsetsX[i]
)
*
stepX
;
float
center_y
=
(
h
+
_offsetsY[i]
)
*
stepY
;
vec.x
=
(
center_x
-
_boxWidth
*
0.5f
)
/
imgWidth
; // xmin
vec.y
=
(
center_y
-
_boxHeight
*
0.5f
)
/
imgHeight
; // ymin
vec.z
=
(
center_x
+
_boxWidth
*
0.5f
)
/
imgWidth
; // xmax
vec.w
=
(
center_y
+
_boxHeight
*
0.5f
)
/
imgHeight
; // ymax
vstore4
(
vec,
0
,
outputPtr
)
;
outputPtr
+=
4
;
}
if
(
_maxSize
>
0
)
{
_boxWidth
=
_boxHeight
=
native_sqrt
(
_minSize
*
_maxSize
)
*
scales[1]
;
for
(
int
i
=
0
; i < offsetsX_size; ++i)
{
float
center_x
=
(
w
+
_offsetsX[i]
)
*
stepX
;
float
center_y
=
(
h
+
_offsetsY[i]
)
*
stepY
;
vec.x
=
(
center_x
-
_boxWidth
*
0.5f
)
/
imgWidth
; // xmin
vec.y
=
(
center_y
-
_boxHeight
*
0.5f
)
/
imgHeight
; // ymin
vec.z
=
(
center_x
+
_boxWidth
*
0.5f
)
/
imgWidth
; // xmax
vec.w
=
(
center_y
+
_boxHeight
*
0.5f
)
/
imgHeight
; // ymax
vstore4
(
vec,
0
,
outputPtr
)
;
outputPtr
+=
4
;
}
}
for
(
int
r
=
0
; r < aspectRatios_size; ++r)
{
float
ar
=
native_sqrt
(
_aspectRatios[r]
)
;
float
scale
=
scales[
(
_maxSize
>
0
?
2
:
1
)
+
r]
;
_boxWidth
=
_minSize
*
ar
*
scale
;
_boxHeight
=
_minSize
/
ar
*
scale
;
for
(
int
i
=
0
; i < offsetsX_size; ++i)
{
float
center_x
=
(
w
+
_offsetsX[i]
)
*
stepX
;
float
center_y
=
(
h
+
_offsetsY[i]
)
*
stepY
;
vec.x
=
(
center_x
-
_boxWidth
*
0.5f
)
/
imgWidth
; // xmin
vec.y
=
(
center_y
-
_boxHeight
*
0.5f
)
/
imgHeight
; // ymin
vec.z
=
(
center_x
+
_boxWidth
*
0.5f
)
/
imgWidth
; // xmax
vec.w
=
(
center_y
+
_boxHeight
*
0.5f
)
/
imgHeight
; // ymax
vstore4
(
vec,
0
,
outputPtr
)
;
outputPtr
+=
4
;
}
}
}
}
__kernel
void
set_variance
(
const
int
nthreads,
const
int
offset,
const
int
variance_size,
__global
const
Dtype*
variance,
__global
Dtype*
dst
)
{
for
(
int
index
=
get_global_id
(
0
)
; index < nthreads; index += get_global_size(0))
{
Dtype4
var_vec
;
if
(
variance_size
==
1
)
var_vec
=
(
Dtype4
)(
variance[0]
)
;
else
var_vec
=
vload4
(
0
,
variance
)
;
vstore4
(
var_vec,
0
,
dst
+
offset
+
index
*
4
)
;
}
}
modules/dnn/test/test_tf_importer.cpp
View file @
dcdd6af5
...
...
@@ -11,6 +11,8 @@ Test for Tensorflow models loading
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/core/ocl.hpp>
#include <opencv2/ts/ocl_test.hpp>
namespace
cvtest
{
...
...
@@ -219,6 +221,43 @@ TEST(Test_TensorFlow, MobileNet_SSD)
normAssert
(
target
[
2
].
reshape
(
1
,
1
),
output
[
2
].
reshape
(
1
,
1
),
""
,
4e-5
,
1e-2
);
}
OCL_TEST
(
Test_TensorFlow
,
MobileNet_SSD
)
{
std
::
string
netPath
=
findDataFile
(
"dnn/ssd_mobilenet_v1_coco.pb"
,
false
);
std
::
string
netConfig
=
findDataFile
(
"dnn/ssd_mobilenet_v1_coco.pbtxt"
,
false
);
std
::
string
imgPath
=
findDataFile
(
"dnn/street.png"
,
false
);
Mat
inp
;
resize
(
imread
(
imgPath
),
inp
,
Size
(
300
,
300
));
inp
=
blobFromImage
(
inp
,
1.0
f
/
127.5
,
Size
(),
Scalar
(
127.5
,
127.5
,
127.5
),
true
);
std
::
vector
<
String
>
outNames
(
3
);
outNames
[
0
]
=
"concat"
;
outNames
[
1
]
=
"concat_1"
;
outNames
[
2
]
=
"detection_out"
;
std
::
vector
<
Mat
>
target
(
outNames
.
size
());
for
(
int
i
=
0
;
i
<
outNames
.
size
();
++
i
)
{
std
::
string
path
=
findDataFile
(
"dnn/tensorflow/ssd_mobilenet_v1_coco."
+
outNames
[
i
]
+
".npy"
,
false
);
target
[
i
]
=
blobFromNPY
(
path
);
}
Net
net
=
readNetFromTensorflow
(
netPath
,
netConfig
);
net
.
setPreferableBackend
(
DNN_BACKEND_DEFAULT
);
net
.
setPreferableTarget
(
DNN_TARGET_OPENCL
);
net
.
setInput
(
inp
);
std
::
vector
<
Mat
>
output
;
net
.
forward
(
output
,
outNames
);
normAssert
(
target
[
0
].
reshape
(
1
,
1
),
output
[
0
].
reshape
(
1
,
1
));
normAssert
(
target
[
1
].
reshape
(
1
,
1
),
output
[
1
].
reshape
(
1
,
1
),
""
,
1e-5
,
2e-4
);
normAssert
(
target
[
2
].
reshape
(
1
,
1
),
output
[
2
].
reshape
(
1
,
1
),
""
,
4e-5
,
1e-2
);
}
TEST
(
Test_TensorFlow
,
lstm
)
{
runTensorFlowNet
(
"lstm"
,
true
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment