Commit d758cca9 authored by Vadim Pisarevsky's avatar Vadim Pisarevsky

integrated grammar fixes from tech writer (part 4)

parent ed977a47
...@@ -7,9 +7,9 @@ Cascade Classification ...@@ -7,9 +7,9 @@ Cascade Classification
FeatureEvaluator FeatureEvaluator
---------------- ----------------
.. c:type:: FeatureEvaluator .. ocv:class:: FeatureEvaluator
Base class for computing feature values in cascade classifiers :: Base class for computing feature values in cascade classifiers. ::
class CV_EXPORTS FeatureEvaluator class CV_EXPORTS FeatureEvaluator
{ {
...@@ -102,7 +102,7 @@ FeatureEvaluator::calcCat ...@@ -102,7 +102,7 @@ FeatureEvaluator::calcCat
:param featureIdx: Index of the feature whose value is computed. :param featureIdx: Index of the feature whose value is computed.
The function returns the computed label of a categorical feature, that is, the value from [0,... (number of categories - 1)]. The function returns the computed label of a categorical feature, which is the value from [0,... (number of categories - 1)].
.. index:: FeatureEvaluator::create .. index:: FeatureEvaluator::create
...@@ -116,13 +116,11 @@ FeatureEvaluator::create ...@@ -116,13 +116,11 @@ FeatureEvaluator::create
.. index:: CascadeClassifier .. index:: CascadeClassifier
.. _CascadeClassifier:
CascadeClassifier CascadeClassifier
----------------- -----------------
.. c:type:: CascadeClassifier .. ocv:class:: CascadeClassifier
The cascade classifier class for object detection :: Cascade classifier class for object detection. ::
class CascadeClassifier class CascadeClassifier
{ {
...@@ -207,7 +205,7 @@ CascadeClassifier::empty ...@@ -207,7 +205,7 @@ CascadeClassifier::empty
---------------------------- ----------------------------
.. ocv:function:: bool CascadeClassifier::empty() const .. ocv:function:: bool CascadeClassifier::empty() const
Checks if the classifier has been loaded or not. Checks whether the classifier has been loaded.
.. index:: CascadeClassifier::load .. index:: CascadeClassifier::load
...@@ -217,7 +215,7 @@ CascadeClassifier::load ...@@ -217,7 +215,7 @@ CascadeClassifier::load
Loads a classifier from a file. The previous content is destroyed. Loads a classifier from a file. The previous content is destroyed.
:param filename: Name of the file from which the classifier is loaded. The file may contain an old HAAR classifier (trained by the haartraining application) or new cascade classifier trained traincascade application. :param filename: Name of the file from which the classifier is loaded. The file may contain an old HAAR classifier trained by the haartraining application or a new cascade classifier trained by the traincascade application.
.. index:: CascadeClassifier::read .. index:: CascadeClassifier::read
...@@ -253,9 +251,9 @@ CascadeClassifier::setImage ...@@ -253,9 +251,9 @@ CascadeClassifier::setImage
------------------------------- -------------------------------
.. ocv:function:: bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& feval, const Mat& image ) .. ocv:function:: bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& feval, const Mat& image )
Sets an image for detection, which is called by ``detectMultiScale`` at each image level. Sets an image for detection that is called by ``detectMultiScale`` at each image level.
:param feval: Pointer to the feature evaluator that is used for computing features. :param feval: Pointer to the feature evaluator used for computing features.
:param image: Matrix of the type ``CV_8UC1`` containing an image where the features are computed. :param image: Matrix of the type ``CV_8UC1`` containing an image where the features are computed.
...@@ -265,9 +263,9 @@ CascadeClassifier::runAt ...@@ -265,9 +263,9 @@ CascadeClassifier::runAt
---------------------------- ----------------------------
.. ocv:function:: int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& feval, Point pt ) .. ocv:function:: int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& feval, Point pt )
Runs the detector at the specified point. Use ``setImage`` to set the image that the detector is working with. Runs the detector at the specified point. Use ``setImage`` to set the image for the detector to work with.
:param feval: Feature evaluator that is used for computing features. :param feval: Feature evaluator used for computing features.
:param pt: Upper left point of the window where the features are computed. Size of the window is equal to the size of training images. :param pt: Upper left point of the window where the features are computed. Size of the window is equal to the size of training images.
...@@ -282,12 +280,12 @@ groupRectangles ...@@ -282,12 +280,12 @@ groupRectangles
Groups the object candidate rectangles. Groups the object candidate rectangles.
:param rectList: Input/output vector of rectangles. Output vector includes retained and grouped rectangles.?? :param rectList: Input/output vector of rectangles. Output vector includes retained and grouped rectangles.
:param groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.?? :param groupThreshold: Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
:param eps: Relative difference between sides of the rectangles to merge them into a group. :param eps: Relative difference between sides of the rectangles to merge them into a group.
The function is a wrapper for the generic function The function is a wrapper for the generic function
:ref:`partition` . It clusters all the input rectangles using the rectangle equivalence criteria that combines rectangles with similar sizes and similar locations (the similarity is defined by ``eps`` ). When ``eps=0`` , no clustering is done at all. If :ocv:func:`partition` . It clusters all the input rectangles using the rectangle equivalence criteria that combines rectangles with similar sizes and similar locations. The similarity is defined by ``eps``. When ``eps=0`` , no clustering is done at all. If
:math:`\texttt{eps}\rightarrow +\inf` , all the rectangles are put in one cluster. Then, the small clusters containing less than or equal to ``groupThreshold`` rectangles are rejected. In each other cluster, the average rectangle is computed and put into the output rectangle list. :math:`\texttt{eps}\rightarrow +\inf` , all the rectangles are put in one cluster. Then, the small clusters containing less than or equal to ``groupThreshold`` rectangles are rejected. In each other cluster, the average rectangle is computed and put into the output rectangle list.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment