Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
d8c01828
Commit
d8c01828
authored
Mar 24, 2014
by
Andrey Pavlenko
Committed by
OpenCV Buildbot
Mar 24, 2014
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #2491 from ilya-lavrenov:tapi_sep_filter
parents
157f35ef
2875ce60
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
510 additions
and
512 deletions
+510
-512
mat.hpp
modules/core/include/opencv2/core/mat.hpp
+2
-0
ocl.hpp
modules/core/include/opencv2/core/ocl.hpp
+1
-1
matrix.cpp
modules/core/src/matrix.cpp
+22
-12
ocl.cpp
modules/core/src/ocl.cpp
+4
-4
perf_filters.cpp
modules/imgproc/perf/opencl/perf_filters.cpp
+1
-1
filter.cpp
modules/imgproc/src/filter.cpp
+148
-124
filterSepCol.cl
modules/imgproc/src/opencl/filterSepCol.cl
+45
-56
filterSepRow.cl
modules/imgproc/src/opencl/filterSepRow.cl
+92
-294
filterSep_singlePass.cl
modules/imgproc/src/opencl/filterSep_singlePass.cl
+187
-0
test_filters.cpp
modules/imgproc/test/ocl/test_filters.cpp
+1
-1
test_sepfilter2D.cpp
modules/imgproc/test/ocl/test_sepfilter2D.cpp
+6
-16
btv_l1.cpp
modules/superres/src/btv_l1.cpp
+1
-3
No files found.
modules/core/include/opencv2/core/mat.hpp
View file @
d8c01828
...
@@ -118,6 +118,8 @@ public:
...
@@ -118,6 +118,8 @@ public:
virtual
int
kind
()
const
;
virtual
int
kind
()
const
;
virtual
int
dims
(
int
i
=-
1
)
const
;
virtual
int
dims
(
int
i
=-
1
)
const
;
virtual
int
cols
(
int
i
=-
1
)
const
;
virtual
int
rows
(
int
i
=-
1
)
const
;
virtual
Size
size
(
int
i
=-
1
)
const
;
virtual
Size
size
(
int
i
=-
1
)
const
;
virtual
int
sizend
(
int
*
sz
,
int
i
=-
1
)
const
;
virtual
int
sizend
(
int
*
sz
,
int
i
=-
1
)
const
;
virtual
bool
sameSize
(
const
_InputArray
&
arr
)
const
;
virtual
bool
sameSize
(
const
_InputArray
&
arr
)
const
;
...
...
modules/core/include/opencv2/core/ocl.hpp
View file @
d8c01828
...
@@ -592,7 +592,7 @@ protected:
...
@@ -592,7 +592,7 @@ protected:
CV_EXPORTS
const
char
*
convertTypeStr
(
int
sdepth
,
int
ddepth
,
int
cn
,
char
*
buf
);
CV_EXPORTS
const
char
*
convertTypeStr
(
int
sdepth
,
int
ddepth
,
int
cn
,
char
*
buf
);
CV_EXPORTS
const
char
*
typeToStr
(
int
t
);
CV_EXPORTS
const
char
*
typeToStr
(
int
t
);
CV_EXPORTS
const
char
*
memopTypeToStr
(
int
t
);
CV_EXPORTS
const
char
*
memopTypeToStr
(
int
t
);
CV_EXPORTS
String
kernelToStr
(
InputArray
_kernel
,
int
ddepth
=
-
1
);
CV_EXPORTS
String
kernelToStr
(
InputArray
_kernel
,
int
ddepth
=
-
1
,
const
char
*
name
=
NULL
);
CV_EXPORTS
void
getPlatfomsInfo
(
std
::
vector
<
PlatformInfo
>&
platform_info
);
CV_EXPORTS
void
getPlatfomsInfo
(
std
::
vector
<
PlatformInfo
>&
platform_info
);
CV_EXPORTS
int
predictOptimalVectorWidth
(
InputArray
src1
,
InputArray
src2
=
noArray
(),
InputArray
src3
=
noArray
(),
CV_EXPORTS
int
predictOptimalVectorWidth
(
InputArray
src1
,
InputArray
src2
=
noArray
(),
InputArray
src3
=
noArray
(),
InputArray
src4
=
noArray
(),
InputArray
src5
=
noArray
(),
InputArray
src6
=
noArray
(),
InputArray
src4
=
noArray
(),
InputArray
src5
=
noArray
(),
InputArray
src6
=
noArray
(),
...
...
modules/core/src/matrix.cpp
View file @
d8c01828
...
@@ -1416,6 +1416,16 @@ int _InputArray::kind() const
...
@@ -1416,6 +1416,16 @@ int _InputArray::kind() const
return
flags
&
KIND_MASK
;
return
flags
&
KIND_MASK
;
}
}
int
_InputArray
::
rows
(
int
i
)
const
{
return
size
(
i
).
height
;
}
int
_InputArray
::
cols
(
int
i
)
const
{
return
size
(
i
).
width
;
}
Size
_InputArray
::
size
(
int
i
)
const
Size
_InputArray
::
size
(
int
i
)
const
{
{
int
k
=
kind
();
int
k
=
kind
();
...
@@ -2078,45 +2088,45 @@ void _OutputArray::create(Size _sz, int mtype, int i, bool allowTransposed, int
...
@@ -2078,45 +2088,45 @@ void _OutputArray::create(Size _sz, int mtype, int i, bool allowTransposed, int
create
(
2
,
sizes
,
mtype
,
i
,
allowTransposed
,
fixedDepthMask
);
create
(
2
,
sizes
,
mtype
,
i
,
allowTransposed
,
fixedDepthMask
);
}
}
void
_OutputArray
::
create
(
int
rows
,
int
cols
,
int
mtype
,
int
i
,
bool
allowTransposed
,
int
fixedDepthMask
)
const
void
_OutputArray
::
create
(
int
_rows
,
int
_
cols
,
int
mtype
,
int
i
,
bool
allowTransposed
,
int
fixedDepthMask
)
const
{
{
int
k
=
kind
();
int
k
=
kind
();
if
(
k
==
MAT
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
if
(
k
==
MAT
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
{
{
CV_Assert
(
!
fixedSize
()
||
((
Mat
*
)
obj
)
->
size
.
operator
()()
==
Size
(
cols
,
rows
));
CV_Assert
(
!
fixedSize
()
||
((
Mat
*
)
obj
)
->
size
.
operator
()()
==
Size
(
_cols
,
_
rows
));
CV_Assert
(
!
fixedType
()
||
((
Mat
*
)
obj
)
->
type
()
==
mtype
);
CV_Assert
(
!
fixedType
()
||
((
Mat
*
)
obj
)
->
type
()
==
mtype
);
((
Mat
*
)
obj
)
->
create
(
rows
,
cols
,
mtype
);
((
Mat
*
)
obj
)
->
create
(
_rows
,
_
cols
,
mtype
);
return
;
return
;
}
}
if
(
k
==
UMAT
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
if
(
k
==
UMAT
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
{
{
CV_Assert
(
!
fixedSize
()
||
((
UMat
*
)
obj
)
->
size
.
operator
()()
==
Size
(
cols
,
rows
));
CV_Assert
(
!
fixedSize
()
||
((
UMat
*
)
obj
)
->
size
.
operator
()()
==
Size
(
_cols
,
_
rows
));
CV_Assert
(
!
fixedType
()
||
((
UMat
*
)
obj
)
->
type
()
==
mtype
);
CV_Assert
(
!
fixedType
()
||
((
UMat
*
)
obj
)
->
type
()
==
mtype
);
((
UMat
*
)
obj
)
->
create
(
rows
,
cols
,
mtype
);
((
UMat
*
)
obj
)
->
create
(
_rows
,
_
cols
,
mtype
);
return
;
return
;
}
}
if
(
k
==
GPU_MAT
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
if
(
k
==
GPU_MAT
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
{
{
CV_Assert
(
!
fixedSize
()
||
((
cuda
::
GpuMat
*
)
obj
)
->
size
()
==
Size
(
cols
,
rows
));
CV_Assert
(
!
fixedSize
()
||
((
cuda
::
GpuMat
*
)
obj
)
->
size
()
==
Size
(
_cols
,
_
rows
));
CV_Assert
(
!
fixedType
()
||
((
cuda
::
GpuMat
*
)
obj
)
->
type
()
==
mtype
);
CV_Assert
(
!
fixedType
()
||
((
cuda
::
GpuMat
*
)
obj
)
->
type
()
==
mtype
);
((
cuda
::
GpuMat
*
)
obj
)
->
create
(
rows
,
cols
,
mtype
);
((
cuda
::
GpuMat
*
)
obj
)
->
create
(
_rows
,
_
cols
,
mtype
);
return
;
return
;
}
}
if
(
k
==
OPENGL_BUFFER
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
if
(
k
==
OPENGL_BUFFER
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
{
{
CV_Assert
(
!
fixedSize
()
||
((
ogl
::
Buffer
*
)
obj
)
->
size
()
==
Size
(
cols
,
rows
));
CV_Assert
(
!
fixedSize
()
||
((
ogl
::
Buffer
*
)
obj
)
->
size
()
==
Size
(
_cols
,
_
rows
));
CV_Assert
(
!
fixedType
()
||
((
ogl
::
Buffer
*
)
obj
)
->
type
()
==
mtype
);
CV_Assert
(
!
fixedType
()
||
((
ogl
::
Buffer
*
)
obj
)
->
type
()
==
mtype
);
((
ogl
::
Buffer
*
)
obj
)
->
create
(
rows
,
cols
,
mtype
);
((
ogl
::
Buffer
*
)
obj
)
->
create
(
_rows
,
_
cols
,
mtype
);
return
;
return
;
}
}
if
(
k
==
CUDA_MEM
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
if
(
k
==
CUDA_MEM
&&
i
<
0
&&
!
allowTransposed
&&
fixedDepthMask
==
0
)
{
{
CV_Assert
(
!
fixedSize
()
||
((
cuda
::
CudaMem
*
)
obj
)
->
size
()
==
Size
(
cols
,
rows
));
CV_Assert
(
!
fixedSize
()
||
((
cuda
::
CudaMem
*
)
obj
)
->
size
()
==
Size
(
_cols
,
_
rows
));
CV_Assert
(
!
fixedType
()
||
((
cuda
::
CudaMem
*
)
obj
)
->
type
()
==
mtype
);
CV_Assert
(
!
fixedType
()
||
((
cuda
::
CudaMem
*
)
obj
)
->
type
()
==
mtype
);
((
cuda
::
CudaMem
*
)
obj
)
->
create
(
rows
,
cols
,
mtype
);
((
cuda
::
CudaMem
*
)
obj
)
->
create
(
_rows
,
_
cols
,
mtype
);
return
;
return
;
}
}
int
sizes
[]
=
{
rows
,
cols
};
int
sizes
[]
=
{
_rows
,
_
cols
};
create
(
2
,
sizes
,
mtype
,
i
,
allowTransposed
,
fixedDepthMask
);
create
(
2
,
sizes
,
mtype
,
i
,
allowTransposed
,
fixedDepthMask
);
}
}
...
...
modules/core/src/ocl.cpp
View file @
d8c01828
...
@@ -4307,7 +4307,7 @@ static std::string kerToStr(const Mat & k)
...
@@ -4307,7 +4307,7 @@ static std::string kerToStr(const Mat & k)
return
stream
.
str
();
return
stream
.
str
();
}
}
String
kernelToStr
(
InputArray
_kernel
,
int
ddepth
)
String
kernelToStr
(
InputArray
_kernel
,
int
ddepth
,
const
char
*
name
)
{
{
Mat
kernel
=
_kernel
.
getMat
().
reshape
(
1
,
1
);
Mat
kernel
=
_kernel
.
getMat
().
reshape
(
1
,
1
);
...
@@ -4318,13 +4318,13 @@ String kernelToStr(InputArray _kernel, int ddepth)
...
@@ -4318,13 +4318,13 @@ String kernelToStr(InputArray _kernel, int ddepth)
if
(
ddepth
!=
depth
)
if
(
ddepth
!=
depth
)
kernel
.
convertTo
(
kernel
,
ddepth
);
kernel
.
convertTo
(
kernel
,
ddepth
);
typedef
std
::
string
(
*
func_t
)(
const
Mat
&
);
typedef
std
::
string
(
*
func_t
)(
const
Mat
&
);
static
const
func_t
funcs
[]
=
{
kerToStr
<
uchar
>
,
kerToStr
<
char
>
,
kerToStr
<
ushort
>
,
kerToStr
<
short
>
,
static
const
func_t
funcs
[]
=
{
kerToStr
<
uchar
>
,
kerToStr
<
char
>
,
kerToStr
<
ushort
>
,
kerToStr
<
short
>
,
kerToStr
<
int
>
,
kerToStr
<
float
>
,
kerToStr
<
double
>
,
0
};
kerToStr
<
int
>
,
kerToStr
<
float
>
,
kerToStr
<
double
>
,
0
};
const
func_t
func
=
funcs
[
depth
];
const
func_t
func
=
funcs
[
depth
];
CV_Assert
(
func
!=
0
);
CV_Assert
(
func
!=
0
);
return
cv
::
format
(
" -D
COEFF=%s
"
,
func
(
kernel
).
c_str
());
return
cv
::
format
(
" -D
%s=%s"
,
name
?
name
:
"COEFF
"
,
func
(
kernel
).
c_str
());
}
}
#define PROCESS_SRC(src) \
#define PROCESS_SRC(src) \
...
...
modules/imgproc/perf/opencl/perf_filters.cpp
View file @
d8c01828
...
@@ -211,7 +211,7 @@ OCL_PERF_TEST_P(SobelFixture, Sobel,
...
@@ -211,7 +211,7 @@ OCL_PERF_TEST_P(SobelFixture, Sobel,
OCL_TEST_CYCLE
()
cv
::
Sobel
(
src
,
dst
,
-
1
,
dx
,
dy
);
OCL_TEST_CYCLE
()
cv
::
Sobel
(
src
,
dst
,
-
1
,
dx
,
dy
);
SANITY_CHECK
(
dst
);
SANITY_CHECK
(
dst
,
1e-6
);
}
}
///////////// Scharr ////////////////////////
///////////// Scharr ////////////////////////
...
...
modules/imgproc/src/filter.cpp
View file @
d8c01828
...
@@ -3134,7 +3134,7 @@ template<typename ST, class CastOp, class VecOp> struct Filter2D : public BaseFi
...
@@ -3134,7 +3134,7 @@ template<typename ST, class CastOp, class VecOp> struct Filter2D : public BaseFi
// b e h b e h 0 0
// b e h b e h 0 0
// c f i c f i 0 0
// c f i c f i 0 0
template
<
typename
T
>
template
<
typename
T
>
static
int
_prepareKernelFilter2D
(
std
::
vector
<
T
>
&
data
,
const
Mat
&
kernel
)
static
int
_prepareKernelFilter2D
(
std
::
vector
<
T
>
&
data
,
const
Mat
&
kernel
)
{
{
Mat
_kernel
;
kernel
.
convertTo
(
_kernel
,
DataDepth
<
T
>::
value
);
Mat
_kernel
;
kernel
.
convertTo
(
_kernel
,
DataDepth
<
T
>::
value
);
int
size_y_aligned
=
ROUNDUP
(
kernel
.
rows
*
2
,
4
);
int
size_y_aligned
=
ROUNDUP
(
kernel
.
rows
*
2
,
4
);
...
@@ -3317,200 +3317,224 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
...
@@ -3317,200 +3317,224 @@ static bool ocl_filter2D( InputArray _src, OutputArray _dst, int ddepth,
return
kernel
.
run
(
2
,
globalsize
,
localsize
,
true
);
return
kernel
.
run
(
2
,
globalsize
,
localsize
,
true
);
}
}
static
bool
ocl_sepRowFilter2D
(
UMat
&
src
,
UMat
&
buf
,
Mat
&
kernelX
,
int
anchor
,
int
borderType
,
bool
sync
)
static
bool
ocl_sepRowFilter2D
(
const
UMat
&
src
,
UMat
&
buf
,
const
Mat
&
kernelX
,
int
anchor
,
int
borderType
,
int
ddepth
,
bool
fast8uc1
)
{
{
int
type
=
src
.
type
();
int
type
=
src
.
type
(),
cn
=
CV_MAT_CN
(
type
),
sdepth
=
CV_MAT_DEPTH
(
type
);
int
cn
=
CV_MAT_CN
(
type
);
bool
doubleSupport
=
ocl
::
Device
::
getDefault
().
doubleFPConfig
()
>
0
;
int
sdepth
=
CV_MAT_DEPTH
(
type
);
Size
bufSize
=
buf
.
size
();
Size
bufSize
=
buf
.
size
();
if
(
!
doubleSupport
&&
(
sdepth
==
CV_64F
||
ddepth
==
CV_64F
))
return
false
;
#ifdef ANDROID
#ifdef ANDROID
size_t
localsize
[
2
]
=
{
16
,
10
};
size_t
localsize
[
2
]
=
{
16
,
10
};
#else
#else
size_t
localsize
[
2
]
=
{
16
,
16
};
size_t
localsize
[
2
]
=
{
16
,
16
};
#endif
#endif
size_t
globalsize
[
2
]
=
{
DIVUP
(
bufSize
.
width
,
localsize
[
0
])
*
localsize
[
0
],
DIVUP
(
bufSize
.
height
,
localsize
[
1
])
*
localsize
[
1
]};
size_t
globalsize
[
2
]
=
{
DIVUP
(
bufSize
.
width
,
localsize
[
0
])
*
localsize
[
0
],
DIVUP
(
bufSize
.
height
,
localsize
[
1
])
*
localsize
[
1
]};
if
(
CV_8U
==
sdepth
)
if
(
fast8uc1
)
{
globalsize
[
0
]
=
DIVUP
((
bufSize
.
width
+
3
)
>>
2
,
localsize
[
0
])
*
localsize
[
0
];
switch
(
cn
)
{
case
1
:
globalsize
[
0
]
=
DIVUP
((
bufSize
.
width
+
3
)
>>
2
,
localsize
[
0
])
*
localsize
[
0
];
break
;
case
2
:
globalsize
[
0
]
=
DIVUP
((
bufSize
.
width
+
1
)
>>
1
,
localsize
[
0
])
*
localsize
[
0
];
break
;
case
4
:
globalsize
[
0
]
=
DIVUP
(
bufSize
.
width
,
localsize
[
0
])
*
localsize
[
0
];
break
;
}
}
int
radiusX
=
anchor
;
int
radiusX
=
anchor
,
radiusY
=
(
buf
.
rows
-
src
.
rows
)
>>
1
;
int
radiusY
=
(
int
)((
buf
.
rows
-
src
.
rows
)
>>
1
);
bool
isIsolatedBorder
=
(
borderType
&
BORDER_ISOLATED
)
!=
0
;
bool
isolated
=
(
borderType
&
BORDER_ISOLATED
)
!=
0
;
const
char
*
btype
=
NULL
;
const
char
*
const
borderMap
[]
=
{
"BORDER_CONSTANT"
,
"BORDER_REPLICATE"
,
"BORDER_REFLECT"
,
"BORDER_WRAP"
,
"BORDER_REFLECT_101"
},
switch
(
borderType
&
~
BORDER_ISOLATED
)
*
const
btype
=
borderMap
[
borderType
&
~
BORDER_ISOLATED
];
{
case
BORDER_CONSTANT
:
btype
=
"BORDER_CONSTANT"
;
break
;
case
BORDER_REPLICATE
:
btype
=
"BORDER_REPLICATE"
;
break
;
case
BORDER_REFLECT
:
btype
=
"BORDER_REFLECT"
;
break
;
case
BORDER_WRAP
:
btype
=
"BORDER_WRAP"
;
break
;
case
BORDER_REFLECT101
:
btype
=
"BORDER_REFLECT_101"
;
break
;
default
:
return
false
;
}
bool
extra_extrapolation
=
src
.
rows
<
(
int
)((
-
radiusY
+
globalsize
[
1
])
>>
1
)
+
1
;
bool
extra_extrapolation
=
src
.
rows
<
(
int
)((
-
radiusY
+
globalsize
[
1
])
>>
1
)
+
1
;
extra_extrapolation
|=
src
.
rows
<
radiusY
;
extra_extrapolation
|=
src
.
rows
<
radiusY
;
extra_extrapolation
|=
src
.
cols
<
(
int
)((
-
radiusX
+
globalsize
[
0
]
+
8
*
localsize
[
0
]
+
3
)
>>
1
)
+
1
;
extra_extrapolation
|=
src
.
cols
<
(
int
)((
-
radiusX
+
globalsize
[
0
]
+
8
*
localsize
[
0
]
+
3
)
>>
1
)
+
1
;
extra_extrapolation
|=
src
.
cols
<
radiusX
;
extra_extrapolation
|=
src
.
cols
<
radiusX
;
cv
::
String
build_options
=
cv
::
format
(
"-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s -D %s -D %s"
,
char
cvt
[
40
];
radiusX
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
cv
::
String
build_options
=
cv
::
format
(
"-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s -D %s -D %s"
btype
,
" -D srcT=%s -D dstT=%s -D convertToDstT=%s -D srcT1=%s -D dstT1=%s%s"
,
extra_extrapolation
?
"EXTRA_EXTRAPOLATION"
:
"NO_EXTRA_EXTRAPOLATION"
,
radiusX
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
btype
,
isIsolatedBorder
?
"BORDER_ISOLATED"
:
"NO_BORDER_ISOLATED"
);
extra_extrapolation
?
"EXTRA_EXTRAPOLATION"
:
"NO_EXTRA_EXTRAPOLATION"
,
isolated
?
"BORDER_ISOLATED"
:
"NO_BORDER_ISOLATED"
,
ocl
::
typeToStr
(
type
),
ocl
::
typeToStr
(
CV_32FC
(
cn
)),
ocl
::
convertTypeStr
(
sdepth
,
CV_32F
,
cn
,
cvt
),
ocl
::
typeToStr
(
sdepth
),
ocl
::
typeToStr
(
CV_32F
),
doubleSupport
?
" -D DOUBLE_SUPPORT"
:
""
);
build_options
+=
ocl
::
kernelToStr
(
kernelX
,
CV_32F
);
build_options
+=
ocl
::
kernelToStr
(
kernelX
,
CV_32F
);
Size
srcWholeSize
;
Point
srcOffset
;
Size
srcWholeSize
;
Point
srcOffset
;
src
.
locateROI
(
srcWholeSize
,
srcOffset
);
src
.
locateROI
(
srcWholeSize
,
srcOffset
);
std
::
stringstream
strKernel
;
String
kernelName
(
"row_filter"
);
strKernel
<<
"row_filter"
;
if
(
fast8uc1
)
if
(
-
1
!=
cn
)
kernelName
+=
"_C1_D0"
;
strKernel
<<
"_C"
<<
cn
;
if
(
-
1
!=
sdepth
)
strKernel
<<
"_D"
<<
sdepth
;
ocl
::
Kernel
k
ernelRow
;
ocl
::
Kernel
k
(
kernelName
.
c_str
(),
cv
::
ocl
::
imgproc
::
filterSepRow_oclsrc
,
if
(
!
kernelRow
.
create
(
strKernel
.
str
().
c_str
(),
cv
::
ocl
::
imgproc
::
filterSepRow_oclsrc
,
build_options
);
build_options
))
if
(
k
.
empty
(
))
return
false
;
return
false
;
int
idxArg
=
0
;
if
(
fast8uc1
)
idxArg
=
kernelRow
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
src
));
k
.
args
(
ocl
::
KernelArg
::
PtrReadOnly
(
src
),
(
int
)(
src
.
step
/
src
.
elemSize
()),
srcOffset
.
x
,
idxArg
=
kernelRow
.
set
(
idxArg
,
(
int
)(
src
.
step
/
src
.
elemSize
()));
srcOffset
.
y
,
src
.
cols
,
src
.
rows
,
srcWholeSize
.
width
,
srcWholeSize
.
height
,
ocl
::
KernelArg
::
PtrWriteOnly
(
buf
),
(
int
)(
buf
.
step
/
buf
.
elemSize
()),
idxArg
=
kernelRow
.
set
(
idxArg
,
srcOffset
.
x
);
buf
.
cols
,
buf
.
rows
,
radiusY
);
idxArg
=
kernelRow
.
set
(
idxArg
,
srcOffset
.
y
);
else
idxArg
=
kernelRow
.
set
(
idxArg
,
src
.
cols
);
k
.
args
(
ocl
::
KernelArg
::
PtrReadOnly
(
src
),
(
int
)
src
.
step
,
srcOffset
.
x
,
idxArg
=
kernelRow
.
set
(
idxArg
,
src
.
rows
);
srcOffset
.
y
,
src
.
cols
,
src
.
rows
,
srcWholeSize
.
width
,
srcWholeSize
.
height
,
idxArg
=
kernelRow
.
set
(
idxArg
,
srcWholeSize
.
width
);
ocl
::
KernelArg
::
PtrWriteOnly
(
buf
),
(
int
)
buf
.
step
,
buf
.
cols
,
buf
.
rows
,
radiusY
);
idxArg
=
kernelRow
.
set
(
idxArg
,
srcWholeSize
.
height
);
return
k
.
run
(
2
,
globalsize
,
localsize
,
false
);
idxArg
=
kernelRow
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrWriteOnly
(
buf
));
idxArg
=
kernelRow
.
set
(
idxArg
,
(
int
)(
buf
.
step
/
buf
.
elemSize
()));
idxArg
=
kernelRow
.
set
(
idxArg
,
buf
.
cols
);
idxArg
=
kernelRow
.
set
(
idxArg
,
buf
.
rows
);
idxArg
=
kernelRow
.
set
(
idxArg
,
radiusY
);
return
kernelRow
.
run
(
2
,
globalsize
,
localsize
,
sync
);
}
}
static
bool
ocl_sepColFilter2D
(
const
UMat
&
buf
,
UMat
&
dst
,
Mat
&
kernelY
,
int
anchor
,
bool
sync
)
static
bool
ocl_sepColFilter2D
(
const
UMat
&
buf
,
UMat
&
dst
,
const
Mat
&
kernelY
,
int
anchor
)
{
{
bool
doubleSupport
=
ocl
::
Device
::
getDefault
().
doubleFPConfig
()
>
0
;
if
(
dst
.
depth
()
==
CV_64F
&&
!
doubleSupport
)
return
false
;
#ifdef ANDROID
#ifdef ANDROID
size_t
localsize
[
2
]
=
{
16
,
10
};
size_t
localsize
[
2
]
=
{
16
,
10
};
#else
#else
size_t
localsize
[
2
]
=
{
16
,
16
};
size_t
localsize
[
2
]
=
{
16
,
16
};
#endif
#endif
size_t
globalsize
[
2
]
=
{
0
,
0
};
size_t
globalsize
[
2
]
=
{
0
,
0
};
int
dtype
=
dst
.
type
(),
cn
=
CV_MAT_CN
(
dtype
),
ddepth
=
CV_MAT_DEPTH
(
dtype
);
int
dtype
=
dst
.
type
(),
cn
=
CV_MAT_CN
(
dtype
),
ddepth
=
CV_MAT_DEPTH
(
dtype
);
Size
sz
=
dst
.
size
();
Size
sz
=
dst
.
size
();
globalsize
[
1
]
=
DIVUP
(
sz
.
height
,
localsize
[
1
])
*
localsize
[
1
];
globalsize
[
1
]
=
DIVUP
(
sz
.
height
,
localsize
[
1
])
*
localsize
[
1
];
globalsize
[
0
]
=
DIVUP
(
sz
.
width
,
localsize
[
0
])
*
localsize
[
0
];
if
(
dtype
==
CV_8UC2
)
globalsize
[
0
]
=
DIVUP
((
sz
.
width
+
1
)
/
2
,
localsize
[
0
])
*
localsize
[
0
];
else
globalsize
[
0
]
=
DIVUP
(
sz
.
width
,
localsize
[
0
])
*
localsize
[
0
];
char
cvt
[
40
];
char
cvt
[
40
];
cv
::
String
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D GENTYPE_SRC=%s -D GENTYPE_DST=%s -D convert_to_DST=%s"
,
cv
::
String
build_options
=
cv
::
format
(
"-D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d"
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
ocl
::
typeToStr
(
buf
.
type
()),
" -D srcT=%s -D dstT=%s -D convertToDstT=%s"
ocl
::
typeToStr
(
dtype
),
ocl
::
convertTypeStr
(
CV_32F
,
ddepth
,
cn
,
cvt
));
" -D srcT1=%s -D dstT1=%s%s"
,
anchor
,
(
int
)
localsize
[
0
],
(
int
)
localsize
[
1
],
cn
,
ocl
::
typeToStr
(
buf
.
type
()),
ocl
::
typeToStr
(
dtype
),
ocl
::
convertTypeStr
(
CV_32F
,
ddepth
,
cn
,
cvt
),
ocl
::
typeToStr
(
CV_32F
),
ocl
::
typeToStr
(
ddepth
),
doubleSupport
?
" -D DOUBLE_SUPPORT"
:
""
);
build_options
+=
ocl
::
kernelToStr
(
kernelY
,
CV_32F
);
build_options
+=
ocl
::
kernelToStr
(
kernelY
,
CV_32F
);
ocl
::
Kernel
kernelCol
;
ocl
::
Kernel
k
(
"col_filter"
,
cv
::
ocl
::
imgproc
::
filterSepCol_oclsrc
,
if
(
!
kernelCol
.
create
(
"col_filter"
,
cv
::
ocl
::
imgproc
::
filterSepCol_oclsrc
,
build_options
))
build_options
);
if
(
k
.
empty
())
return
false
;
return
false
;
int
idxArg
=
0
;
k
.
args
(
ocl
::
KernelArg
::
ReadOnly
(
buf
),
ocl
::
KernelArg
::
WriteOnly
(
dst
));
idxArg
=
kernelCol
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
buf
));
idxArg
=
kernelCol
.
set
(
idxArg
,
(
int
)(
buf
.
step
/
buf
.
elemSize
()));
return
k
.
run
(
2
,
globalsize
,
localsize
,
false
);
idxArg
=
kernelCol
.
set
(
idxArg
,
buf
.
cols
);
}
idxArg
=
kernelCol
.
set
(
idxArg
,
buf
.
rows
);
const
int
optimizedSepFilterLocalSize
=
16
;
idxArg
=
kernelCol
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrWriteOnly
(
dst
));
idxArg
=
kernelCol
.
set
(
idxArg
,
(
int
)(
dst
.
offset
/
dst
.
elemSize
()));
static
bool
ocl_sepFilter2D_SinglePass
(
InputArray
_src
,
OutputArray
_dst
,
idxArg
=
kernelCol
.
set
(
idxArg
,
(
int
)(
dst
.
step
/
dst
.
elemSize
()));
Mat
row_kernel
,
Mat
col_kernel
,
idxArg
=
kernelCol
.
set
(
idxArg
,
dst
.
cols
);
int
borderType
,
int
ddepth
)
idxArg
=
kernelCol
.
set
(
idxArg
,
dst
.
rows
);
{
Size
size
=
_src
.
size
(),
wholeSize
;
return
kernelCol
.
run
(
2
,
globalsize
,
localsize
,
sync
);
Point
origin
;
int
stype
=
_src
.
type
(),
sdepth
=
CV_MAT_DEPTH
(
stype
),
cn
=
CV_MAT_CN
(
stype
),
esz
=
CV_ELEM_SIZE
(
stype
),
wdepth
=
std
::
max
(
std
::
max
(
sdepth
,
ddepth
),
CV_32F
),
dtype
=
CV_MAKE_TYPE
(
ddepth
,
cn
);
size_t
src_step
=
_src
.
step
(),
src_offset
=
_src
.
offset
();
bool
doubleSupport
=
ocl
::
Device
::
getDefault
().
doubleFPConfig
()
>
0
;
if
((
src_offset
%
src_step
)
%
esz
!=
0
||
(
!
doubleSupport
&&
(
sdepth
==
CV_64F
||
ddepth
==
CV_64F
))
||
!
(
borderType
==
BORDER_CONSTANT
||
borderType
==
BORDER_REPLICATE
||
borderType
==
BORDER_REFLECT
||
borderType
==
BORDER_WRAP
||
borderType
==
BORDER_REFLECT_101
))
return
false
;
size_t
lt2
[
2
]
=
{
optimizedSepFilterLocalSize
,
optimizedSepFilterLocalSize
};
size_t
gt2
[
2
]
=
{
lt2
[
0
]
*
(
1
+
(
size
.
width
-
1
)
/
lt2
[
0
]),
lt2
[
1
]
*
(
1
+
(
size
.
height
-
1
)
/
lt2
[
1
])
};
char
cvt
[
2
][
40
];
const
char
*
const
borderMap
[]
=
{
"BORDER_CONSTANT"
,
"BORDER_REPLICATE"
,
"BORDER_REFLECT"
,
"BORDER_WRAP"
,
"BORDER_REFLECT_101"
};
String
opts
=
cv
::
format
(
"-D BLK_X=%d -D BLK_Y=%d -D RADIUSX=%d -D RADIUSY=%d%s%s"
" -D srcT=%s -D convertToWT=%s -D WT=%s -D dstT=%s -D convertToDstT=%s"
" -D %s -D srcT1=%s -D dstT1=%s -D CN=%d"
,
(
int
)
lt2
[
0
],
(
int
)
lt2
[
1
],
row_kernel
.
cols
/
2
,
col_kernel
.
cols
/
2
,
ocl
::
kernelToStr
(
row_kernel
,
CV_32F
,
"KERNEL_MATRIX_X"
).
c_str
(),
ocl
::
kernelToStr
(
col_kernel
,
CV_32F
,
"KERNEL_MATRIX_Y"
).
c_str
(),
ocl
::
typeToStr
(
stype
),
ocl
::
convertTypeStr
(
sdepth
,
wdepth
,
cn
,
cvt
[
0
]),
ocl
::
typeToStr
(
CV_MAKE_TYPE
(
wdepth
,
cn
)),
ocl
::
typeToStr
(
dtype
),
ocl
::
convertTypeStr
(
wdepth
,
ddepth
,
cn
,
cvt
[
1
]),
borderMap
[
borderType
],
ocl
::
typeToStr
(
sdepth
),
ocl
::
typeToStr
(
ddepth
),
cn
);
ocl
::
Kernel
k
(
"sep_filter"
,
ocl
::
imgproc
::
filterSep_singlePass_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
UMat
src
=
_src
.
getUMat
();
_dst
.
create
(
size
,
dtype
);
UMat
dst
=
_dst
.
getUMat
();
int
src_offset_x
=
static_cast
<
int
>
((
src_offset
%
src_step
)
/
esz
);
int
src_offset_y
=
static_cast
<
int
>
(
src_offset
/
src_step
);
src
.
locateROI
(
wholeSize
,
origin
);
k
.
args
(
ocl
::
KernelArg
::
PtrReadOnly
(
src
),
(
int
)
src_step
,
src_offset_x
,
src_offset_y
,
wholeSize
.
height
,
wholeSize
.
width
,
ocl
::
KernelArg
::
WriteOnly
(
dst
));
return
k
.
run
(
2
,
gt2
,
lt2
,
false
);
}
}
static
bool
ocl_sepFilter2D
(
InputArray
_src
,
OutputArray
_dst
,
int
ddepth
,
static
bool
ocl_sepFilter2D
(
InputArray
_src
,
OutputArray
_dst
,
int
ddepth
,
InputArray
_kernelX
,
InputArray
_kernelY
,
Point
anchor
,
InputArray
_kernelX
,
InputArray
_kernelY
,
Point
anchor
,
double
delta
,
int
borderType
)
double
delta
,
int
borderType
)
{
{
const
ocl
::
Device
&
d
=
ocl
::
Device
::
getDefault
();
Size
imgSize
=
_src
.
size
();
if
(
abs
(
delta
)
>
FLT_MIN
)
if
(
abs
(
delta
)
>
FLT_MIN
)
return
false
;
return
false
;
int
type
=
_src
.
type
();
int
type
=
_src
.
type
(),
sdepth
=
CV_MAT_DEPTH
(
type
),
cn
=
CV_MAT_CN
(
type
);
if
(
!
(
(
type
==
CV_8UC1
||
type
==
CV_8UC4
||
type
==
CV_32FC1
||
type
==
CV_32FC4
)
&&
if
(
cn
>
4
)
(
ddepth
==
CV_32F
||
ddepth
==
CV_16S
||
ddepth
==
CV_8U
||
ddepth
<
0
)
)
)
return
false
;
return
false
;
int
cn
=
CV_MAT_CN
(
type
);
Mat
kernelX
=
_kernelX
.
getMat
().
reshape
(
1
,
1
);
Mat
kernelX
=
_kernelX
.
getMat
().
reshape
(
1
,
1
);
if
(
1
!=
(
kernelX
.
cols
%
2
)
)
if
(
kernelX
.
cols
%
2
!=
1
)
return
false
;
return
false
;
Mat
kernelY
=
_kernelY
.
getMat
().
reshape
(
1
,
1
);
Mat
kernelY
=
_kernelY
.
getMat
().
reshape
(
1
,
1
);
if
(
1
!=
(
kernelY
.
cols
%
2
)
)
if
(
kernelY
.
cols
%
2
!=
1
)
return
false
;
return
false
;
int
sdepth
=
CV_MAT_DEPTH
(
type
);
if
(
ddepth
<
0
)
if
(
anchor
.
x
<
0
)
ddepth
=
sdepth
;
CV_OCL_RUN_
(
kernelY
.
cols
<=
21
&&
kernelX
.
cols
<=
21
&&
imgSize
.
width
>
optimizedSepFilterLocalSize
+
(
kernelX
.
cols
>>
1
)
&&
imgSize
.
height
>
optimizedSepFilterLocalSize
+
(
kernelY
.
cols
>>
1
)
&&
(
!
(
borderType
&
BORDER_ISOLATED
)
||
_src
.
offset
()
==
0
)
&&
anchor
==
Point
(
-
1
,
-
1
)
&&
(
d
.
isIntel
()
||
(
d
.
isAMD
()
&&
!
d
.
hostUnifiedMemory
())),
ocl_sepFilter2D_SinglePass
(
_src
,
_dst
,
kernelX
,
kernelY
,
borderType
,
ddepth
),
true
)
if
(
anchor
.
x
<
0
)
anchor
.
x
=
kernelX
.
cols
>>
1
;
anchor
.
x
=
kernelX
.
cols
>>
1
;
if
(
anchor
.
y
<
0
)
if
(
anchor
.
y
<
0
)
anchor
.
y
=
kernelY
.
cols
>>
1
;
anchor
.
y
=
kernelY
.
cols
>>
1
;
if
(
ddepth
<
0
)
ddepth
=
sdepth
;
UMat
src
=
_src
.
getUMat
();
UMat
src
=
_src
.
getUMat
();
Size
srcWholeSize
;
Point
srcOffset
;
Size
srcWholeSize
;
Point
srcOffset
;
src
.
locateROI
(
srcWholeSize
,
srcOffset
);
src
.
locateROI
(
srcWholeSize
,
srcOffset
);
if
(
(
0
!=
(
srcOffset
.
x
%
4
))
||
(
0
!=
(
src
.
cols
%
4
))
||
bool
fast8uc1
=
type
==
CV_8UC1
&&
srcOffset
.
x
%
4
==
0
&&
(
0
!=
((
src
.
step
/
src
.
elemSize
())
%
4
))
src
.
cols
%
4
==
0
&&
src
.
step
%
4
==
0
;
)
return
false
;
Size
srcSize
=
src
.
size
();
Size
srcSize
=
src
.
size
();
Size
bufSize
(
srcSize
.
width
,
srcSize
.
height
+
kernelY
.
cols
-
1
);
Size
bufSize
(
srcSize
.
width
,
srcSize
.
height
+
kernelY
.
cols
-
1
);
UMat
buf
;
buf
.
create
(
bufSize
,
CV_MAKETYPE
(
CV_32F
,
cn
));
UMat
buf
(
bufSize
,
CV_32FC
(
cn
));
if
(
!
ocl_sepRowFilter2D
(
src
,
buf
,
kernelX
,
anchor
.
x
,
borderType
,
false
))
if
(
!
ocl_sepRowFilter2D
(
src
,
buf
,
kernelX
,
anchor
.
x
,
borderType
,
ddepth
,
fast8uc1
))
return
false
;
return
false
;
_dst
.
create
(
srcSize
,
CV_MAKETYPE
(
ddepth
,
cn
));
_dst
.
create
(
srcSize
,
CV_MAKETYPE
(
ddepth
,
cn
));
UMat
dst
=
_dst
.
getUMat
();
UMat
dst
=
_dst
.
getUMat
();
return
ocl_sepColFilter2D
(
buf
,
dst
,
kernelY
,
anchor
.
y
,
false
);
return
ocl_sepColFilter2D
(
buf
,
dst
,
kernelY
,
anchor
.
y
);
}
}
#endif
#endif
...
...
modules/imgproc/src/opencl/filterSepCol.cl
View file @
d8c01828
...
@@ -34,47 +34,36 @@
...
@@ -34,47 +34,36 @@
//
//
//
//
#
ifdef
DOUBLE_SUPPORT
#
ifdef
cl_amd_fp64
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
elif
defined
(
cl_khr_fp64
)
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
endif
#
endif
#
define
READ_TIMES_COL
((
2*
(
RADIUSY+LSIZE1
)
-1
)
/LSIZE1
)
#
define
READ_TIMES_COL
((
2*
(
RADIUSY+LSIZE1
)
-1
)
/LSIZE1
)
#
define
RADIUS
1
#
define
RADIUS
1
#
if
CN
==1
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==2
#
define
ALIGN
(((
RADIUS
)
+1
)
>>1<<1
)
#
elif
CN==3
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==4
#
define
ALIGN
(
RADIUS
)
#
define
READ_TIMES_ROW
((
2*
(
RADIUS+LSIZE0
)
-1
)
/LSIZE0
)
#
endif
#
define
noconvert
#
define
noconvert
/**********************************************************************************
#
if
CN
!=
3
These
kernels
are
written
for
separable
filters
such
as
Sobel,
Scharr,
GaussianBlur.
#
define
loadpix
(
addr
)
*
(
__global
const
srcT
*
)(
addr
)
Now
(
6/29/2011
)
the
kernels
only
support
8U
data
type
and
the
anchor
of
the
convovle
#
define
storepix
(
val,
addr
)
*
(
__global
dstT
*
)(
addr
)
=
val
kernel
must
be
in
the
center.
ROI
is
not
supported
either.
#
define
SRCSIZE
(
int
)
sizeof
(
srcT
)
Each
kernels
read
4
elements
(
not
4
pixels
)
,
save
them
to
LDS
and
read
the
data
needed
#
define
DSTSIZE
(
int
)
sizeof
(
dstT
)
from
LDS
to
calculate
the
result.
#
else
The
length
of
the
convovle
kernel
supported
is
only
related
to
the
MAX
size
of
LDS,
#
define
loadpix
(
addr
)
vload3
(
0
,
(
__global
const
srcT1
*
)(
addr
))
which
is
HW
related.
#
define
storepix
(
val,
addr
)
vstore3
(
val,
0
,
(
__global
dstT1
*
)(
addr
))
Niko
#
define
SRCSIZE
(
int
)
sizeof
(
srcT1
)
*3
6/29/2011
#
define
DSTSIZE
(
int
)
sizeof
(
dstT1
)
*3
The
info
above
maybe
obsolete.
#
endif
***********************************************************************************
/
#
define
DIG
(
a
)
a,
#
define
DIG
(
a
)
a,
__constant
float
mat_kernel[]
=
{
COEFF
}
;
__constant
float
mat_kernel[]
=
{
COEFF
}
;
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
col_filter
__kernel
void
col_filter
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset,
int
src_whole_rows,
int
src_whole_cols,
(
__global
const
GENTYPE_SRC
*
restrict
src,
__global
uchar
*
dst,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols
)
const
int
src_step_in_pixel,
const
int
src_whole_cols,
const
int
src_whole_rows,
__global
GENTYPE_DST
*
dst,
const
int
dst_offset_in_pixel,
const
int
dst_step_in_pixel,
const
int
dst_cols,
const
int
dst_rows
)
{
{
int
x
=
get_global_id
(
0
)
;
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
y
=
get_global_id
(
1
)
;
...
@@ -82,38 +71,38 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void col_filter
...
@@ -82,38 +71,38 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void col_filter
int
l_x
=
get_local_id
(
0
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_addr
=
mad24
(
y,
src_step
_in_pixel,
x
)
;
int
start_addr
=
mad24
(
y,
src_step
,
x
*
SRCSIZE
)
;
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step
_in_pixel,
src_whole_cols
)
;
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step
,
src_whole_cols
*
SRCSIZE
)
;
int
i
;
srcT
sum,
temp[READ_TIMES_COL]
;
GENTYPE_SRC
sum,
temp[READ_TIMES_COL]
;
__local
srcT
LDS_DAT[LSIZE1
*
READ_TIMES_COL][LSIZE0
+
1]
;
__local
GENTYPE_SRC
LDS_DAT[LSIZE1
*
READ_TIMES_COL][LSIZE0
+
1]
;
//read
pixels
from
src
//
read
pixels
from
src
for
(
i
=
0
;i<READ_TIMES_COL;i++
)
for
(
int
i
=
0
; i < READ_TIMES_COL; ++i
)
{
{
int
current_addr
=
start_addr+i*LSIZE1*src_step_in_pixel
;
int
current_addr
=
mad24
(
i,
LSIZE1
*
src_step,
start_addr
)
;
current_addr
=
current_addr
<
end_addr
?
current_addr
:
0
;
current_addr
=
current_addr
<
end_addr
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
temp[i]
=
loadpix
(
src
+
current_addr
)
;
}
//save
pixels
to
lds
for
(
i
=
0
;i<READ_TIMES_COL;i++)
{
LDS_DAT[l_y+i*LSIZE1][l_x]
=
temp[i]
;
}
}
//
save
pixels
to
lds
for
(
int
i
=
0
; i < READ_TIMES_COL; ++i)
LDS_DAT[mad24
(
i,
LSIZE1,
l_y
)
][l_x]
=
temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//read
pixels
from
lds
and
calculate
the
result
sum
=
LDS_DAT[l_y+RADIUSY][l_x]*mat_kernel[RADIUSY]
;
//
read
pixels
from
lds
and
calculate
the
result
for
(
i=1
;i<=RADIUSY;i++)
sum
=
LDS_DAT[l_y
+
RADIUSY][l_x]
*
mat_kernel[RADIUSY]
;
for
(
int
i
=
1
; i <= RADIUSY; ++i)
{
{
temp[0]
=LDS_DAT[l_y+RADIUSY-
i][l_x]
;
temp[0]
=
LDS_DAT[l_y
+
RADIUSY
-
i][l_x]
;
temp[1]
=LDS_DAT[l_y+RADIUSY+
i][l_x]
;
temp[1]
=
LDS_DAT[l_y
+
RADIUSY
+
i][l_x]
;
sum
+=
temp[0]
*
mat_kernel[RADIUSY-i]+temp[1]
*
mat_kernel[RADIUSY+i]
;
sum
+=
mad
(
temp[0],
mat_kernel[RADIUSY
-
i],
temp[1]
*
mat_kernel[RADIUSY
+
i]
)
;
}
}
//write
the
result
to
dst
if
((
x<dst_cols
)
&
(
y<dst_rows
))
//
write
the
result
to
dst
if
(
x
<
dst_cols
&&
y
<
dst_rows
)
{
{
start_addr
=
mad24
(
y,
dst_step
_in_pixel,
x
+
dst_offset_in_pixel
)
;
start_addr
=
mad24
(
y,
dst_step
,
mad24
(
DSTSIZE,
x,
dst_offset
)
)
;
dst[start_addr]
=
convert_to_DST
(
sum
)
;
storepix
(
convertToDstT
(
sum
)
,
dst
+
start_addr
)
;
}
}
}
}
modules/imgproc/src/opencl/filterSepRow.cl
View file @
d8c01828
...
@@ -34,41 +34,37 @@
...
@@ -34,41 +34,37 @@
//
//
//
//
#
ifdef
DOUBLE_SUPPORT
#
ifdef
cl_amd_fp64
#
pragma
OPENCL
EXTENSION
cl_amd_fp64:enable
#
elif
defined
(
cl_khr_fp64
)
#
pragma
OPENCL
EXTENSION
cl_khr_fp64:enable
#
endif
#
endif
#
define
READ_TIMES_ROW
((
2*
(
RADIUSX+LSIZE0
)
-1
)
/LSIZE0
)
//for
c4
only
#
define
READ_TIMES_ROW
((
2*
(
RADIUSX+LSIZE0
)
-1
)
/LSIZE0
)
//for
c4
only
#
define
READ_TIMES_COL
((
2*
(
RADIUSY+LSIZE1
)
-1
)
/LSIZE1
)
//#pragma
OPENCL
EXTENSION
cl_amd_printf
:
enable
#
define
RADIUS
1
#
define
RADIUS
1
#
if
CN
==1
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==2
#
define
ALIGN
(((
RADIUS
)
+1
)
>>1<<1
)
#
elif
CN==3
#
define
ALIGN
(((
RADIUS
)
+3
)
>>2<<2
)
#
elif
CN==4
#
define
ALIGN
(
RADIUS
)
#
endif
#
ifdef
BORDER_REPLICATE
#
ifdef
BORDER_REPLICATE
//
BORDER_REPLICATE:
aaaaaa|abcdefgh|hhhhhhh
//
BORDER_REPLICATE:
aaaaaa|abcdefgh|hhhhhhh
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
(
l_edge
)
:
(
i
))
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
(
l_edge
)
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
(
r_edge
)
-1
:
(
addr
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
(
r_edge
)
-1
:
(
addr
))
#
endif
#
endif
#
ifdef
BORDER_REFLECT
#
ifdef
BORDER_REFLECT
//
BORDER_REFLECT:
fedcba|abcdefgh|hgfedcb
//
BORDER_REFLECT:
fedcba|abcdefgh|hgfedcb
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
-
(
i
)
-1
:
(
i
))
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
-
(
i
)
-1
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
-
(
i
)
-1+
((
r_edge
)
<<1
)
:
(
addr
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
-
(
i
)
-1+
((
r_edge
)
<<1
)
:
(
addr
))
#
endif
#
endif
#
ifdef
BORDER_REFLECT_101
#
ifdef
BORDER_REFLECT_101
//
BORDER_REFLECT_101:
gfedcb|abcdefgh|gfedcba
//
BORDER_REFLECT_101:
gfedcb|abcdefgh|gfedcba
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
-
(
i
)
:
(
i
))
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
-
(
i
)
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
-
(
i
)
-2+
((
r_edge
)
<<1
)
:
(
addr
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
-
(
i
)
-2+
((
r_edge
)
<<1
)
:
(
addr
))
#
endif
#
endif
//blur
function
does
not
support
BORDER_WRAP
#
ifdef
BORDER_WRAP
#
ifdef
BORDER_WRAP
//
BORDER_WRAP:
cdefgh|abcdefgh|abcdefg
//
BORDER_WRAP:
cdefgh|abcdefgh|abcdefg
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
(
i
)
+
(
r_edge
)
:
(
i
))
#
define
ADDR_L
(
i,
l_edge,
r_edge
)
((
i
)
<
(
l_edge
)
?
(
i
)
+
(
r_edge
)
:
(
i
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
(
i
)
-
(
r_edge
)
:
(
addr
))
#
define
ADDR_R
(
i,
r_edge,
addr
)
((
i
)
>=
(
r_edge
)
?
(
i
)
-
(
r_edge
)
:
(
addr
))
#
endif
#
endif
...
@@ -127,65 +123,56 @@
...
@@ -127,65 +123,56 @@
#
endif
//BORDER_CONSTANT
#
endif
//BORDER_CONSTANT
#
endif
//EXTRA_EXTRAPOLATION
#
endif
//EXTRA_EXTRAPOLATION
/**********************************************************************************
#
define
noconvert
These
kernels
are
written
for
separable
filters
such
as
Sobel,
Scharr,
GaussianBlur.
Now
(
6/29/2011
)
the
kernels
only
support
8U
data
type
and
the
anchor
of
the
convovle
#
if
CN
!=
3
kernel
must
be
in
the
center.
ROI
is
not
supported
either.
#
define
loadpix
(
addr
)
*
(
__global
const
srcT
*
)(
addr
)
For
channels
=1,2,4,
each
kernels
read
4
elements
(
not
4
pixels
)
,
and
for
channels
=3,
#
define
storepix
(
val,
addr
)
*
(
__global
dstT
*
)(
addr
)
=
val
the
kernel
read
4
pixels,
save
them
to
LDS
and
read
the
data
needed
from
LDS
to
#
define
SRCSIZE
(
int
)
sizeof
(
srcT
)
calculate
the
result.
#
define
DSTSIZE
(
int
)
sizeof
(
dstT
)
The
length
of
the
convovle
kernel
supported
is
related
to
the
LSIZE0
and
the
MAX
size
#
else
of
LDS,
which
is
HW
related.
#
define
loadpix
(
addr
)
vload3
(
0
,
(
__global
const
srcT1
*
)(
addr
))
For
channels
=
1
,
3
the
RADIUS
is
no
more
than
LSIZE0*2
#
define
storepix
(
val,
addr
)
vstore3
(
val,
0
,
(
__global
dstT1
*
)(
addr
))
For
channels
=
2
,
the
RADIUS
is
no
more
than
LSIZE0
#
define
SRCSIZE
(
int
)
sizeof
(
srcT1
)
*3
For
channels
=
4
,
arbitary
RADIUS
is
supported
unless
the
LDS
is
not
enough
#
define
DSTSIZE
(
int
)
sizeof
(
dstT1
)
*3
Niko
#
endif
6/29/2011
The
info
above
maybe
obsolete.
***********************************************************************************
/
#
define
DIG
(
a
)
a,
#
define
DIG
(
a
)
a,
__constant
float
mat_kernel[]
=
{
COEFF
}
;
__constant
float
mat_kernel[]
=
{
COEFF
}
;
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C1_D0
__kernel
void
row_filter_C1_D0
(
__global
const
uchar
*
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
(
__global
uchar
*
restrict
src,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
int
src_step_in_pixel,
__global
float
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
src_offset_x,
int
src_offset_y,
int
radiusy
)
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy
)
{
{
int
x
=
get_global_id
(
0
)
<<2
;
int
x
=
get_global_id
(
0
)
<<2
;
int
y
=
get_global_id
(
1
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x
+
src_offset_x
-
RADIUSX
&
0xfffffffc
;
int
start_x
=
x
+
src_offset_x
-
RADIUSX
&
0xfffffffc
;
int
offset
=
src_offset_x
-
RADIUSX
&
3
;
int
offset
=
src_offset_x
-
RADIUSX
&
3
;
int
start_y
=
y
+
src_offset_y
-
radiusy
;
int
start_y
=
y
+
src_offset_y
-
radiusy
;
int
start_addr
=
mad24
(
start_y,
src_step_in_pixel,
start_x
)
;
int
start_addr
=
mad24
(
start_y,
src_step_in_pixel,
start_x
)
;
int
i
;
float4
sum
;
float4
sum
;
uchar4
temp[READ_TIMES_ROW]
;
uchar4
temp[READ_TIMES_ROW]
;
__local
uchar4
LDS_DAT[LSIZE1][READ_TIMES_ROW
*LSIZE0+
1]
;
__local
uchar4
LDS_DAT[LSIZE1][READ_TIMES_ROW
*
LSIZE0
+
1]
;
#
ifdef
BORDER_CONSTANT
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,
src_whole_cols
)
;
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,
src_whole_cols
)
;
//
read
pixels
from
src
//
read
pixels
from
src
for
(
i
=
0
; i < READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
int
current_addr
=
start_addr+i*LSIZE0*4
;
int
current_addr
=
mad24
(
i,
LSIZE0
<<
2
,
start_addr
)
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
current_addr
=
current_addr
<
end_addr
&&
current_addr
>
0
?
current_addr
:
0
;
temp[i]
=
*
(
__global
uchar4
*
)
&src[current_addr]
;
temp[i]
=
*
(
__global
const
uchar4
*
)
&src[current_addr]
;
}
}
//
judge
if
read
out
of
boundary
//
judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
temp[i].x
=
ELEM
(
start_x+i*LSIZE0*4,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].x
)
;
temp[i].x
=
ELEM
(
start_x+i*LSIZE0*4,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].x
)
;
temp[i].y
=
ELEM
(
start_x+i*LSIZE0*4+1,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].y
)
;
temp[i].y
=
ELEM
(
start_x+i*LSIZE0*4+1,
src_offset_x,
src_offset_x
+
src_cols,
0
,
temp[i].y
)
;
...
@@ -194,7 +181,7 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -194,7 +181,7 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
temp[i]
=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
uchar4
)
0
,
temp[i]
)
;
temp[i]
=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
}
#
else
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
temp[i].x
=
ELEM
(
start_x+i*LSIZE0*4,
0
,
src_whole_cols,
0
,
temp[i].x
)
;
temp[i].x
=
ELEM
(
start_x+i*LSIZE0*4,
0
,
src_whole_cols,
0
,
temp[i].x
)
;
temp[i].y
=
ELEM
(
start_x+i*LSIZE0*4+1,
0
,
src_whole_cols,
0
,
temp[i].y
)
;
temp[i].y
=
ELEM
(
start_x+i*LSIZE0*4+1,
0
,
src_whole_cols,
0
,
temp[i].y
)
;
...
@@ -209,16 +196,15 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -209,16 +196,15 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
#else
#else
int not_all_in_range = (start_x<0) |
(
start_x
+
READ_TIMES_ROW*LSIZE0*4+4>src_whole_cols
)
| (start_y<0) |
(
start_y
>=
src_whole_rows
)
;
int not_all_in_range = (start_x<0) |
(
start_x
+
READ_TIMES_ROW*LSIZE0*4+4>src_whole_cols
)
| (start_y<0) |
(
start_y
>=
src_whole_rows
)
;
#
endif
#
endif
int4
index[READ_TIMES_ROW]
;
int4
index[READ_TIMES_ROW],
addr
;
int4
addr
;
int
s_y
;
int
s_y
;
if
(
not_all_in_range
)
if
(
not_all_in_range
)
{
{
//
judge
if
read
out
of
boundary
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i < READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
index[i]
=
(
int4
)(
start_x+i*LSIZE0*4
)
+
(
int4
)(
0
,
1
,
2
,
3
)
;
index[i]
=
(
int4
)(
mad24
(
i,
LSIZE0
<<
2
,
start_x
)
)
+
(
int4
)(
0
,
1
,
2
,
3
)
;
#
ifdef
BORDER_ISOLATED
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
index[i].x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
index[i].x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
index[i].y,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
index[i].y,
src_offset_x,
src_offset_x
+
src_cols
)
;
...
@@ -231,6 +217,7 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -231,6 +217,7 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
EXTRAPOLATE
(
index[i].w,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
index[i].w,
0
,
src_whole_cols
)
;
#
endif
#
endif
}
}
s_y
=
start_y
;
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
...
@@ -239,9 +226,9 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -239,9 +226,9 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
#
endif
#
endif
//
read
pixels
from
src
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
addr
=
mad24
((
int4
)
s_y,
(
int4
)
src_step_in_pixel,
index[i]
)
;
addr
=
mad24
((
int4
)
s_y,
(
int4
)
src_step_in_pixel,
index[i]
)
;
temp[i].x
=
src[addr.x]
;
temp[i].x
=
src[addr.x]
;
temp[i].y
=
src[addr.y]
;
temp[i].y
=
src[addr.y]
;
temp[i].z
=
src[addr.z]
;
temp[i].z
=
src[addr.z]
;
...
@@ -251,26 +238,26 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -251,26 +238,26 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
else
else
{
{
//
read
pixels
from
src
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
temp[i]
=
*
(
__global
uchar4*
)
&src[
start_addr+i*LSIZE0*4
]
;
temp[i]
=
*
(
__global
uchar4*
)
&src[
mad24
(
i,
LSIZE0
<<
2
,
start_addr
)
]
;
}
}
#
endif
//BORDER_CONSTANT
#
endif
//BORDER_CONSTANT
//
save
pixels
to
lds
//
save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
LDS_DAT[l_y][
l_x+i*LSIZE0]=
temp[i]
;
LDS_DAT[l_y][
mad24
(
i,
LSIZE0,
l_x
)
]
=
temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
read
pixels
from
lds
and
calculate
the
result
//
read
pixels
from
lds
and
calculate
the
result
sum
=
convert_float4
(
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]+RADIUSX+offset
))
*
mat_kernel[RADIUSX]
;
sum
=
convert_float4
(
vload4
(
0
,
(
__local
uchar
*
)
&LDS_DAT[l_y][l_x]+RADIUSX+offset
))
*
mat_kernel[RADIUSX]
;
for
(
i
=1
; i<=RADIUSX; i++
)
for
(
i
nt
i
=
1
; i <= RADIUSX; ++i
)
{
{
temp[0]
=
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]
+
RADIUSX
+
offset
-
i
)
;
temp[0]
=
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]
+
RADIUSX
+
offset
-
i
)
;
temp[1]
=
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]
+
RADIUSX
+
offset
+
i
)
;
temp[1]
=
vload4
(
0
,
(
__local
uchar*
)
&LDS_DAT[l_y][l_x]
+
RADIUSX
+
offset
+
i
)
;
sum
+=
convert_float4
(
temp[0]
)
*
mat_kernel[RADIUSX-i]
+
convert_float4
(
temp[1]
)
*
mat_kernel[RADIUSX+i]
;
sum
+=
mad
(
convert_float4
(
temp[0]
)
,
mat_kernel[RADIUSX-i],
convert_float4
(
temp[1]
)
*
mat_kernel[RADIUSX
+
i]
)
;
}
}
start_addr
=
mad24
(
y,
dst_step_in_pixel,
x
)
;
start_addr
=
mad24
(
y,
dst_step_in_pixel,
x
)
;
//
write
the
result
to
dst
//
write
the
result
to
dst
if
((
x+3<dst_cols
)
&
(
y<dst_rows
))
if
((
x+3<dst_cols
)
&
(
y<dst_rows
))
...
@@ -290,247 +277,58 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -290,247 +277,58 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
dst[start_addr]
=
sum.x
;
dst[start_addr]
=
sum.x
;
}
}
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C4_D0
__kernel
void
row_filter
(
__global
const
uchar
*
src,
int
src_step,
int
src_offset_x,
int
src_offset_y,
(
__global
uchar4
*
restrict
src,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
int
src_step_in_pixel,
__global
uchar
*
dst,
int
dst_step,
int
dst_cols,
int
dst_rows,
int
src_offset_x,
int
src_offset_y,
int
radiusy
)
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float4
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy
)
{
{
int
x
=
get_global_id
(
0
)
;
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x-RADIUSX
;
int
start_y
=
y+src_offset_y-radiusy
;
int
start_addr
=
mad24
(
start_y,src_step_in_pixel,start_x
)
;
int
i
;
float4
sum
;
uchar4
temp[READ_TIMES_ROW]
;
__local
uchar4
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,src_whole_cols
)
;
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
int
current_addr
=
start_addr+i*LSIZE0
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
}
//judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
src_offset_x,
src_offset_x
+
src_cols,
(
uchar4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
0
,
src_whole_cols,
(
uchar4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
0
,
src_whole_rows,
(
uchar4
)
0
,
temp[i]
)
;
}
#
endif
#
else
int
index[READ_TIMES_ROW]
;
int
s_x,s_y
;
//
judge
if
read
out
of
boundary
int
start_x
=
x
+
src_offset_x
-
RADIUSX
;
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
int
start_y
=
y
+
src_offset_y
-
radiusy
;
{
int
start_addr
=
mad24
(
start_y,
src_step,
start_x
*
SRCSIZE
)
;
s_x
=
start_x+i*LSIZE0
;
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
#
else
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
index[i]=mad24
(
s_y,
src_step_in_pixel,
s_x
)
;
}
//read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
temp[i]
=
src[index[i]]
;
#
endif
//BORDER_CONSTANT
//save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//read
pixels
from
lds
and
calculate
the
result
dstT
sum
;
sum
=convert_float4
(
LDS_DAT[l_y][l_x+RADIUSX]
)
*mat_kernel[RADIUSX]
;
srcT
temp[READ_TIMES_ROW]
;
for
(
i=1
; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i]
;
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i]
;
sum
+=
convert_float4
(
temp[0]
)
*mat_kernel[RADIUSX-i]+convert_float4
(
temp[1]
)
*mat_kernel[RADIUSX+i]
;
}
//write
the
result
to
dst
if
(
x<dst_cols
&&
y<dst_rows
)
{
start_addr
=
mad24
(
y,dst_step_in_pixel,x
)
;
dst[start_addr]
=
sum
;
}
}
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C1_D5
__local
srcT
LDS_DAT[LSIZE1][READ_TIMES_ROW
*
LSIZE0
+
1]
;
(
__global
float
*
restrict
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x-RADIUSX
;
int
start_y
=
y+src_offset_y-radiusy
;
int
start_addr
=
mad24
(
start_y,src_step_in_pixel,start_x
)
;
int
i
;
float
sum
;
float
temp[READ_TIMES_ROW]
;
__local
float
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,src_whole_cols
)
;
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step,
src_whole_cols
*
SRCSIZE
)
;
//
read
pixels
from
src
//
read
pixels
from
src
for
(
i
=
0
; i<
READ_TIMES_ROW; i++)
for
(
i
nt
i
=
0
; i <
READ_TIMES_ROW; i++)
{
{
int
current_addr
=
start_addr+i*LSIZE0
;
int
current_addr
=
mad24
(
i,
LSIZE0
*
SRCSIZE,
start_addr
)
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
current_addr
=
current_addr
<
end_addr
&&
current_addr
>=
0
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
temp[i]
=
loadpix
(
src
+
current_addr
)
;
}
}
//
judge
if
read
out
of
boundary
//
judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
#
ifdef
BORDER_ISOLATED
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
temp[i]
=
ELEM
(
start_x+i*LSIZE0,
src_offset_x,
src_offset_x
+
src_cols,
(
float
)
0
,
temp[i]
)
;
temp[i]
=
ELEM
(
mad24
(
i,
LSIZE0,
start_x
)
,
src_offset_x,
src_offset_x
+
src_cols,
(
srcT
)(
0
)
,
temp[i]
)
;
temp[i]
=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
float
)
0
,
temp[i]
)
;
temp[i]
=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
srcT
)(
0
)
,
temp[i]
)
;
}
}
#
else
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
{
{
temp[i]
=
ELEM
(
start_x+i*LSIZE0,
0
,
src_whole_cols,
(
float
)
0
,
temp[i]
)
;
temp[i]
=
ELEM
(
mad24
(
i,
LSIZE0,
start_x
)
,
0
,
src_whole_cols,
(
srcT
)(
0
)
,
temp[i]
)
;
temp[i]
=
ELEM
(
start_y,
0
,
src_whole_rows,
(
float
)
0
,
temp[i]
)
;
temp[i]
=
ELEM
(
start_y,
0
,
src_whole_rows,
(
srcT
)(
0
)
,
temp[i]
)
;
}
}
#
endif
#
endif
#
else
//
BORDER_CONSTANT
int
index[READ_TIMES_ROW]
;
int
s_x,s_y
;
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
s_x
=
start_x
+
i*LSIZE0,
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
#
else
#
else
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
int
index[READ_TIMES_ROW],
s_x,
s_y
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
index[i]=mad24
(
s_y,
src_step_in_pixel,
s_x
)
;
}
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
temp[i]
=
src[index[i]]
;
#
endif//
BORDER_CONSTANT
//save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
LDS_DAT[l_y][l_x+i*LSIZE0]=temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
read
pixels
from
lds
and
calculate
the
result
sum
=LDS_DAT[l_y][l_x+RADIUSX]*mat_kernel[RADIUSX]
;
for
(
i=1
; i<=RADIUSX; i++)
{
temp[0]=LDS_DAT[l_y][l_x+RADIUSX-i]
;
temp[1]=LDS_DAT[l_y][l_x+RADIUSX+i]
;
sum
+=
temp[0]*mat_kernel[RADIUSX-i]+temp[1]*mat_kernel[RADIUSX+i]
;
}
//
write
the
result
to
dst
if
(
x<dst_cols
&&
y<dst_rows
)
{
start_addr
=
mad24
(
y,dst_step_in_pixel,x
)
;
dst[start_addr]
=
sum
;
}
}
__kernel
__attribute__
((
reqd_work_group_size
(
LSIZE0,LSIZE1,1
)))
void
row_filter_C4_D5
(
__global
float4
*
restrict
src,
int
src_step_in_pixel,
int
src_offset_x,
int
src_offset_y,
int
src_cols,
int
src_rows,
int
src_whole_cols,
int
src_whole_rows,
__global
float4
*
dst,
int
dst_step_in_pixel,
int
dst_cols,
int
dst_rows,
int
radiusy
)
{
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
int
l_x
=
get_local_id
(
0
)
;
int
l_y
=
get_local_id
(
1
)
;
int
start_x
=
x+src_offset_x-RADIUSX
;
int
start_y
=
y+src_offset_y-radiusy
;
int
start_addr
=
mad24
(
start_y,src_step_in_pixel,start_x
)
;
int
i
;
float4
sum
;
float4
temp[READ_TIMES_ROW]
;
__local
float4
LDS_DAT[LSIZE1][READ_TIMES_ROW*LSIZE0+1]
;
#
ifdef
BORDER_CONSTANT
int
end_addr
=
mad24
(
src_whole_rows
-
1
,
src_step_in_pixel,src_whole_cols
)
;
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
int
current_addr
=
start_addr+i*LSIZE0
;
current_addr
=
((
current_addr
<
end_addr
)
&&
(
current_addr
>
0
))
?
current_addr
:
0
;
temp[i]
=
src[current_addr]
;
}
//
judge
if
read
out
of
boundary
//
judge
if
read
out
of
boundary
#
ifdef
BORDER_ISOLATED
for
(
int
i
=
0
; i < READ_TIMES_ROW; ++i)
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
src_offset_x,
src_offset_x
+
src_cols,
(
float4
)
0
,
temp[i]
)
;
s_x
=
mad24
(
i,
LSIZE0,
start_x
)
;
temp[i]=
ELEM
(
start_y,
src_offset_y,
src_offset_y
+
src_rows,
(
float4
)
0
,
temp[i]
)
;
s_y
=
start_y
;
}
#
else
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
temp[i]=
ELEM
(
start_x+i*LSIZE0,
0
,
src_whole_cols,
(
float4
)
0
,
temp[i]
)
;
temp[i]=
ELEM
(
start_y,
0
,
src_whole_rows,
(
float4
)
0
,
temp[i]
)
;
}
#
endif
#
else
int
index[READ_TIMES_ROW]
;
int
s_x,s_y
;
//
judge
if
read
out
of
boundary
for
(
i
=
0
; i<READ_TIMES_ROW; i++)
{
s_x
=
start_x
+
i*LSIZE0,
s_y
=
start_y
;
#
ifdef
BORDER_ISOLATED
#
ifdef
BORDER_ISOLATED
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_x,
src_offset_x,
src_offset_x
+
src_cols
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
EXTRAPOLATE
(
s_y,
src_offset_y,
src_offset_y
+
src_rows
)
;
...
@@ -538,32 +336,32 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
...
@@ -538,32 +336,32 @@ __kernel __attribute__((reqd_work_group_size(LSIZE0,LSIZE1,1))) void row_filter_
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
s_x,
0
,
src_whole_cols
)
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
EXTRAPOLATE
(
s_y,
0
,
src_whole_rows
)
;
#
endif
#
endif
index[i]
=
mad24
(
s_y,
src_step,
s_x
*
SRCSIZE
)
;
index[i]=mad24
(
s_y,src_step_in_pixel,s_x
)
;
}
}
//
read
pixels
from
src
//
read
pixels
from
src
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
temp[i]
=
src[index[i]]
;
temp[i]
=
loadpix
(
src
+
index[i]
)
;
#
endif
#
endif
//
BORDER_CONSTANT
//
save
pixels
to
lds
//
save
pixels
to
lds
for
(
i
=
0
; i<READ_TIMES_ROW; i++
)
for
(
i
nt
i
=
0
; i < READ_TIMES_ROW; ++i
)
LDS_DAT[l_y][
l_x+i*LSIZE0]=
temp[i]
;
LDS_DAT[l_y][
mad24
(
i,
LSIZE0,
l_x
)
]
=
temp[i]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
read
pixels
from
lds
and
calculate
the
result
//
read
pixels
from
lds
and
calculate
the
result
sum
=
LDS_DAT[l_y][l_x+RADIUSX]*
mat_kernel[RADIUSX]
;
sum
=
convertToDstT
(
LDS_DAT[l_y][l_x
+
RADIUSX]
)
*
mat_kernel[RADIUSX]
;
for
(
i
=1
; i<=RADIUSX; i++
)
for
(
i
nt
i
=
1
; i <= RADIUSX; ++i
)
{
{
temp[0]
=LDS_DAT[l_y][l_x+RADIUSX-
i]
;
temp[0]
=
LDS_DAT[l_y][l_x
+
RADIUSX
-
i]
;
temp[1]
=LDS_DAT[l_y][l_x+RADIUSX+
i]
;
temp[1]
=
LDS_DAT[l_y][l_x
+
RADIUSX
+
i]
;
sum
+=
temp[0]*mat_kernel[RADIUSX-i]+temp[1]*mat_kernel[RADIUSX+i]
;
sum
+=
mad
(
convertToDstT
(
temp[0]
)
,
mat_kernel[RADIUSX
-
i],
convertToDstT
(
temp[1]
)
*
mat_kernel[RADIUSX
+
i]
)
;
}
}
//
write
the
result
to
dst
//
write
the
result
to
dst
if
(
x
<dst_cols
&&
y<
dst_rows
)
if
(
x
<
dst_cols
&&
y
<
dst_rows
)
{
{
start_addr
=
mad24
(
y,
dst_step_in_pixel,x
)
;
start_addr
=
mad24
(
y,
dst_step,
x
*
DSTSIZE
)
;
dst[start_addr]
=
sum
;
storepix
(
sum,
dst
+
start_addr
)
;
}
}
}
}
modules/imgproc/src/opencl/filterSep_singlePass.cl
0 → 100644
View file @
d8c01828
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2014
,
Intel
Corporation,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////Macro
for
border
type////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////
#
ifdef
BORDER_CONSTANT
//
CCCCCC|abcdefgh|CCCCCCC
#
define
EXTRAPOLATE
(
x,
maxV
)
#
elif
defined
BORDER_REPLICATE
//
aaaaaa|abcdefgh|hhhhhhh
#
define
EXTRAPOLATE
(
x,
maxV
)
\
{
\
(
x
)
=
max
(
min
((
x
)
,
(
maxV
)
-
1
)
,
0
)
; \
}
#
elif
defined
BORDER_WRAP
//
cdefgh|abcdefgh|abcdefg
#
define
EXTRAPOLATE
(
x,
maxV
)
\
{
\
(
x
)
=
(
(
x
)
+
(
maxV
)
)
%
(
maxV
)
; \
}
#
elif
defined
BORDER_REFLECT
//
fedcba|abcdefgh|hgfedcb
#
define
EXTRAPOLATE
(
x,
maxV
)
\
{
\
(
x
)
=
min
(((
maxV
)
-1
)
*2-
(
x
)
+1
,
max
((
x
)
,
-
(
x
)
-1
)
)
; \
}
#
elif
defined
BORDER_REFLECT_101
|
| defined BORDER_REFLECT101
// gfedcb|abcdefgh|gfedcba
#define EXTRAPOLATE(x, maxV) \
{ \
(x) = min(((maxV)-1)*2-(x), max((x),-(x)) ); \
}
#else
#error No extrapolation method
#endif
#if CN != 3
#define loadpix(addr) *(__global const srcT *)(addr)
#define storepix(val, addr) *(__global dstT *)(addr) = val
#define SRCSIZE (int)sizeof(srcT)
#define DSTSIZE (int)sizeof(dstT)
#else
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
#define SRCSIZE (int)sizeof(srcT1)*3
#define DSTSIZE (int)sizeof(dstT1)*3
#endif
#define SRC(_x,_y) convertToWT(loadpix(Src + mad24(_y, src_step, SRCSIZE * _x)))
#ifdef BORDER_CONSTANT
// CCCCCC|abcdefgh|CCCCCCC
#define ELEM(_x,_y,r_edge,t_edge,const_v) (_x)<0 |
(
_x
)
>=
(
r_edge
)
| (_y)<0 |
(
_y
)
>=
(
t_edge
)
?
(
const_v
)
:
SRC
((
_x
)
,
(
_y
))
#
else
#
define
ELEM
(
_x,_y,r_edge,t_edge,const_v
)
SRC
((
_x
)
,
(
_y
))
#
endif
#
define
noconvert
//
horizontal
and
vertical
filter
kernels
//
should
be
defined
on
host
during
compile
time
to
avoid
overhead
#
define
DIG
(
a
)
a,
__constant
float
mat_kernelX[]
=
{
KERNEL_MATRIX_X
}
;
__constant
float
mat_kernelY[]
=
{
KERNEL_MATRIX_Y
}
;
__kernel
void
sep_filter
(
__global
uchar*
Src,
int
src_step,
int
srcOffsetX,
int
srcOffsetY,
int
height,
int
width,
__global
uchar*
Dst,
int
dst_step,
int
dst_offset,
int
dst_rows,
int
dst_cols
)
{
//
RADIUSX,
RADIUSY
are
filter
dimensions
//
BLK_X,
BLK_Y
are
local
wrogroup
sizes
//
all
these
should
be
defined
on
host
during
compile
time
//
first
lsmem
array
for
source
pixels
used
in
first
pass,
//
second
lsmemDy
for
storing
first
pass
results
__local
WT
lsmem[BLK_Y
+
2
*
RADIUSY][BLK_X
+
2
*
RADIUSX]
;
__local
WT
lsmemDy[BLK_Y][BLK_X
+
2
*
RADIUSX]
;
//
get
local
and
global
ids
-
used
as
image
and
local
memory
array
indexes
int
lix
=
get_local_id
(
0
)
;
int
liy
=
get_local_id
(
1
)
;
int
x
=
get_global_id
(
0
)
;
int
y
=
get_global_id
(
1
)
;
//
calculate
pixel
position
in
source
image
taking
image
offset
into
account
int
srcX
=
x
+
srcOffsetX
-
RADIUSX
;
int
srcY
=
y
+
srcOffsetY
-
RADIUSY
;
int
xb
=
srcX
;
int
yb
=
srcY
;
//
extrapolate
coordinates,
if
needed
//
and
read
my
own
source
pixel
into
local
memory
//
with
account
for
extra
border
pixels,
which
will
be
read
by
starting
workitems
int
clocY
=
liy
;
int
cSrcY
=
srcY
;
do
{
int
yb
=
cSrcY
;
EXTRAPOLATE
(
yb,
(
height
))
;
int
clocX
=
lix
;
int
cSrcX
=
srcX
;
do
{
int
xb
=
cSrcX
;
EXTRAPOLATE
(
xb,
(
width
))
;
lsmem[clocY][clocX]
=
ELEM
(
xb,
yb,
(
width
)
,
(
height
)
,
0
)
;
clocX
+=
BLK_X
;
cSrcX
+=
BLK_X
;
}
while
(
clocX
<
BLK_X+
(
RADIUSX*2
))
;
clocY
+=
BLK_Y
;
cSrcY
+=
BLK_Y
;
}
while
(
clocY
<
BLK_Y+
(
RADIUSY*2
))
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
do
vertical
filter
pass
//
and
store
intermediate
results
to
second
local
memory
array
int
i,
clocX
=
lix
;
WT
sum
=
0.0f
;
do
{
sum
=
0.0f
;
for
(
i=0
; i<=2*RADIUSY; i++)
sum
=
mad
(
lsmem[liy+i][clocX],
mat_kernelY[i],
sum
)
;
lsmemDy[liy][clocX]
=
sum
;
clocX
+=
BLK_X
;
}
while
(
clocX
<
BLK_X+
(
RADIUSX*2
))
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//
if
this
pixel
happened
to
be
out
of
image
borders
because
of
global
size
rounding,
//
then
just
return
if
(
x
>=
dst_cols
||
y
>=dst_rows
)
return
;
//
do
second
horizontal
filter
pass
//
and
calculate
final
result
sum
=
0.0f
;
for
(
i=0
; i<=2*RADIUSX; i++)
sum
=
mad
(
lsmemDy[liy][lix+i],
mat_kernelX[i],
sum
)
;
//store
result
into
destination
image
storepix
(
convertToDstT
(
sum
)
,
Dst
+
mad24
(
y,
dst_step,
mad24
(
x,
DSTSIZE,
dst_offset
)))
;
}
modules/imgproc/test/ocl/test_filters.cpp
View file @
d8c01828
...
@@ -306,7 +306,7 @@ OCL_TEST_P(MorphologyEx, Mat)
...
@@ -306,7 +306,7 @@ OCL_TEST_P(MorphologyEx, Mat)
(int)BORDER_REFLECT|BORDER_ISOLATED, (int)BORDER_WRAP|BORDER_ISOLATED, \
(int)BORDER_REFLECT|BORDER_ISOLATED, (int)BORDER_WRAP|BORDER_ISOLATED, \
(int)BORDER_REFLECT_101|BORDER_ISOLATED*/
) // WRAP and ISOLATED are not supported by cv:: version
(int)BORDER_REFLECT_101|BORDER_ISOLATED*/
) // WRAP and ISOLATED are not supported by cv:: version
#define FILTER_TYPES Values(CV_8UC1, CV_8UC
2, CV_8UC4, CV_32FC1, CV_32FC4, CV_64FC1, CV_64
FC4)
#define FILTER_TYPES Values(CV_8UC1, CV_8UC
3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32
FC4)
OCL_INSTANTIATE_TEST_CASE_P
(
Filter
,
Bilateral
,
Combine
(
OCL_INSTANTIATE_TEST_CASE_P
(
Filter
,
Bilateral
,
Combine
(
Values
((
MatType
)
CV_8UC1
),
Values
((
MatType
)
CV_8UC1
),
...
...
modules/imgproc/test/ocl/test_sepfilter2D.cpp
View file @
d8c01828
...
@@ -75,33 +75,24 @@ PARAM_TEST_CASE(SepFilter2D, MatDepth, Channels, BorderType, bool, bool)
...
@@ -75,33 +75,24 @@ PARAM_TEST_CASE(SepFilter2D, MatDepth, Channels, BorderType, bool, bool)
void
random_roi
()
void
random_roi
()
{
{
Size
ksize
=
randomSize
(
kernelMinSize
,
kernelMaxSize
);
Size
ksize
=
randomSize
(
kernelMinSize
,
kernelMaxSize
);
if
(
1
!=
(
ksize
.
width
%
2
)
)
if
(
1
!=
ksize
.
width
%
2
)
ksize
.
width
++
;
ksize
.
width
++
;
if
(
1
!=
(
ksize
.
height
%
2
)
)
if
(
1
!=
ksize
.
height
%
2
)
ksize
.
height
++
;
ksize
.
height
++
;
Mat
temp
=
randomMat
(
Size
(
ksize
.
width
,
1
),
CV_MAKE_TYPE
(
CV_32F
,
1
),
-
MAX_VALUE
,
MAX_VALUE
);
Mat
temp
=
randomMat
(
Size
(
ksize
.
width
,
1
),
CV_MAKE_TYPE
(
CV_32F
,
1
),
-
MAX_VALUE
,
MAX_VALUE
);
cv
::
normalize
(
temp
,
kernelX
,
1.0
,
0.0
,
NORM_L1
);
cv
::
normalize
(
temp
,
kernelX
,
1.0
,
0.0
,
NORM_L1
);
temp
=
randomMat
(
Size
(
1
,
ksize
.
height
),
CV_MAKE_TYPE
(
CV_32F
,
1
),
-
MAX_VALUE
,
MAX_VALUE
);
temp
=
randomMat
(
Size
(
1
,
ksize
.
height
),
CV_MAKE_TYPE
(
CV_32F
,
1
),
-
MAX_VALUE
,
MAX_VALUE
);
cv
::
normalize
(
temp
,
kernelY
,
1.0
,
0.0
,
NORM_L1
);
cv
::
normalize
(
temp
,
kernelY
,
1.0
,
0.0
,
NORM_L1
);
Size
roiSize
=
randomSize
(
ksize
.
width
,
MAX_VALUE
,
ksize
.
height
,
MAX_VALUE
);
Size
roiSize
=
randomSize
(
ksize
.
width
,
MAX_VALUE
,
ksize
.
height
,
MAX_VALUE
);
int
rest
=
roiSize
.
width
%
4
;
if
(
0
!=
rest
)
roiSize
.
width
+=
(
4
-
rest
);
Border
srcBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
Border
srcBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
rest
=
srcBorder
.
lef
%
4
;
if
(
0
!=
rest
)
srcBorder
.
lef
+=
(
4
-
rest
);
rest
=
srcBorder
.
rig
%
4
;
if
(
0
!=
rest
)
srcBorder
.
rig
+=
(
4
-
rest
);
randomSubMat
(
src
,
src_roi
,
roiSize
,
srcBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
randomSubMat
(
src
,
src_roi
,
roiSize
,
srcBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
Border
dstBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
Border
dstBorder
=
randomBorder
(
0
,
useRoi
?
MAX_VALUE
:
0
);
randomSubMat
(
dst
,
dst_roi
,
roiSize
,
dstBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
randomSubMat
(
dst
,
dst_roi
,
roiSize
,
dstBorder
,
type
,
-
MAX_VALUE
,
MAX_VALUE
);
anchor
.
x
=
-
1
;
anchor
.
x
=
anchor
.
y
=
-
1
;
anchor
.
y
=
-
1
;
UMAT_UPLOAD_INPUT_PARAMETER
(
src
);
UMAT_UPLOAD_INPUT_PARAMETER
(
src
);
UMAT_UPLOAD_OUTPUT_PARAMETER
(
dst
);
UMAT_UPLOAD_OUTPUT_PARAMETER
(
dst
);
...
@@ -115,7 +106,7 @@ PARAM_TEST_CASE(SepFilter2D, MatDepth, Channels, BorderType, bool, bool)
...
@@ -115,7 +106,7 @@ PARAM_TEST_CASE(SepFilter2D, MatDepth, Channels, BorderType, bool, bool)
OCL_TEST_P
(
SepFilter2D
,
Mat
)
OCL_TEST_P
(
SepFilter2D
,
Mat
)
{
{
for
(
int
j
=
0
;
j
<
test_loop_times
;
j
++
)
for
(
int
j
=
0
;
j
<
test_loop_times
+
3
;
j
++
)
{
{
random_roi
();
random_roi
();
...
@@ -126,11 +117,10 @@ OCL_TEST_P(SepFilter2D, Mat)
...
@@ -126,11 +117,10 @@ OCL_TEST_P(SepFilter2D, Mat)
}
}
}
}
OCL_INSTANTIATE_TEST_CASE_P
(
ImageProc
,
SepFilter2D
,
OCL_INSTANTIATE_TEST_CASE_P
(
ImageProc
,
SepFilter2D
,
Combine
(
Combine
(
Values
(
CV_8U
,
CV_32F
),
Values
(
CV_8U
,
CV_32F
),
Values
(
1
,
4
)
,
OCL_ALL_CHANNELS
,
Values
(
Values
(
(
BorderType
)
BORDER_CONSTANT
,
(
BorderType
)
BORDER_CONSTANT
,
(
BorderType
)
BORDER_REPLICATE
,
(
BorderType
)
BORDER_REPLICATE
,
...
...
modules/superres/src/btv_l1.cpp
View file @
d8c01828
...
@@ -1014,10 +1014,8 @@ namespace
...
@@ -1014,10 +1014,8 @@ namespace
return
;
return
;
#ifdef HAVE_OPENCL
#ifdef HAVE_OPENCL
if
(
isUmat_
&&
curFrame_
.
channels
()
==
1
)
if
(
isUmat_
)
curFrame_
.
copyTo
(
ucurFrame_
);
curFrame_
.
copyTo
(
ucurFrame_
);
else
isUmat_
=
false
;
#endif
#endif
++
storePos_
;
++
storePos_
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment