@@ -637,3 +637,148 @@ Groups the object candidate rectangles
The function is a wrapper for a generic function \cvCppCross{partition}. It clusters all the input rectangles using the rectangle equivalence criteria, that combines rectangles that have similar sizes and similar locations (the similarity is defined by \texttt{eps}). When \texttt{eps=0}, no clustering is done at all. If $\texttt{eps}\rightarrow+\inf$, all the rectangles will be put in one cluster. Then, the small clusters, containing less than or equal to \texttt{groupThreshold} rectangles, will be rejected. In each other cluster the average rectangle will be computed and put into the output rectangle list.
\fi
\ifC
\section{Discriminatively Trained Part Based Models for Object Detection}
\subsection{Discriminatively Trained Part Based Models for Object Detection}
The object detector described below has been initially proposed by
P.F. Felzenszwalb in \cvCPyCross{Felzenszwalb10}. It is based on a
Dalal-Triggs detector that uses a single filter on histogram of
oriented gradients (HOG) features to represent an object category.
This detector uses a sliding window approach, where a filter is
applied at all positions and scales of an image. The first
innovation is enriching the Dalal-Triggs model using a
star-structured part-based model defined by a "root" filter
(analogous to the Dalal-Triggs filter) plus a set of parts filters
and associated deformation models. The score of one of star models
at a particular position and scale within an image is the score of
the root filter at the given location plus the sum over parts of the
maximum, over placements of that part, of the part filter score on
its location minus a deformation cost measuring the deviation of the
part from its ideal location relative to the root. Both root and
part filter scores are defined by the dot product between a filter
(a set of weights) and a subwindow of a feature pyramid computed
from the input image. Another improvement is a representation of the
class of models by a mixture of star models. The score of a mixture
model at a particular position and scale is the maximum over
components, of the score of that component model at the given
title = {Theory and Practice of Projective Rectification},
...
...
@@ -311,4 +323,3 @@
# '''[Zhang96]''' Z. Zhang. Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting, Image and Vision Computing Journal, 1996.
# '''[Zhang99]''' Z. Zhang. Flexible Camera Calibration By Viewing a Plane From Unknown Orientations. International Conference on Computer Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999.
# '''[Zhang00]''' Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.