Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
dcdbc638
Commit
dcdbc638
authored
Sep 05, 2012
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge
https://github.com/urikz/opencv
parents
bcd0aefb
66ce62cd
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
163 additions
and
156 deletions
+163
-156
simpleflow.cpp
modules/video/src/simpleflow.cpp
+163
-156
No files found.
modules/video/src/simpleflow.cpp
View file @
dcdbc638
...
...
@@ -60,6 +60,9 @@ static void removeOcclusions(const Mat& flow,
Mat
&
confidence
)
{
const
int
rows
=
flow
.
rows
;
const
int
cols
=
flow
.
cols
;
if
(
!
confidence
.
data
)
{
confidence
=
Mat
::
zeros
(
rows
,
cols
,
CV_32F
);
}
for
(
int
r
=
0
;
r
<
rows
;
++
r
)
{
for
(
int
c
=
0
;
c
<
cols
;
++
c
)
{
if
(
dist
(
flow
.
at
<
Vec2f
>
(
r
,
c
),
-
flow_inv
.
at
<
Vec2f
>
(
r
,
c
))
>
occ_thr
)
{
...
...
@@ -96,20 +99,12 @@ static void wc(const Mat& image, Mat& d, int r0, int c0,
exp
(
d
,
d
);
}
static
void
dist
(
const
Mat
&
m1
,
const
Mat
&
m2
,
Mat
&
result
)
{
const
int
rows
=
m1
.
rows
;
const
int
cols
=
m1
.
cols
;
for
(
int
r
=
0
;
r
<
rows
;
++
r
)
{
const
Vec3b
*
m1_row
=
m1
.
ptr
<
Vec3b
>
(
r
);
const
Vec3b
*
m2_row
=
m2
.
ptr
<
Vec3b
>
(
r
);
float
*
row
=
result
.
ptr
<
float
>
(
r
);
for
(
int
c
=
0
;
c
<
cols
;
++
c
)
{
row
[
c
]
=
dist
(
m1_row
[
c
],
m2_row
[
c
]);
}
}
}
static
void
crossBilateralFilter
(
const
Mat
&
image
,
const
Mat
&
edge_image
,
const
Mat
confidence
,
Mat
&
dst
,
int
d
,
float
sigma_color
,
float
sigma_space
,
bool
flag
=
false
)
{
static
void
crossBilateralFilter
(
const
Mat
&
image
,
const
Mat
&
edge_image
,
const
Mat
confidence
,
Mat
&
dst
,
int
d
,
float
sigma_color
,
float
sigma_space
,
bool
flag
=
false
)
{
const
int
rows
=
image
.
rows
;
const
int
cols
=
image
.
cols
;
Mat
image_extended
,
edge_image_extended
,
confidence_extended
;
...
...
@@ -121,7 +116,6 @@ static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const
Mat
weights
(
2
*
d
+
1
,
2
*
d
+
1
,
CV_32F
);
Mat
weighted_sum
(
2
*
d
+
1
,
2
*
d
+
1
,
CV_32F
);
vector
<
Mat
>
image_extended_channels
;
split
(
image_extended
,
image_extended_channels
);
...
...
@@ -148,31 +142,15 @@ static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const
}
}
static
void
calcOpticalFlowSingleScaleSF
(
const
Mat
&
prev
,
const
Mat
&
next
,
const
Mat
&
mask
,
Mat
&
flow
,
Mat
&
confidence
,
int
averaging_radius
,
int
max_flow
,
float
sigma_dist
,
float
sigma_color
)
{
static
void
calcConfidence
(
const
Mat
&
prev
,
const
Mat
&
next
,
const
Mat
&
flow
,
Mat
&
confidence
,
int
max_flow
)
{
const
int
rows
=
prev
.
rows
;
const
int
cols
=
prev
.
cols
;
confidence
=
Mat
::
zeros
(
rows
,
cols
,
CV_32F
);
Mat
diff_storage
(
averaging_radius
*
2
+
1
,
averaging_radius
*
2
+
1
,
CV_32F
);
Mat
w_full_window
(
averaging_radius
*
2
+
1
,
averaging_radius
*
2
+
1
,
CV_32F
);
Mat
wd_full_window
(
averaging_radius
*
2
+
1
,
averaging_radius
*
2
+
1
,
CV_32F
);
float
w_full_window_sum
=
1e-9
f
;
Mat
prev_extended
;
copyMakeBorder
(
prev
,
prev_extended
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
BORDER_DEFAULT
);
wd
(
wd_full_window
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
sigma_dist
);
for
(
int
r0
=
0
;
r0
<
rows
;
++
r0
)
{
for
(
int
c0
=
0
;
c0
<
cols
;
++
c0
)
{
Vec2f
flow_at_point
=
flow
.
at
<
Vec2f
>
(
r0
,
c0
);
...
...
@@ -183,25 +161,16 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev,
if
(
c0
+
v0
<
0
)
{
v0
=
-
c0
;
}
if
(
c0
+
v0
>=
cols
)
{
v0
=
cols
-
1
-
c0
;
}
const
int
min_row_shift
=
-
min
(
r0
+
u0
,
max_flow
);
const
int
max_row_shift
=
min
(
rows
-
1
-
(
r0
+
u0
),
max_flow
);
const
int
min_col_shift
=
-
min
(
c0
+
v0
,
max_flow
);
const
int
max_col_shift
=
min
(
cols
-
1
-
(
c0
+
v0
),
max_flow
);
float
min_cost
=
FLT_MAX
,
best_u
=
(
float
)
u0
,
best_v
=
(
float
)
v0
;
if
(
mask
.
at
<
uchar
>
(
r0
,
c0
))
{
wc
(
prev_extended
,
w_full_window
,
r0
+
averaging_radius
,
c0
+
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
sigma_color
);
multiply
(
w_full_window
,
wd_full_window
,
w_full_window
);
w_full_window_sum
=
(
float
)
sum
(
w_full_window
)[
0
];
}
const
int
top_row_shift
=
-
min
(
r0
+
u0
,
max_flow
);
const
int
bottom_row_shift
=
min
(
rows
-
1
-
(
r0
+
u0
),
max_flow
);
const
int
left_col_shift
=
-
min
(
c0
+
v0
,
max_flow
);
const
int
right_col_shift
=
min
(
cols
-
1
-
(
c0
+
v0
),
max_flow
);
bool
first_flow_iteration
=
true
;
float
sum_e
=
0
,
min_e
=
0
;
for
(
int
u
=
min_row_shift
;
u
<=
max
_row_shift
;
++
u
)
{
for
(
int
v
=
min_col_shift
;
v
<=
max
_col_shift
;
++
v
)
{
for
(
int
u
=
top_row_shift
;
u
<=
bottom
_row_shift
;
++
u
)
{
for
(
int
v
=
left_col_shift
;
v
<=
right
_col_shift
;
++
v
)
{
float
e
=
dist
(
prev
.
at
<
Vec3b
>
(
r0
,
c0
),
next
.
at
<
Vec3b
>
(
r0
+
u0
+
u
,
c0
+
v0
+
v
));
if
(
first_flow_iteration
)
{
sum_e
=
e
;
...
...
@@ -211,55 +180,83 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev,
sum_e
+=
e
;
min_e
=
std
::
min
(
min_e
,
e
);
}
if
(
!
mask
.
at
<
uchar
>
(
r0
,
c0
))
{
continue
;
}
}
}
int
windows_square
=
(
bottom_row_shift
-
top_row_shift
+
1
)
*
(
right_col_shift
-
left_col_shift
+
1
);
confidence
.
at
<
float
>
(
r0
,
c0
)
=
(
windows_square
==
0
)
?
0
:
sum_e
/
windows_square
-
min_e
;
CV_Assert
(
confidence
.
at
<
float
>
(
r0
,
c0
)
>=
0
);
}
}
}
const
int
window_top_shift
=
min
(
r0
,
r0
+
u
+
u0
,
averaging_radius
);
const
int
window_bottom_shift
=
min
(
rows
-
1
-
r0
,
rows
-
1
-
(
r0
+
u
+
u0
),
averaging_radius
);
const
int
window_left_shift
=
min
(
c0
,
c0
+
v
+
v0
,
averaging_radius
);
const
int
window_right_shift
=
min
(
cols
-
1
-
c0
,
cols
-
1
-
(
c0
+
v
+
v0
),
averaging_radius
);
const
Range
prev_row_range
(
r0
-
window_top_shift
,
r0
+
window_bottom_shift
+
1
);
const
Range
prev_col_range
(
c0
-
window_left_shift
,
c0
+
window_right_shift
+
1
);
const
Range
next_row_range
(
r0
+
u0
+
u
-
window_top_shift
,
r0
+
u0
+
u
+
window_bottom_shift
+
1
);
const
Range
next_col_range
(
c0
+
v0
+
v
-
window_left_shift
,
c0
+
v0
+
v
+
window_right_shift
+
1
);
Mat
diff2
;
Mat
w
;
float
w_sum
;
if
(
window_top_shift
==
averaging_radius
&&
window_bottom_shift
==
averaging_radius
&&
window_left_shift
==
averaging_radius
&&
window_right_shift
==
averaging_radius
)
{
w
=
w_full_window
;
w_sum
=
w_full_window_sum
;
diff2
=
diff_storage
;
dist
(
prev
(
prev_row_range
,
prev_col_range
),
next
(
next_row_range
,
next_col_range
),
diff2
);
}
else
{
diff2
=
diff_storage
(
Range
(
averaging_radius
-
window_top_shift
,
averaging_radius
+
1
+
window_bottom_shift
),
Range
(
averaging_radius
-
window_left_shift
,
averaging_radius
+
1
+
window_right_shift
));
dist
(
prev
(
prev_row_range
,
prev_col_range
),
next
(
next_row_range
,
next_col_range
),
diff2
);
w
=
w_full_window
(
Range
(
averaging_radius
-
window_top_shift
,
averaging_radius
+
1
+
window_bottom_shift
),
Range
(
averaging_radius
-
window_left_shift
,
averaging_radius
+
1
+
window_right_shift
));
w_sum
=
(
float
)
sum
(
w
)[
0
];
static
void
calcOpticalFlowSingleScaleSF
(
const
Mat
&
prev_extended
,
const
Mat
&
next_extended
,
const
Mat
&
mask
,
Mat
&
flow
,
int
averaging_radius
,
int
max_flow
,
float
sigma_dist
,
float
sigma_color
)
{
const
int
averaging_radius_2
=
averaging_radius
<<
1
;
const
int
rows
=
prev_extended
.
rows
-
averaging_radius_2
;
const
int
cols
=
prev_extended
.
cols
-
averaging_radius_2
;
Mat
weight_window
(
averaging_radius_2
+
1
,
averaging_radius_2
+
1
,
CV_32F
);
Mat
space_weight_window
(
averaging_radius_2
+
1
,
averaging_radius_2
+
1
,
CV_32F
);
wd
(
space_weight_window
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
sigma_dist
);
for
(
int
r0
=
0
;
r0
<
rows
;
++
r0
)
{
for
(
int
c0
=
0
;
c0
<
cols
;
++
c0
)
{
if
(
!
mask
.
at
<
uchar
>
(
r0
,
c0
))
{
continue
;
}
// TODO: do smth with this creepy staff
Vec2f
flow_at_point
=
flow
.
at
<
Vec2f
>
(
r0
,
c0
);
int
u0
=
floor
(
flow_at_point
[
0
]
+
0.5
);
if
(
r0
+
u0
<
0
)
{
u0
=
-
r0
;
}
if
(
r0
+
u0
>=
rows
)
{
u0
=
rows
-
1
-
r0
;
}
int
v0
=
floor
(
flow_at_point
[
1
]
+
0.5
);
if
(
c0
+
v0
<
0
)
{
v0
=
-
c0
;
}
if
(
c0
+
v0
>=
cols
)
{
v0
=
cols
-
1
-
c0
;
}
const
int
top_row_shift
=
-
min
(
r0
+
u0
,
max_flow
);
const
int
bottom_row_shift
=
min
(
rows
-
1
-
(
r0
+
u0
),
max_flow
);
const
int
left_col_shift
=
-
min
(
c0
+
v0
,
max_flow
);
const
int
right_col_shift
=
min
(
cols
-
1
-
(
c0
+
v0
),
max_flow
);
float
min_cost
=
DBL_MAX
,
best_u
=
u0
,
best_v
=
v0
;
wc
(
prev_extended
,
weight_window
,
r0
+
averaging_radius
,
c0
+
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
sigma_color
);
multiply
(
weight_window
,
space_weight_window
,
weight_window
);
const
int
prev_extended_top_window_row
=
r0
;
const
int
prev_extended_left_window_col
=
c0
;
for
(
int
u
=
top_row_shift
;
u
<=
bottom_row_shift
;
++
u
)
{
const
int
next_extended_top_window_row
=
r0
+
u0
+
u
;
for
(
int
v
=
left_col_shift
;
v
<=
right_col_shift
;
++
v
)
{
const
int
next_extended_left_window_col
=
c0
+
v0
+
v
;
float
cost
=
0
;
for
(
int
r
=
0
;
r
<=
averaging_radius_2
;
++
r
)
{
const
Vec3b
*
prev_extended_window_row
=
prev_extended
.
ptr
<
Vec3b
>
(
prev_extended_top_window_row
+
r
);
const
Vec3b
*
next_extended_window_row
=
next_extended
.
ptr
<
Vec3b
>
(
next_extended_top_window_row
+
r
);
const
float
*
weight_window_row
=
weight_window
.
ptr
<
float
>
(
r
);
for
(
int
c
=
0
;
c
<=
averaging_radius_2
;
++
c
)
{
cost
+=
weight_window_row
[
c
]
*
dist
(
prev_extended_window_row
[
prev_extended_left_window_col
+
c
],
next_extended_window_row
[
next_extended_left_window_col
+
c
]);
}
}
multiply
(
diff2
,
w
,
diff2
);
const
float
cost
=
(
float
)(
sum
(
diff2
)[
0
]
/
w_sum
);
// cost should be divided by sum(weight_window), but because
// we interested only in min(cost) and sum(weight_window) is constant
// for every point - we remove it
if
(
cost
<
min_cost
)
{
min_cost
=
cost
;
best_u
=
(
float
)(
u
+
u0
);
...
...
@@ -267,14 +264,7 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev,
}
}
}
int
windows_square
=
(
max_row_shift
-
min_row_shift
+
1
)
*
(
max_col_shift
-
min_col_shift
+
1
);
confidence
.
at
<
float
>
(
r0
,
c0
)
=
(
windows_square
==
0
)
?
0
:
sum_e
/
windows_square
-
min_e
;
CV_Assert
(
confidence
.
at
<
float
>
(
r0
,
c0
)
>=
0
);
// TODO: remove it after testing
if
(
mask
.
at
<
uchar
>
(
r0
,
c0
))
{
flow
.
at
<
Vec2f
>
(
r0
,
c0
)
=
Vec2f
(
best_u
,
best_v
);
}
flow
.
at
<
Vec2f
>
(
r0
,
c0
)
=
Vec2f
(
best_u
,
best_v
);
}
}
}
...
...
@@ -319,7 +309,7 @@ static Mat calcIrregularityMat(const Mat& flow, int radius) {
static
void
selectPointsToRecalcFlow
(
const
Mat
&
flow
,
int
irregularity_metric_radius
,
in
t
speed_up_thr
,
floa
t
speed_up_thr
,
int
curr_rows
,
int
curr_cols
,
const
Mat
&
prev_speed_up
,
...
...
@@ -474,22 +464,22 @@ static void buildPyramidWithResizeMethod(Mat& src,
}
}
void
calcOpticalFlowSF
(
Mat
&
from
,
Mat
&
to
,
Mat
&
resulted_flow
,
int
layers
,
int
averaging_block_size
,
int
max_flow
,
double
sigma_dist
,
double
sigma_color
,
int
postprocess_window
,
double
sigma_dist_fix
,
double
sigma_color_fix
,
double
occ_thr
,
int
upscale_averaging_radius
,
double
upscale_sigma_dist
,
double
upscale_sigma_color
,
double
speed_up_thr
)
{
CV_EXPORTS_W
void
calcOpticalFlowSF
(
Mat
&
from
,
Mat
&
to
,
Mat
&
resulted_flow
,
int
layers
,
int
averaging_radius
,
int
max_flow
,
double
sigma_dist
,
double
sigma_color
,
int
postprocess_window
,
double
sigma_dist_fix
,
double
sigma_color_fix
,
double
occ_thr
,
int
upscale_averaging_radius
,
double
upscale_sigma_dist
,
double
upscale_sigma_color
,
double
speed_up_thr
)
{
vector
<
Mat
>
pyr_from_images
;
vector
<
Mat
>
pyr_to_images
;
...
...
@@ -498,34 +488,43 @@ void calcOpticalFlowSF(Mat& from,
CV_Assert
((
int
)
pyr_from_images
.
size
()
==
layers
&&
(
int
)
pyr_to_images
.
size
()
==
layers
);
Mat
first_from_image
=
pyr_from_images
[
layers
-
1
];
Mat
first_to_image
=
pyr_to_images
[
layers
-
1
];
Mat
curr_from
,
curr_to
,
prev_from
,
prev_to
;
Mat
curr_from_extended
,
curr_to_extended
;
curr_from
=
pyr_from_images
[
layers
-
1
];
curr_to
=
pyr_to_images
[
layers
-
1
];
copyMakeBorder
(
curr_from
,
curr_from_extended
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
BORDER_DEFAULT
);
copyMakeBorder
(
curr_to
,
curr_to_extended
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
BORDER_DEFAULT
);
Mat
mask
=
Mat
::
ones
(
first_from_image
.
rows
,
first_from_image
.
cols
,
CV_8U
);
Mat
mask_inv
=
Mat
::
ones
(
first_from_image
.
rows
,
first_from_image
.
cols
,
CV_8U
);
Mat
mask
=
Mat
::
ones
(
curr_from
.
size
()
,
CV_8U
);
Mat
mask_inv
=
Mat
::
ones
(
curr_from
.
size
()
,
CV_8U
);
Mat
flow
(
first_from_image
.
rows
,
first_from_image
.
cols
,
CV_32FC2
);
Mat
flow_inv
(
first_to_image
.
rows
,
first_to_image
.
cols
,
CV_32FC2
);
Mat
flow
(
curr_from
.
size
()
,
CV_32FC2
);
Mat
flow_inv
(
curr_to
.
size
()
,
CV_32FC2
);
Mat
confidence
;
Mat
confidence_inv
;
calcOpticalFlowSingleScaleSF
(
first_from_image
,
first_to_image
,
calcOpticalFlowSingleScaleSF
(
curr_from_extended
,
curr_to_extended
,
mask
,
flow
,
confidence
,
averaging_block_size
,
averaging_radius
,
max_flow
,
(
float
)
sigma_dist
,
(
float
)
sigma_color
);
calcOpticalFlowSingleScaleSF
(
first_to_image
,
first_from_image
,
calcOpticalFlowSingleScaleSF
(
curr_to_extended
,
curr_from_extended
,
mask_inv
,
flow_inv
,
confidence_inv
,
averaging_block_size
,
averaging_radius
,
max_flow
,
(
float
)
sigma_dist
,
(
float
)
sigma_color
);
...
...
@@ -540,14 +539,21 @@ void calcOpticalFlowSF(Mat& from,
(
float
)
occ_thr
,
confidence_inv
);
Mat
speed_up
=
Mat
::
zeros
(
first_from_image
.
rows
,
first_from_image
.
cols
,
CV_8U
);
Mat
speed_up_inv
=
Mat
::
zeros
(
first_from_image
.
rows
,
first_from_image
.
cols
,
CV_8U
);
Mat
speed_up
=
Mat
::
zeros
(
curr_from
.
size
()
,
CV_8U
);
Mat
speed_up_inv
=
Mat
::
zeros
(
curr_from
.
size
()
,
CV_8U
);
for
(
int
curr_layer
=
layers
-
2
;
curr_layer
>=
0
;
--
curr_layer
)
{
const
Mat
curr_from
=
pyr_from_images
[
curr_layer
];
const
Mat
curr_to
=
pyr_to_images
[
curr_layer
];
const
Mat
prev_from
=
pyr_from_images
[
curr_layer
+
1
];
const
Mat
prev_to
=
pyr_to_images
[
curr_layer
+
1
];
curr_from
=
pyr_from_images
[
curr_layer
];
curr_to
=
pyr_to_images
[
curr_layer
];
prev_from
=
pyr_from_images
[
curr_layer
+
1
];
prev_to
=
pyr_to_images
[
curr_layer
+
1
];
copyMakeBorder
(
curr_from
,
curr_from_extended
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
BORDER_DEFAULT
);
copyMakeBorder
(
curr_to
,
curr_to_extended
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
averaging_radius
,
BORDER_DEFAULT
);
const
int
curr_rows
=
curr_from
.
rows
;
const
int
curr_cols
=
curr_from
.
cols
;
...
...
@@ -555,8 +561,8 @@ void calcOpticalFlowSF(Mat& from,
Mat
new_speed_up
,
new_speed_up_inv
;
selectPointsToRecalcFlow
(
flow
,
averaging_
block_size
,
(
int
)
speed_up_thr
,
averaging_
radius
,
speed_up_thr
,
curr_rows
,
curr_cols
,
speed_up
,
...
...
@@ -564,8 +570,8 @@ void calcOpticalFlowSF(Mat& from,
mask
);
selectPointsToRecalcFlow
(
flow_inv
,
averaging_
block_size
,
(
int
)
speed_up_thr
,
averaging_
radius
,
speed_up_thr
,
curr_rows
,
curr_cols
,
speed_up_inv
,
...
...
@@ -593,22 +599,22 @@ void calcOpticalFlowSF(Mat& from,
(
float
)
upscale_sigma_dist
,
(
float
)
upscale_sigma_color
);
calcOpticalFlowSingleScaleSF
(
curr_from
,
curr_to
,
calcConfidence
(
curr_from
,
curr_to
,
flow
,
confidence
,
max_flow
);
calcOpticalFlowSingleScaleSF
(
curr_from_extended
,
curr_to_extended
,
mask
,
flow
,
confidence
,
averaging_block_size
,
averaging_radius
,
max_flow
,
(
float
)
sigma_dist
,
(
float
)
sigma_color
);
calcOpticalFlowSingleScaleSF
(
curr_to
,
curr_from
,
calcConfidence
(
curr_to
,
curr_from
,
flow_inv
,
confidence_inv
,
max_flow
);
calcOpticalFlowSingleScaleSF
(
curr_to_extended
,
curr_from_extended
,
mask_inv
,
flow_inv
,
confidence_inv
,
averaging_block_size
,
averaging_radius
,
max_flow
,
(
float
)
sigma_dist
,
(
float
)
sigma_color
);
...
...
@@ -616,11 +622,12 @@ void calcOpticalFlowSF(Mat& from,
extrapolateFlow
(
flow
,
speed_up
);
extrapolateFlow
(
flow_inv
,
speed_up_inv
);
//TODO: should we remove occlusions for the last stage?
removeOcclusions
(
flow
,
flow_inv
,
(
float
)
occ_thr
,
confidence
);
removeOcclusions
(
flow_inv
,
flow
,
(
float
)
occ_thr
,
confidence_inv
);
}
crossBilateralFilter
(
flow
,
pyr_from_images
[
0
]
,
confidence
,
flow
,
crossBilateralFilter
(
flow
,
curr_from
,
confidence
,
flow
,
postprocess_window
,
(
float
)
sigma_color_fix
,
(
float
)
sigma_dist_fix
);
GaussianBlur
(
flow
,
flow
,
Size
(
3
,
3
),
5
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment