Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
dc74ce20
Commit
dc74ce20
authored
Sep 12, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
OpenCV friendly xml format for soft cascade
parent
c04725b6
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
299 additions
and
261 deletions
+299
-261
objdetect.hpp
modules/objdetect/include/opencv2/objdetect/objdetect.hpp
+16
-12
softcascade.cpp
modules/objdetect/src/softcascade.cpp
+281
-246
test_softcascade.cpp
modules/objdetect/test/test_softcascade.cpp
+2
-3
No files found.
modules/objdetect/include/opencv2/objdetect/objdetect.hpp
View file @
dc74ce20
...
@@ -493,32 +493,36 @@ protected:
...
@@ -493,32 +493,36 @@ protected:
class
CV_EXPORTS
SoftCascade
class
CV_EXPORTS
SoftCascade
{
{
public
:
public
:
//! empty cascade will be created.
//!
An
empty cascade will be created.
SoftCascade
();
SoftCascade
();
//! cascade will be loaded from file "filename"
//! Cascade will be created from file for scales from minScale to maxScale.
//! Param filename is a path to xml-serialized cascade.
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
SoftCascade
(
const
string
&
filename
,
const
float
minScale
=
0.4
f
,
const
float
maxScale
=
5.
f
);
SoftCascade
(
const
string
&
filename
,
const
float
minScale
=
0.4
f
,
const
float
maxScale
=
5.
f
);
//! cascade will be loaded from file "filename". The previous cascade will be destroyed.
//! Param filename is a path to xml-serialized cascade.
//! Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
//! Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
bool
load
(
const
string
&
filename
,
const
float
minScale
=
0.4
f
,
const
float
maxScale
=
5.
f
);
bool
load
(
const
string
&
filename
,
const
float
minScale
=
0.4
f
,
const
float
maxScale
=
5.
f
);
virtual
~
SoftCascade
();
virtual
~
SoftCascade
();
//! return vector of bounding boxes. Each box contains detected object
//! return vector of bounding boxes. Each box contains
one
detected object
virtual
void
detectMultiScale
(
const
Mat
&
image
,
const
std
::
vector
<
cv
::
Rect
>&
rois
,
std
::
vector
<
cv
::
Rect
>&
objects
,
virtual
void
detectMultiScale
(
const
Mat
&
image
,
const
std
::
vector
<
cv
::
Rect
>&
rois
,
std
::
vector
<
cv
::
Rect
>&
objects
,
int
step
=
4
,
int
rejectfactor
=
1
);
int
step
=
4
,
int
rejectfactor
=
1
);
protected
:
protected
:
virtual
void
detectForOctave
(
int
octave
);
// virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
// int stripSize, int yStep, double factor, vector<Rect>& candidates,
// vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);
enum
{
BOOST
=
0
};
enum
{
BOOST
=
0
};
enum
enum
{
{
FRAME_WIDTH
=
640
,
FRAME_WIDTH
=
640
,
FRAME_HEIGHT
=
480
,
FRAME_HEIGHT
=
480
,
TOTAL_SCALES
=
55
,
TOTAL_SCALES
=
55
,
CLASSIFIERS
=
5
,
CLASSIFIERS
=
5
,
ORIG_OBJECT_WIDTH
=
64
,
ORIG_OBJECT_WIDTH
=
64
,
ORIG_OBJECT_HEIGHT
=
128
ORIG_OBJECT_HEIGHT
=
128
};
};
...
...
modules/objdetect/src/softcascade.cpp
View file @
dc74ce20
...
@@ -45,134 +45,160 @@
...
@@ -45,134 +45,160 @@
#include <vector>
#include <vector>
#include <string>
#include <string>
#include <
stdio.h
>
#include <
iostream
>
namespace
{
namespace
{
static
const
char
*
SC_OCT_SCALE
=
"scale"
;
static
const
char
*
SC_OCT_STAGES
=
"stageNum"
;
struct
Octave
struct
Octave
{
{
float
scale
;
float
scale
;
int
stages
;
int
stages
;
cv
::
Size
size
;
int
shrinkage
;
static
const
char
*
const
SC_OCT_SCALE
;
static
const
char
*
const
SC_OCT_STAGES
;
static
const
char
*
const
SC_OCT_SHRINKAGE
;
Octave
(){}
Octave
(){}
Octave
(
const
cv
::
FileNode
&
fn
)
:
scale
((
float
)
fn
[
SC_OCT_SCALE
]),
stages
((
int
)
fn
[
SC_OCT_STAGES
])
Octave
(
cv
::
Size
origObjSize
,
const
cv
::
FileNode
&
fn
)
{
/*printf("octave: %f %d\n", scale, stages);*/
}
:
scale
((
float
)
fn
[
SC_OCT_SCALE
]),
stages
((
int
)
fn
[
SC_OCT_STAGES
]),
size
(
cvRound
(
origObjSize
.
width
*
scale
),
cvRound
(
origObjSize
.
height
*
scale
)),
shrinkage
((
int
)
fn
[
SC_OCT_SHRINKAGE
])
{}
};
};
static
const
char
*
SC_STAGE_THRESHOLD
=
"stageThreshold"
;
const
char
*
const
Octave
::
SC_OCT_SCALE
=
"scale"
;
static
const
char
*
SC_STAGE_WEIGHT
=
"weight"
;
const
char
*
const
Octave
::
SC_OCT_STAGES
=
"stageNum"
;
const
char
*
const
Octave
::
SC_OCT_SHRINKAGE
=
"shrinkingFactor"
;
struct
Stage
struct
Stage
{
{
float
threshold
;
float
threshold
;
float
weight
;
static
const
char
*
const
SC_STAGE_THRESHOLD
;
Stage
(){}
Stage
(){}
Stage
(
const
cv
::
FileNode
&
fn
)
:
threshold
((
float
)
fn
[
SC_STAGE_THRESHOLD
])
,
weight
((
float
)
fn
[
SC_STAGE_WEIGHT
])
Stage
(
const
cv
::
FileNode
&
fn
)
:
threshold
((
float
)
fn
[
SC_STAGE_THRESHOLD
])
{
/*printf(" stage: %f %f\n",threshold, weight);*/
}
{
std
::
cout
<<
" stage: "
<<
threshold
<<
std
::
endl
;
}
};
};
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
const
char
*
const
Stage
::
SC_STAGE_THRESHOLD
=
"stageThreshold"
;
struct
CascadeIntrinsics
{
static
const
float
lambda
=
1.099
f
,
a
=
0.89
f
;
static
const
float
intrinsics
[
10
][
4
];
static
float
getFor
(
int
channel
,
float
scaling
)
{
CV_Assert
(
channel
<
10
);
if
((
scaling
-
1.
f
)
<
FLT_EPSILON
)
return
1.
f
;
int
ud
=
(
int
)(
scaling
<
1.
f
);
struct
Node
return
intrinsics
[
channel
][(
ud
<<
1
)]
*
pow
(
scaling
,
intrinsics
[
channel
][(
ud
<<
1
)
+
1
]);
{
}
int
feature
;
float
threshold
;
Node
(){}
Node
(
cv
::
FileNodeIterator
&
fIt
)
:
feature
((
int
)(
*
(
fIt
+=
2
)
++
)),
threshold
((
float
)(
*
(
fIt
++
)))
{
std
::
cout
<<
" Node: "
<<
feature
<<
" "
<<
threshold
<<
std
::
endl
;
}
};
};
const
float
CascadeIntrinsics
::
intrinsics
[
10
][
4
]
=
{
//da, db, ua, ub
// hog-like orientation bins
{
a
,
lambda
/
log
(
2
),
1
,
2
},
{
a
,
lambda
/
log
(
2
),
1
,
2
},
{
a
,
lambda
/
log
(
2
),
1
,
2
},
{
a
,
lambda
/
log
(
2
),
1
,
2
},
{
a
,
lambda
/
log
(
2
),
1
,
2
},
{
a
,
lambda
/
log
(
2
),
1
,
2
},
// gradient magnitude
{
a
,
lambda
/
log
(
2
),
1
,
2
},
// luv color channels
{
1
,
2
,
1
,
2
},
{
1
,
2
,
1
,
2
},
{
1
,
2
,
1
,
2
}
};
static
const
char
*
SC_F_THRESHOLD
=
"threshold"
;
static
const
char
*
SC_F_DIRECTION
=
"direction"
;
static
const
char
*
SC_F_CHANNEL
=
"channel"
;
static
const
char
*
SC_F_RECT
=
"rect"
;
struct
Feature
struct
Feature
{
{
float
threshold
;
int
direction
;
int
channel
;
int
channel
;
cv
::
Rect
rect
;
cv
::
Rect
rect
;
static
const
char
*
const
SC_F_CHANNEL
;
static
const
char
*
const
SC_F_RECT
;
Feature
()
{}
Feature
()
{}
Feature
(
const
cv
::
FileNode
&
fn
)
Feature
(
const
cv
::
FileNode
&
fn
)
:
channel
((
int
)
fn
[
SC_F_CHANNEL
])
:
threshold
((
float
)
fn
[
SC_F_THRESHOLD
]),
direction
((
int
)
fn
[
SC_F_DIRECTION
]),
channel
((
int
)
fn
[
SC_F_CHANNEL
])
{
{
cv
::
FileNode
rn
=
fn
[
SC_F_RECT
];
cv
::
FileNode
rn
=
fn
[
SC_F_RECT
];
cv
::
FileNodeIterator
r_it
=
rn
.
begin
();
cv
::
FileNodeIterator
r_it
=
rn
.
end
();
rect
=
cv
::
Rect
(
*
(
r_it
++
),
*
(
r_it
++
),
*
(
r_it
++
),
*
(
r_it
++
));
rect
=
cv
::
Rect
(
*
(
--
r_it
),
*
(
--
r_it
),
*
(
--
r_it
),
*
(
--
r_it
));
// printf(" feature: %f %d %d [%d %d %d %d]\n",threshold, direction, channel, rect.x, rect.y, rect.width, rect.height);
std
::
cout
<<
"feature: "
<<
rect
.
x
<<
" "
<<
rect
.
y
<<
" "
<<
rect
.
width
<<
" "
<<
rect
.
height
<<
" "
<<
channel
<<
std
::
endl
;
}
Feature
rescale
(
float
relScale
)
{
Feature
res
(
*
this
);
res
.
rect
=
cv
::
Rect
(
cvRound
(
rect
.
x
*
relScale
),
cvRound
(
rect
.
y
*
relScale
),
cvRound
(
rect
.
width
*
relScale
),
cvRound
(
rect
.
height
*
relScale
));
res
.
threshold
=
threshold
*
CascadeIntrinsics
::
getFor
(
channel
,
relScale
);
return
res
;
}
};
struct
Level
{
int
index
;
float
factor
;
float
logFactor
;
int
width
;
int
height
;
float
octave
;
cv
::
Size
objSize
;
Level
(
int
i
,
float
f
,
float
lf
,
int
w
,
int
h
)
:
index
(
i
),
factor
(
f
),
logFactor
(
lf
),
width
(
w
),
height
(
h
),
octave
(
0.
f
)
{}
void
assign
(
float
o
,
int
detW
,
int
detH
)
{
octave
=
o
;
objSize
=
cv
::
Size
(
cv
::
saturate_cast
<
int
>
(
detW
*
o
),
cv
::
saturate_cast
<
int
>
(
detH
*
o
));
}
}
float
relScale
()
{
return
(
factor
/
octave
);
}
// Feature rescale(float relScale)
// {
// Feature res(*this);
// res.rect = cv::Rect (cvRound(rect.x * relScale), cvRound(rect.y * relScale),
// cvRound(rect.width * relScale), cvRound(rect.height * relScale));
// res.threshold = threshold * CascadeIntrinsics::getFor(channel, relScale);
// return res;
// }
};
};
struct
Integral
const
char
*
const
Feature
::
SC_F_CHANNEL
=
"channel"
;
{
const
char
*
const
Feature
::
SC_F_RECT
=
"rect"
;
cv
::
Mat
magnitude
;
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
std
::
vector
<
cv
::
Mat
>
hist
;
// struct CascadeIntrinsics
cv
::
Mat
luv
;
// {
// static const float lambda = 1.099f, a = 0.89f;
Integral
(
cv
::
Mat
m
,
std
::
vector
<
cv
::
Mat
>
h
,
cv
::
Mat
l
)
:
magnitude
(
m
),
hist
(
h
),
luv
(
l
)
{}
// static const float intrinsics[10][4];
};
// static float getFor(int channel, float scaling)
// {
// CV_Assert(channel < 10);
// if ((scaling - 1.f) < FLT_EPSILON)
// return 1.f;
// int ud = (int)(scaling < 1.f);
// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
// }
// };
// const float CascadeIntrinsics::intrinsics[10][4] =
// { //da, db, ua, ub
// // hog-like orientation bins
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// // gradient magnitude
// {a, lambda / log(2), 1, 2},
// // luv color channels
// {1, 2, 1, 2},
// {1, 2, 1, 2},
// {1, 2, 1, 2}
// };
// struct Level
// {
// int index;
// float factor;
// float logFactor;
// int width;
// int height;
// Octave octave;
// cv::Size objSize;
// cv::Size dWinSize;
// static const float shrinkage = 0.25;
// Level(int i,float f, float lf, int w, int h): index(i), factor(f), logFactor(lf), width(w), height(h), octave(Octave())
// {}
// void assign(const Octave& o, int detW, int detH)
// {
// octave = o;
// objSize = cv::Size(cv::saturate_cast<int>(detW * o.scale), cv::saturate_cast<int>(detH * o.scale));
// }
// float relScale() {return (factor / octave.scale); }
// float srScale() {return (factor / octave.scale * shrinkage); }
// };
// struct Integral
// {
// cv::Mat magnitude;
// std::vector<cv::Mat> hist;
// cv::Mat luv;
// Integral(cv::Mat m, std::vector<cv::Mat> h, cv::Mat l) : magnitude(m), hist(h), luv(l) {}
// };
}
}
struct
cv
::
SoftCascade
::
Filds
struct
cv
::
SoftCascade
::
Filds
...
@@ -183,68 +209,72 @@ struct cv::SoftCascade::Filds
...
@@ -183,68 +209,72 @@ struct cv::SoftCascade::Filds
int
origObjWidth
;
int
origObjWidth
;
int
origObjHeight
;
int
origObjHeight
;
int
noctaves
;
std
::
vector
<
Octave
>
octaves
;
std
::
vector
<
Octave
>
octaves
;
std
::
vector
<
Stage
>
stages
;
std
::
vector
<
Stage
>
stages
;
std
::
vector
<
Feature
>
features
;
std
::
vector
<
Node
>
nodes
;
std
::
vector
<
Level
>
levels
;
std
::
vector
<
float
>
leaves
;
typedef
std
::
vector
<
Stage
>::
iterator
stIter_t
;
// carrently roi must be save for out of ranges.
void
detectInRoi
(
const
cv
::
Rect
&
roi
,
const
Integral
&
ints
,
std
::
vector
<
cv
::
Rect
>&
objects
,
const
int
step
)
{
for
(
int
dy
=
roi
.
y
;
dy
<
roi
.
height
;
dy
+=
step
)
for
(
int
dx
=
roi
.
x
;
dx
<
roi
.
width
;
dx
+=
step
)
{
applyCascade
(
ints
,
dx
,
dy
);
}
}
void
applyCascade
(
const
Integral
&
ints
,
const
int
x
,
const
int
y
)
{
for
(
stIter_t
sIt
=
sIt
.
begin
();
sIt
!=
stages
.
end
();
++
sIt
)
{
Stage
stage
&
=
*
sIt
;
}
}
// compute levels of full pyramid
std
::
vector
<
Feature
>
features
;
void
calcLevels
(
int
frameW
,
int
frameH
,
int
scales
)
{
CV_Assert
(
scales
>
1
);
levels
.
clear
();
float
logFactor
=
(
log
(
maxScale
)
-
log
(
minScale
))
/
(
scales
-
1
);
float
scale
=
minScale
;
for
(
int
sc
=
0
;
sc
<
scales
;
++
sc
)
{
Level
level
(
sc
,
scale
,
log
(
scale
)
+
logFactor
,
std
::
max
(
0.0
f
,
frameW
-
(
origObjWidth
*
scale
)),
std
::
max
(
0.0
f
,
frameH
-
(
origObjHeight
*
scale
)));
if
(
!
level
.
width
||
!
level
.
height
)
break
;
else
levels
.
push_back
(
level
);
if
(
fabs
(
scale
-
maxScale
)
<
FLT_EPSILON
)
break
;
scale
=
std
::
min
(
maxScale
,
expf
(
log
(
scale
)
+
logFactor
));
}
for
(
std
::
vector
<
Level
>::
iterator
level
=
levels
.
begin
();
level
<
levels
.
end
();
++
level
)
// typedef std::vector<Stage>::iterator stIter_t;
{
float
minAbsLog
=
FLT_MAX
;
// // carrently roi must be save for out of ranges.
for
(
std
::
vector
<
Octave
>::
iterator
oct
=
octaves
.
begin
();
oct
<
octaves
.
end
();
++
oct
)
// void detectInRoi(const cv::Rect& roi, const Integral& ints, std::vector<cv::Rect>& objects, const int step)
{
// {
const
Octave
&
octave
=*
oct
;
// for (int dy = roi.y; dy < roi.height; dy+=step)
float
logOctave
=
log
(
octave
.
scale
);
// for (int dx = roi.x; dx < roi.width; dx += step)
float
logAbsScale
=
fabs
((
*
level
).
logFactor
-
logOctave
);
// {
// applyCascade(ints, dx, dy);
if
(
logAbsScale
<
minAbsLog
)
// }
(
*
level
).
assign
(
octave
.
scale
,
ORIG_OBJECT_WIDTH
,
ORIG_OBJECT_HEIGHT
);
// }
}
}
// void applyCascade(const Integral& ints, const int x, const int y)
}
// {
// for (stIter_t sIt = stages.begin(); sIt != stages.end(); ++sIt)
// {
// Stage& stage = *sIt;
// }
// }
// // compute levels of full pyramid
// void calcLevels(int frameW, int frameH, int scales)
// {
// CV_Assert(scales > 1);
// levels.clear();
// float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
// float scale = minScale;
// for (int sc = 0; sc < scales; ++sc)
// {
// Level level(sc, scale, log(scale), std::max(0.0f, frameW - (origObjWidth * scale)), std::max(0.0f, frameH - (origObjHeight * scale)));
// if (!level.width || !level.height)
// break;
// else
// levels.push_back(level);
// if (fabs(scale - maxScale) < FLT_EPSILON) break;
// scale = std::min(maxScale, expf(log(scale) + logFactor));
// }
// for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
// {
// float minAbsLog = FLT_MAX;
// for (std::vector<Octave>::iterator oct = octaves.begin(); oct < octaves.end(); ++oct)
// {
// const Octave& octave =*oct;
// float logOctave = log(octave.scale);
// float logAbsScale = fabs((*level).logFactor - logOctave);
// if(logAbsScale < minAbsLog)
// {
// printf("######### %f %f %f %f\n", octave.scale, logOctave, logAbsScale, (*level).logFactor);
// minAbsLog = logAbsScale;
// (*level).assign(octave, ORIG_OBJECT_WIDTH, ORIG_OBJECT_HEIGHT);
// }
// }
// }
// }
bool
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
)
bool
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
)
{
{
...
@@ -252,19 +282,22 @@ struct cv::SoftCascade::Filds
...
@@ -252,19 +282,22 @@ struct cv::SoftCascade::Filds
maxScale
=
maxs
;
maxScale
=
maxs
;
// cascade properties
// cascade properties
const
char
*
SC_STAGE_TYPE
=
"stageType"
;
static
const
char
*
const
SC_STAGE_TYPE
=
"stageType"
;
const
char
*
SC_BOOST
=
"BOOST"
;
static
const
char
*
const
SC_BOOST
=
"BOOST"
;
const
char
*
SC_FEATURE_TYPE
=
"featureType"
;
const
char
*
SC_ICF
=
"ICF"
;
static
const
char
*
const
SC_FEATURE_TYPE
=
"featureType"
;
const
char
*
SC_TREE_TYPE
=
"stageTreeType"
;
static
const
char
*
const
SC_ICF
=
"ICF"
;
const
char
*
SC_STAGE_TH2
=
"TH2"
;
const
char
*
SC_NUM_OCTAVES
=
"octavesNum"
;
static
const
char
*
const
SC_ORIG_W
=
"width"
;
const
char
*
SC_ORIG_W
=
"origObjWidth"
;
static
const
char
*
const
SC_ORIG_H
=
"height"
;
const
char
*
SC_ORIG_H
=
"origObjHeight"
;
const
char
*
SC_OCTAVES
=
"octaves"
;
static
const
char
*
const
SC_OCTAVES
=
"octaves"
;
const
char
*
SC_STAGES
=
"stages"
;
static
const
char
*
const
SC_STAGES
=
"stages"
;
const
char
*
SC_FEATURES
=
"features"
;
static
const
char
*
const
SC_FEATURES
=
"features"
;
static
const
char
*
const
SC_WEEK
=
"weakClassifiers"
;
static
const
char
*
const
SC_INTERNAL
=
"internalNodes"
;
static
const
char
*
const
SC_LEAF
=
"leafValues"
;
// only boost supported
// only boost supported
...
@@ -275,14 +308,6 @@ struct cv::SoftCascade::Filds
...
@@ -275,14 +308,6 @@ struct cv::SoftCascade::Filds
string
featureTypeStr
=
(
string
)
root
[
SC_FEATURE_TYPE
];
string
featureTypeStr
=
(
string
)
root
[
SC_FEATURE_TYPE
];
CV_Assert
(
featureTypeStr
==
SC_ICF
);
CV_Assert
(
featureTypeStr
==
SC_ICF
);
// only trees of height 2
string
stageTreeTypeStr
=
(
string
)
root
[
SC_TREE_TYPE
];
CV_Assert
(
stageTreeTypeStr
==
SC_STAGE_TH2
);
// not empty
noctaves
=
(
int
)
root
[
SC_NUM_OCTAVES
];
CV_Assert
(
noctaves
>
0
);
origObjWidth
=
(
int
)
root
[
SC_ORIG_W
];
origObjWidth
=
(
int
)
root
[
SC_ORIG_W
];
CV_Assert
(
origObjWidth
==
SoftCascade
::
ORIG_OBJECT_WIDTH
);
CV_Assert
(
origObjWidth
==
SoftCascade
::
ORIG_OBJECT_WIDTH
);
...
@@ -293,15 +318,17 @@ struct cv::SoftCascade::Filds
...
@@ -293,15 +318,17 @@ struct cv::SoftCascade::Filds
FileNode
fn
=
root
[
SC_OCTAVES
];
FileNode
fn
=
root
[
SC_OCTAVES
];
if
(
fn
.
empty
())
return
false
;
if
(
fn
.
empty
())
return
false
;
octaves
.
reserve
(
noctaves
);
//
octaves.reserve(noctaves);
FileNodeIterator
it
=
fn
.
begin
(),
it_end
=
fn
.
end
();
FileNodeIterator
it
=
fn
.
begin
(),
it_end
=
fn
.
end
();
for
(;
it
!=
it_end
;
++
it
)
for
(;
it
!=
it_end
;
++
it
)
{
{
FileNode
fns
=
*
it
;
FileNode
fns
=
*
it
;
Octave
octave
=
Octave
(
fns
);
Octave
octave
(
cv
::
Size
(
SoftCascade
::
ORIG_OBJECT_WIDTH
,
SoftCascade
::
ORIG_OBJECT_HEIGHT
),
fns
);
CV_Assert
(
octave
.
stages
>
0
);
CV_Assert
(
octave
.
stages
>
0
);
octaves
.
push_back
(
octave
);
octaves
.
push_back
(
octave
);
stages
.
reserve
(
stages
.
size
()
+
octave
.
stages
);
FileNode
ffs
=
fns
[
SC_FEATURES
];
if
(
ffs
.
empty
())
return
false
;
fns
=
fns
[
SC_STAGES
];
fns
=
fns
[
SC_STAGES
];
if
(
fn
.
empty
())
return
false
;
if
(
fn
.
empty
())
return
false
;
...
@@ -313,14 +340,25 @@ struct cv::SoftCascade::Filds
...
@@ -313,14 +340,25 @@ struct cv::SoftCascade::Filds
fns
=
*
st
;
fns
=
*
st
;
stages
.
push_back
(
Stage
(
fns
));
stages
.
push_back
(
Stage
(
fns
));
fns
=
fns
[
SC_FEATURES
];
fns
=
fns
[
SC_WEEK
];
// for each feature for tree. features stored in order {root, left, right}
FileNodeIterator
ftr
=
fns
.
begin
(),
ft_end
=
fns
.
end
();
FileNodeIterator
ftr
=
fns
.
begin
(),
ft_end
=
fns
.
end
();
for
(;
ftr
!=
ft_end
;
++
ftr
)
for
(;
ftr
!=
ft_end
;
++
ftr
)
{
{
features
.
push_back
(
Feature
(
*
ftr
));
fns
=
(
*
ftr
)[
SC_INTERNAL
];
FileNodeIterator
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
for
(;
inIt
!=
inIt_end
;)
nodes
.
push_back
(
Node
(
inIt
));
fns
=
(
*
ftr
)[
SC_LEAF
];
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
for
(;
inIt
!=
inIt_end
;
++
inIt
)
leaves
.
push_back
((
float
)(
*
inIt
));
}
}
}
}
st
=
ffs
.
begin
(),
st_end
=
ffs
.
end
();
for
(;
st
!=
st_end
;
++
st
)
features
.
push_back
(
Feature
(
*
st
));
}
}
return
true
;
return
true
;
}
}
...
@@ -349,7 +387,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const
...
@@ -349,7 +387,7 @@ bool cv::SoftCascade::load( const string& filename, const float minScale, const
filds
=
new
Filds
;
filds
=
new
Filds
;
Filds
&
flds
=
*
filds
;
Filds
&
flds
=
*
filds
;
if
(
!
flds
.
fill
(
fs
.
getFirstTopLevelNode
(),
minScale
,
maxScale
))
return
false
;
if
(
!
flds
.
fill
(
fs
.
getFirstTopLevelNode
(),
minScale
,
maxScale
))
return
false
;
flds
.
calcLevels
(
FRAME_WIDTH
,
FRAME_HEIGHT
,
TOTAL_SCALES
);
// //
flds.calcLevels(FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
return
true
;
return
true
;
}
}
...
@@ -358,87 +396,84 @@ namespace {
...
@@ -358,87 +396,84 @@ namespace {
void
calcHistBins
(
const
cv
::
Mat
&
grey
,
cv
::
Mat
magIntegral
,
std
::
vector
<
cv
::
Mat
>&
histInts
,
const
int
bins
)
void
calcHistBins
(
const
cv
::
Mat
&
grey
,
cv
::
Mat
magIntegral
,
std
::
vector
<
cv
::
Mat
>&
histInts
,
const
int
bins
)
{
{
CV_Assert
(
grey
.
type
()
==
CV_8U
);
//
CV_Assert( grey.type() == CV_8U);
const
int
rows
=
grey
.
rows
+
1
;
//
const int rows = grey.rows + 1;
const
int
cols
=
grey
.
cols
+
1
;
//
const int cols = grey.cols + 1;
cv
::
Size
intSumSize
(
cols
,
rows
);
//
cv::Size intSumSize(cols, rows);
histInts
.
clear
();
//
histInts.clear();
std
::
vector
<
cv
::
Mat
>
hist
;
//
std::vector<cv::Mat> hist;
for
(
int
bin
=
0
;
bin
<
bins
;
++
bin
)
//
for (int bin = 0; bin < bins; ++bin)
{
//
{
hist
.
push_back
(
cv
::
Mat
(
rows
,
cols
,
CV_32FC1
));
//
hist.push_back(cv::Mat(rows, cols, CV_32FC1));
}
//
}
cv
::
Mat
df_dx
,
df_dy
,
mag
,
angle
;
//
cv::Mat df_dx, df_dy, mag, angle;
cv
::
Sobel
(
grey
,
df_dx
,
CV_32F
,
1
,
0
);
//
cv::Sobel(grey, df_dx, CV_32F, 1, 0);
cv
::
Sobel
(
grey
,
df_dy
,
CV_32F
,
0
,
1
);
//
cv::Sobel(grey, df_dy, CV_32F, 0, 1);
cv
::
cartToPolar
(
df_dx
,
df_dy
,
mag
,
angle
,
true
);
//
cv::cartToPolar(df_dx, df_dy, mag, angle, true);
const
float
magnitudeScaling
=
1.0
/
sqrt
(
2
);
//
const float magnitudeScaling = 1.0 / sqrt(2);
mag
*=
magnitudeScaling
;
//
mag *= magnitudeScaling;
angle
/=
60
;
//
angle /= 60;
for
(
int
h
=
0
;
h
<
mag
.
rows
;
++
h
)
//
for (int h = 0; h < mag.rows; ++h)
{
//
{
float
*
magnitude
=
mag
.
ptr
<
float
>
(
h
);
//
float* magnitude = mag.ptr<float>(h);
float
*
ang
=
angle
.
ptr
<
float
>
(
h
);
//
float* ang = angle.ptr<float>(h);
for
(
int
w
=
0
;
w
<
mag
.
cols
;
++
w
)
//
for (int w = 0; w < mag.cols; ++w)
{
//
{
hist
[(
int
)
ang
[
w
]].
ptr
<
float
>
(
h
)[
w
]
=
magnitude
[
w
];
//
hist[(int)ang[w]].ptr<float>(h)[w] = magnitude[w];
}
//
}
}
//
}
for
(
int
bin
=
0
;
bin
<
bins
;
++
bin
)
//
for (int bin = 0; bin < bins; ++bin)
{
//
{
cv
::
Mat
sum
;
//
cv::Mat sum;
cv
::
integral
(
hist
[
bin
],
sum
);
//
cv::integral(hist[bin], sum);
histInts
.
push_back
(
sum
);
//
histInts.push_back(sum);
}
//
}
cv
::
integral
(
mag
,
magIntegral
,
mag
.
depth
());
//
cv::integral(mag, magIntegral, mag.depth());
}
}
}
}
void
cv
::
SoftCascade
::
detectMultiScale
(
const
Mat
&
image
,
const
std
::
vector
<
cv
::
Rect
>&
rois
,
std
::
vector
<
cv
::
Rect
>&
objects
,
void
cv
::
SoftCascade
::
detectMultiScale
(
const
Mat
&
image
,
const
std
::
vector
<
cv
::
Rect
>&
rois
,
std
::
vector
<
cv
::
Rect
>&
objects
,
const
int
step
,
const
int
rejectfactor
)
const
int
step
,
const
int
rejectfactor
)
// add step scaling
{
{
typedef
std
::
vector
<
cv
::
Rect
>::
const_iterator
RIter_t
;
//
typedef std::vector<cv::Rect>::const_iterator RIter_t;
// only color images are supperted
//
//
only color images are supperted
CV_Assert
(
image
.
type
()
==
CV_8UC3
);
//
CV_Assert(image.type() == CV_8UC3);
// only this window size allowed
//
//
only this window size allowed
CV_Assert
(
image
.
cols
==
640
&&
image
.
rows
==
480
);
//
CV_Assert(image.cols == 640 && image.rows == 480);
objects
.
clear
();
//
objects.clear();
// create integrals
//
//
create integrals
cv
::
Mat
luv
;
//
cv::Mat luv;
cv
::
cvtColor
(
image
,
luv
,
CV_BGR2Luv
);
//
cv::cvtColor(image, luv, CV_BGR2Luv);
cv
::
Mat
luvIntegral
;
//
cv::Mat luvIntegral;
cv
::
integral
(
luv
,
luvIntegral
);
//
cv::integral(luv, luvIntegral);
cv
::
Mat
grey
;
//
cv::Mat grey;
cv
::
cvtColor
(
image
,
grey
,
CV_RGB2GRAY
);
//
cv::cvtColor(image, grey, CV_RGB2GRAY);
std
::
vector
<
cv
::
Mat
>
hist
;
//
std::vector<cv::Mat> hist;
cv
::
Mat
magnitude
;
//
cv::Mat magnitude;
const
int
bins
=
6
;
//
const int bins = 6;
calcHistBins
(
grey
,
magnitude
,
hist
,
bins
);
//
calcHistBins(grey, magnitude, hist, bins);
Integral
integrals
(
magnitude
,
hist
,
luv
);
//
Integral integrals(magnitude, hist, luv);
for
(
RIter_t
it
=
rois
.
begin
();
it
!=
rois
.
end
();
++
it
)
// for (RIter_t it = rois.begin(); it != rois.end(); ++it)
{
// {
const
cv
::
Rect
&
roi
=
*
it
;
// const cv::Rect& roi = *it;
(
*
filds
).
detectInRoi
(
roi
,
integrals
,
objects
,
step
);
// (*filds).detectInRoi(roi, integrals, objects, step);
}
// }
}
void
cv
::
SoftCascade
::
detectForOctave
(
const
int
octave
)
}
{}
\ No newline at end of file
\ No newline at end of file
modules/objdetect/test/test_softcascade.cpp
View file @
dc74ce20
...
@@ -43,16 +43,15 @@
...
@@ -43,16 +43,15 @@
TEST
(
SoftCascade
,
readCascade
)
TEST
(
SoftCascade
,
readCascade
)
{
{
std
::
string
xml
=
"/home/kellan
/icf-template.xml"
;
std
::
string
xml
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"cascadeandhog
/icf-template.xml"
;
cv
::
SoftCascade
cascade
;
cv
::
SoftCascade
cascade
;
ASSERT_TRUE
(
cascade
.
load
(
xml
));
ASSERT_TRUE
(
cascade
.
load
(
xml
));
}
}
TEST
(
SoftCascade
,
D
etect
)
TEST
(
SoftCascade
,
d
etect
)
{
{
std
::
string
xml
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"cascadeandhog/softcascade.xml"
;
std
::
string
xml
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"cascadeandhog/softcascade.xml"
;
std
::
cout
<<
"PATH: "
<<
xml
<<
std
::
endl
;
cv
::
SoftCascade
cascade
;
cv
::
SoftCascade
cascade
;
ASSERT_TRUE
(
cascade
.
load
(
xml
));
ASSERT_TRUE
(
cascade
.
load
(
xml
));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment