Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
d636e112
Commit
d636e112
authored
Jun 27, 2012
by
Alexander Mordvintsev
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
removed ANN digits recognition
added deskew for SVN and KNearest recognition sample
parent
f2e78eed
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
114 additions
and
225 deletions
+114
-225
digits.py
samples/python2/digits.py
+114
-64
digits2.py
samples/python2/digits2.py
+0
-161
No files found.
samples/python2/digits.py
View file @
d636e112
'''
Neural network digit recognition sample.
SVN and KNearest digit recognition.
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a SVN and KNearest classifiers on it and evaluates
their accuracy. Moment-based image deskew is used to improve
the recognition accuracy.
Usage:
digits.py
Sample loads a dataset of handwritten digits from 'digits.png'.
Then it trains a neural network classifier on it and evaluates
its classification accuracy.
'''
import
numpy
as
np
import
cv2
from
common
import
mosaic
def
unroll_responses
(
responses
,
class_n
):
'''[1, 0, 2, ...] -> [[0, 1, 0], [1, 0, 0], [0, 0, 1], ...]'''
sample_n
=
len
(
responses
)
new_responses
=
np
.
zeros
((
sample_n
,
class_n
),
np
.
float32
)
new_responses
[
np
.
arange
(
sample_n
),
responses
]
=
1
return
new_responses
from
multiprocessing.pool
import
ThreadPool
from
common
import
clock
,
mosaic
SZ
=
20
# size of each digit is SZ x SZ
CLASS_N
=
10
digits_img
=
cv2
.
imread
(
'digits.png'
,
0
)
# prepare dataset
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
float32
(
digits
)
.
reshape
(
-
1
,
SZ
*
SZ
)
N
=
len
(
digits
)
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
N
/
CLASS_N
)
# split it onto train and test subsets
shuffle
=
np
.
random
.
permutation
(
N
)
train_n
=
int
(
0.9
*
N
)
digits_train
,
digits_test
=
np
.
split
(
digits
[
shuffle
],
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
[
shuffle
],
[
train_n
])
# train model
model
=
cv2
.
ANN_MLP
()
layer_sizes
=
np
.
int32
([
SZ
*
SZ
,
25
,
CLASS_N
])
model
.
create
(
layer_sizes
)
params
=
dict
(
term_crit
=
(
cv2
.
TERM_CRITERIA_COUNT
,
100
,
0.01
),
train_method
=
cv2
.
ANN_MLP_TRAIN_PARAMS_BACKPROP
,
bp_dw_scale
=
0.001
,
bp_moment_scale
=
0.0
)
print
'training...'
labels_train_unrolled
=
unroll_responses
(
labels_train
,
CLASS_N
)
model
.
train
(
digits_train
,
labels_train_unrolled
,
None
,
params
=
params
)
model
.
save
(
'dig_nn.dat'
)
model
.
load
(
'dig_nn.dat'
)
def
evaluate
(
model
,
samples
,
labels
):
'''Evaluates classifier preformance on a given labeled samples set.'''
ret
,
resp
=
model
.
predict
(
samples
)
resp
=
resp
.
argmax
(
-
1
)
error_mask
=
(
resp
==
labels
)
accuracy
=
error_mask
.
mean
()
return
accuracy
,
error_mask
# evaluate model
train_accuracy
,
_
=
evaluate
(
model
,
digits_train
,
labels_train
)
print
'train accuracy: '
,
train_accuracy
test_accuracy
,
test_error_mask
=
evaluate
(
model
,
digits_test
,
labels_test
)
print
'test accuracy: '
,
test_accuracy
# visualize test results
vis
=
[]
for
img
,
flag
in
zip
(
digits_test
,
test_error_mask
):
img
=
np
.
uint8
(
img
)
.
reshape
(
SZ
,
SZ
)
def
load_digits
(
fn
):
print
'loading "
%
s" ...'
%
fn
digits_img
=
cv2
.
imread
(
fn
,
0
)
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
array
(
digits
)
.
reshape
(
-
1
,
SZ
,
SZ
)
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
len
(
digits
)
/
CLASS_N
)
return
digits
,
labels
def
deskew
(
img
):
m
=
cv2
.
moments
(
img
)
if
abs
(
m
[
'mu02'
])
<
1e-2
:
return
img
.
copy
()
skew
=
m
[
'mu11'
]
/
m
[
'mu02'
]
M
=
np
.
float32
([[
1
,
skew
,
-
0.5
*
SZ
*
skew
],
[
0
,
1
,
0
]])
img
=
cv2
.
warpAffine
(
img
,
M
,
(
SZ
,
SZ
),
flags
=
cv2
.
WARP_INVERSE_MAP
|
cv2
.
INTER_LINEAR
)
return
img
class
StatModel
(
object
):
def
load
(
self
,
fn
):
self
.
model
.
load
(
fn
)
def
save
(
self
,
fn
):
self
.
model
.
save
(
fn
)
class
KNearest
(
StatModel
):
def
__init__
(
self
,
k
=
3
):
self
.
k
=
k
self
.
model
=
cv2
.
KNearest
()
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
KNearest
()
self
.
model
.
train
(
samples
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find_nearest
(
samples
,
self
.
k
)
return
results
.
ravel
()
class
SVM
(
StatModel
):
def
__init__
(
self
,
C
=
1
,
gamma
=
0.5
):
self
.
params
=
dict
(
kernel_type
=
cv2
.
SVM_RBF
,
svm_type
=
cv2
.
SVM_C_SVC
,
C
=
C
,
gamma
=
gamma
)
self
.
model
=
cv2
.
SVM
()
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
SVM
()
self
.
model
.
train
(
samples
,
responses
,
params
=
self
.
params
)
def
predict
(
self
,
samples
):
return
self
.
model
.
predict_all
(
samples
)
.
ravel
()
def
evaluate_model
(
model
,
digits
,
samples
,
labels
):
resp
=
model
.
predict
(
samples
)
err
=
(
labels
!=
resp
)
.
mean
()
print
'error:
%.2
f
%%
'
%
(
err
*
100
)
confusion
=
np
.
zeros
((
10
,
10
),
np
.
int32
)
for
i
,
j
in
zip
(
labels
,
resp
):
confusion
[
i
,
j
]
+=
1
print
'confusion matrix:'
print
confusion
print
vis
=
[]
for
img
,
flag
in
zip
(
digits
,
resp
==
labels
):
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
if
not
flag
:
img
[
...
,:
2
]
=
0
vis
.
append
(
img
)
vis
=
mosaic
(
25
,
vis
)
cv2
.
imshow
(
'test'
,
vis
)
cv2
.
waitKey
()
return
mosaic
(
25
,
vis
)
if
__name__
==
'__main__'
:
print
__doc__
digits
,
labels
=
load_digits
(
'digits.png'
)
print
'preprocessing...'
# shuffle digits
rand
=
np
.
random
.
RandomState
(
12345
)
shuffle
=
rand
.
permutation
(
len
(
digits
))
digits
,
labels
=
digits
[
shuffle
],
labels
[
shuffle
]
digits2
=
map
(
deskew
,
digits
)
samples
=
np
.
float32
(
digits2
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
train_n
=
int
(
0.9
*
len
(
samples
))
cv2
.
imshow
(
'test set'
,
mosaic
(
25
,
digits
[
train_n
:]))
digits_train
,
digits_test
=
np
.
split
(
digits2
,
[
train_n
])
samples_train
,
samples_test
=
np
.
split
(
samples
,
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
,
[
train_n
])
print
'training KNearest...'
model
=
KNearest
(
k
=
1
)
model
.
train
(
samples_train
,
labels_train
)
vis
=
evaluate_model
(
model
,
digits_test
,
samples_test
,
labels_test
)
cv2
.
imshow
(
'KNearest test'
,
vis
)
print
'training SVM...'
model
=
SVM
(
C
=
4.66
,
gamma
=
0.08
)
model
.
train
(
samples_train
,
labels_train
)
vis
=
evaluate_model
(
model
,
digits_test
,
samples_test
,
labels_test
)
cv2
.
imshow
(
'SVM test'
,
vis
)
cv2
.
waitKey
(
0
)
samples/python2/digits2.py
deleted
100644 → 0
View file @
f2e78eed
import
numpy
as
np
import
cv2
from
multiprocessing.pool
import
ThreadPool
SZ
=
20
# size of each digit is SZ x SZ
CLASS_N
=
10
def
load_base
(
fn
):
print
'loading "
%
s" ...'
%
fn
digits_img
=
cv2
.
imread
(
fn
,
0
)
h
,
w
=
digits_img
.
shape
digits
=
[
np
.
hsplit
(
row
,
w
/
SZ
)
for
row
in
np
.
vsplit
(
digits_img
,
h
/
SZ
)]
digits
=
np
.
array
(
digits
)
.
reshape
(
-
1
,
SZ
,
SZ
)
digits
=
np
.
float32
(
digits
)
.
reshape
(
-
1
,
SZ
*
SZ
)
/
255.0
labels
=
np
.
repeat
(
np
.
arange
(
CLASS_N
),
len
(
digits
)
/
CLASS_N
)
return
digits
,
labels
def
cross_validate
(
model_class
,
params
,
samples
,
labels
,
kfold
=
4
,
pool
=
None
):
n
=
len
(
samples
)
folds
=
np
.
array_split
(
np
.
arange
(
n
),
kfold
)
def
f
(
i
):
model
=
model_class
(
**
params
)
test_idx
=
folds
[
i
]
train_idx
=
list
(
folds
)
train_idx
.
pop
(
i
)
train_idx
=
np
.
hstack
(
train_idx
)
train_samples
,
train_labels
=
samples
[
train_idx
],
labels
[
train_idx
]
test_samples
,
test_labels
=
samples
[
test_idx
],
labels
[
test_idx
]
model
.
train
(
train_samples
,
train_labels
)
resp
=
model
.
predict
(
test_samples
)
score
=
(
resp
!=
test_labels
)
.
mean
()
print
"."
,
return
score
if
pool
is
None
:
scores
=
map
(
f
,
xrange
(
kfold
))
else
:
scores
=
pool
.
map
(
f
,
xrange
(
kfold
))
return
np
.
mean
(
scores
)
class
StatModel
(
object
):
def
load
(
self
,
fn
):
self
.
model
.
load
(
fn
)
def
save
(
self
,
fn
):
self
.
model
.
save
(
fn
)
class
KNearest
(
StatModel
):
def
__init__
(
self
,
k
=
3
):
self
.
k
=
k
@staticmethod
def
adjust
(
samples
,
labels
):
print
'adjusting KNearest ...'
best_err
,
best_k
=
np
.
inf
,
-
1
for
k
in
xrange
(
1
,
11
):
err
=
cross_validate
(
KNearest
,
dict
(
k
=
k
),
samples
,
labels
)
if
err
<
best_err
:
best_err
,
best_k
=
err
,
k
print
'k =
%
d, error:
%.2
f
%%
'
%
(
k
,
err
*
100
)
best_params
=
dict
(
k
=
best_k
)
print
'best params:'
,
best_params
return
best_params
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
KNearest
()
self
.
model
.
train
(
samples
,
responses
)
def
predict
(
self
,
samples
):
retval
,
results
,
neigh_resp
,
dists
=
self
.
model
.
find_nearest
(
samples
,
self
.
k
)
return
results
.
ravel
()
class
SVM
(
StatModel
):
def
__init__
(
self
,
C
=
1
,
gamma
=
0.5
):
self
.
params
=
dict
(
kernel_type
=
cv2
.
SVM_RBF
,
svm_type
=
cv2
.
SVM_C_SVC
,
C
=
C
,
gamma
=
gamma
)
@staticmethod
def
adjust
(
samples
,
labels
):
Cs
=
np
.
logspace
(
0
,
5
,
10
,
base
=
2
)
gammas
=
np
.
logspace
(
-
7
,
-
2
,
10
,
base
=
2
)
scores
=
np
.
zeros
((
len
(
Cs
),
len
(
gammas
)))
scores
[:]
=
np
.
nan
print
'adjusting SVM (may take a long time) ...'
def
f
(
job
):
i
,
j
=
job
params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
score
=
cross_validate
(
SVM
,
params
,
samples
,
labels
)
scores
[
i
,
j
]
=
score
nready
=
np
.
isfinite
(
scores
)
.
sum
()
print
'
%
d /
%
d (best error:
%.2
f
%%
, last:
%.2
f
%%
)'
%
(
nready
,
scores
.
size
,
np
.
nanmin
(
scores
)
*
100
,
score
*
100
)
pool
=
ThreadPool
(
processes
=
cv2
.
getNumberOfCPUs
())
pool
.
map
(
f
,
np
.
ndindex
(
*
scores
.
shape
))
print
scores
i
,
j
=
np
.
unravel_index
(
scores
.
argmin
(),
scores
.
shape
)
best_params
=
dict
(
C
=
Cs
[
i
],
gamma
=
gammas
[
j
])
print
'best params:'
,
best_params
print
'best error:
%.2
f
%%
'
%
(
scores
.
min
()
*
100
)
return
best_params
def
train
(
self
,
samples
,
responses
):
self
.
model
=
cv2
.
SVM
()
self
.
model
.
train
(
samples
,
responses
,
params
=
self
.
params
)
def
predict
(
self
,
samples
):
return
self
.
model
.
predict_all
(
samples
)
.
ravel
()
def
main_adjustSVM
(
samples
,
labels
):
params
=
SVM
.
adjust
(
samples
,
labels
)
print
'training SVM on all samples ...'
model
=
SVN
(
**
params
)
model
.
train
(
samples
,
labels
)
print
'saving "digits_svm.dat" ...'
model
.
save
(
'digits_svm.dat'
)
def
main_adjustKNearest
(
samples
,
labels
):
params
=
KNearest
.
adjust
(
samples
,
labels
)
def
main_showSVM
(
samples
,
labels
):
from
common
import
mosaic
train_n
=
int
(
0.9
*
len
(
samples
))
digits_train
,
digits_test
=
np
.
split
(
samples
[
shuffle
],
[
train_n
])
labels_train
,
labels_test
=
np
.
split
(
labels
[
shuffle
],
[
train_n
])
print
'training SVM ...'
model
=
SVM
(
C
=
2.16
,
gamma
=
0.0536
)
model
.
train
(
digits_train
,
labels_train
)
train_err
=
(
model
.
predict
(
digits_train
)
!=
labels_train
)
.
mean
()
resp_test
=
model
.
predict
(
digits_test
)
test_err
=
(
resp_test
!=
labels_test
)
.
mean
()
print
'train errors:
%.2
f
%%
'
%
(
train_err
*
100
)
print
'test errors:
%.2
f
%%
'
%
(
test_err
*
100
)
# visualize test results
vis
=
[]
for
img
,
flag
in
zip
(
digits_test
,
resp_test
==
labels_test
):
img
=
np
.
uint8
(
img
*
255
)
.
reshape
(
SZ
,
SZ
)
img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_GRAY2BGR
)
if
not
flag
:
img
[
...
,:
2
]
=
0
vis
.
append
(
img
)
vis
=
mosaic
(
25
,
vis
)
cv2
.
imshow
(
'test'
,
vis
)
cv2
.
waitKey
()
if
__name__
==
'__main__'
:
samples
,
labels
=
load_base
(
'digits.png'
)
shuffle
=
np
.
random
.
permutation
(
len
(
samples
))
samples
,
labels
=
samples
[
shuffle
],
labels
[
shuffle
]
#main_adjustSVM(samples, labels)
#main_adjustKNearest(samples, labels)
main_showSVM
(
samples
,
labels
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment