Commit d3c4e907 authored by Vladislav Vinogradov's avatar Vladislav Vinogradov

new optimized implementation of BruteForceMatcher_GPU (~2-3x faster)

parent 89be84a3
......@@ -1221,26 +1221,24 @@ namespace cv
explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist);
// Add descriptors to train descriptor collection.
// Add descriptors to train descriptor collection
void add(const std::vector<GpuMat>& descCollection);
// Get train descriptors collection.
// Get train descriptors collection
const std::vector<GpuMat>& getTrainDescriptors() const;
// Clear train descriptors collection.
// Clear train descriptors collection
void clear();
// Return true if there are not train descriptors in collection.
// Return true if there are not train descriptors in collection
bool empty() const;
// Return true if the matcher supports mask in match methods.
// Return true if the matcher supports mask in match methods
bool isMaskSupported() const;
// Find one best match for each query descriptor.
// trainIdx.at<int>(0, queryIdx) will contain best train index for queryIdx
// distance.at<float>(0, queryIdx) will contain distance
void matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance,
// Find one best match for each query descriptor
void matchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx and distance and convert it to CPU vector with DMatch
......@@ -1248,21 +1246,16 @@ namespace cv
// Convert trainIdx and distance to vector with DMatch
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);
// Find one best match for each query descriptor.
void match(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector<DMatch>& matches,
const GpuMat& mask = GpuMat());
// Find one best match for each query descriptor
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());
// Make gpu collection of trains and masks in suitable format for matchCollection function
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
const vector<GpuMat>& masks = std::vector<GpuMat>());
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
// Find one best match from train collection for each query descriptor.
// trainIdx.at<int>(0, queryIdx) will contain best train index for queryIdx
// imgIdx.at<int>(0, queryIdx) will contain best image index for queryIdx
// distance.at<float>(0, queryIdx) will contain distance
void matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
// Find one best match from train collection for each query descriptor
void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection, Stream& stream = Stream::Null());
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
......@@ -1270,17 +1263,12 @@ namespace cv
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);
// Find one best match from train collection for each query descriptor.
void match(const GpuMat& queryDescs, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());
// Find k best matches for each query descriptor (in increasing order of distances).
// trainIdx.at<int>(queryIdx, i) will contain index of i'th best trains (i < k).
// distance.at<float>(queryIdx, i) will contain distance.
// allDist is a buffer to store all distance between query descriptors and train descriptors
// it have size (nQuery,nTrain) and CV_32F type
// allDist.at<float>(queryIdx, trainIdx) will contain FLT_MAX, if trainIdx is one from k best,
// otherwise it will contain distance between queryIdx and trainIdx descriptors
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
// Find k best matches for each query descriptor (in increasing order of distances)
void knnMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
......@@ -1296,27 +1284,40 @@ namespace cv
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
void knnMatch(const GpuMat& query, const GpuMat& train,
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
bool compactResult = false);
// Find k best matches from train collection for each query descriptor (in increasing order of distances)
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Convert trainIdx and distance to vector with DMatch
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const GpuMat& queryDescs, std::vector< std::vector<DMatch> >& matches, int knn,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false );
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance.
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
// because it didn't have enough memory.
// trainIdx.at<int>(queruIdx, i) will contain ith train index (i < min(nMatches.at<int>(0, queruIdx), trainIdx.cols))
// distance.at<int>(queruIdx, i) will contain ith distance (i < min(nMatches.at<int>(0, queruIdx), trainIdx.cols))
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x (nTrain / 2),
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());
......@@ -1333,15 +1334,16 @@ namespace cv
// Find best matches for each query descriptor which have distance less than maxDistance
// in increasing order of distances).
void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
void radiusMatch(const GpuMat& query, const GpuMat& train,
std::vector< std::vector<DMatch> >& matches, float maxDistance,
const GpuMat& mask = GpuMat(), bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& maskCollection, Stream& stream = Stream::Null());
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
......@@ -1356,7 +1358,7 @@ namespace cv
// Find best matches from train collection for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
void radiusMatch(const GpuMat& queryDescs, std::vector< std::vector<DMatch> >& matches, float maxDistance,
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
DistType distType;
......
#include "perf_precomp.hpp"
PERF_TEST_P(DevInfo_DescSize, BruteForceMatcher_match, testing::Combine(testing::ValuesIn(devices()),
testing::Values(64, 128)))
testing::Values(64, 128, 256)))
{
DeviceInfo devInfo = std::tr1::get<0>(GetParam());
int desc_size = std::tr1::get<1>(GetParam());
......@@ -19,7 +19,7 @@ PERF_TEST_P(DevInfo_DescSize, BruteForceMatcher_match, testing::Combine(testing:
BruteForceMatcher_GPU< L2<float> > matcher;
declare.time(0.5).iterations(100);
declare.time(3.0);
SIMPLE_TEST_CYCLE()
{
......@@ -35,7 +35,7 @@ PERF_TEST_P(DevInfo_DescSize, BruteForceMatcher_match, testing::Combine(testing:
PERF_TEST_P(DevInfo_K_DescSize, BruteForceMatcher_knnMatch, testing::Combine(testing::ValuesIn(devices()),
testing::Values(2, 3),
testing::Values(64, 128)))
testing::Values(64, 128, 256)))
{
DeviceInfo devInfo = std::tr1::get<0>(GetParam());
int k = std::tr1::get<1>(GetParam());
......@@ -54,11 +54,11 @@ PERF_TEST_P(DevInfo_K_DescSize, BruteForceMatcher_knnMatch, testing::Combine(tes
BruteForceMatcher_GPU< L2<float> > matcher;
declare.time(0.5).iterations(100);
declare.time(3.0);
SIMPLE_TEST_CYCLE()
{
matcher.knnMatch(query, train, trainIdx, distance, allDist, k);
matcher.knnMatchSingle(query, train, trainIdx, distance, allDist, k);
}
Mat trainIdx_host(trainIdx);
......@@ -69,7 +69,7 @@ PERF_TEST_P(DevInfo_K_DescSize, BruteForceMatcher_knnMatch, testing::Combine(tes
}
PERF_TEST_P(DevInfo_DescSize, BruteForceMatcher_radiusMatch, testing::Combine(testing::ValuesIn(devices(SHARED_ATOMICS)),
testing::Values(64, 128)))
testing::Values(64, 128, 256)))
{
DeviceInfo devInfo = std::tr1::get<0>(GetParam());
int desc_size = std::tr1::get<1>(GetParam());
......@@ -85,7 +85,7 @@ PERF_TEST_P(DevInfo_DescSize, BruteForceMatcher_radiusMatch, testing::Combine(te
BruteForceMatcher_GPU< L2<float> > matcher;
declare.time(0.5).iterations(100);
declare.time(3.0);
SIMPLE_TEST_CYCLE()
{
......
......@@ -56,86 +56,101 @@ bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; }
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat&, const Mat&, std::vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat&, const Mat&, vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector<DMatch>&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector<GpuMat>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat&, const Mat&, const Mat&, std::vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector<DMatch>&, const std::vector<GpuMat>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat&, const Mat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, int, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat&, const Mat&, const Mat&, vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, vector<DMatch>&, const vector<GpuMat>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, vector< vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Collection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Download(const GpuMat&, const GpuMat&, const GpuMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Convert(const Mat&, const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, vector< vector<DMatch> >&, int, const vector<GpuMat>&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat&, const Mat&, const Mat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat&, const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, vector< vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const vector<GpuMat>&, Stream&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, const GpuMat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat&, const Mat&, const Mat&, const Mat&, vector< vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, float, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, vector< vector<DMatch> >&, float, const vector<GpuMat>&, bool) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace bf_match
{
template <typename T> void matchSingleL1_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
template <typename T> void matchSingleL2_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
template <typename T> void matchSingleHamming_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
template <typename T> void matchCollectionL1_gpu(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
template <typename T> void matchCollectionL2_gpu(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
template <typename T> void matchCollectionHamming_gpu(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
}}}
namespace cv { namespace gpu { namespace bf_knnmatch
{
template <typename T> void knnMatchL1_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream);
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream);
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream);
template <typename T> void match2L1_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream);
template <typename T> void knnMatchL2_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename T> void match2L2_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream);
template <typename T> void knnMatchHamming_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename T> void match2Hamming_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream);
}}}
namespace cv { namespace gpu { namespace bf_radius_match
{
template <typename T> void radiusMatchSingleL1_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
template <typename T> void radiusMatchSingleL2_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
template <typename T> void radiusMatchSingleHamming_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
template <typename T> void radiusMatchCollectionL1_gpu(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
template <typename T> void radiusMatchCollectionL2_gpu(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
template <typename T> void radiusMatchCollectionHamming_gpu(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
}}}
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_)
......@@ -173,52 +188,53 @@ bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const
////////////////////////////////////////////////////////////////////
// Match
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask, Stream& stream)
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance,
const GpuMat& mask, Stream& stream)
{
if (queryDescs.empty() || trainDescs.empty())
if (query.empty() || train.empty())
return;
using namespace cv::gpu::bf_match;
typedef void (*match_caller_t)(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
int cc, cudaStream_t stream);
typedef void (*caller_t)(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
static const match_caller_t match_callers[3][8] =
static const caller_t callers[3][6] =
{
{
matchSingleL1_gpu<unsigned char>, 0/*matchSingleL1_gpu<signed char>*/,
matchSingleL1_gpu<unsigned short>, matchSingleL1_gpu<short>,
matchSingleL1_gpu<int>, matchSingleL1_gpu<float>, 0, 0
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*matchSingleL2_gpu<unsigned char>*/, 0/*matchSingleL2_gpu<signed char>*/,
0/*matchSingleL2_gpu<unsigned short>*/, 0/*matchSingleL2_gpu<short>*/,
0/*matchSingleL2_gpu<int>*/, matchSingleL2_gpu<float>, 0, 0
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
},
{
matchSingleHamming_gpu<unsigned char>, 0/*matchSingleHamming_gpu<signed char>*/,
matchSingleHamming_gpu<unsigned short>, 0/*matchSingleHamming_gpu<short>*/,
matchSingleHamming_gpu<int>, 0, 0, 0
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
CV_Assert(trainDescs.cols == queryDescs.cols && trainDescs.type() == queryDescs.type());
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.cols == query.cols && train.type() == query.type());
const int nQuery = queryDescs.rows;
const int nQuery = query.rows;
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
match_caller_t func = match_callers[distType][queryDescs.depth()];
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
func(queryDescs, trainDescs, mask, trainIdx, distance, cc, StreamAccessor::getStream(stream));
func(query, train, mask, trainIdx, distance, cc, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance, vector<DMatch>& matches)
......@@ -232,13 +248,13 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
matchConvert(trainIdxCPU, distanceCPU, matches);
}
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches)
void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, const Mat& distance, vector<DMatch>& matches)
{
if (trainIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.cols == trainIdx.cols);
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
......@@ -250,6 +266,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
continue;
......@@ -261,11 +278,11 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
}
}
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, const GpuMat& trainDescs,
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& query, const GpuMat& train,
vector<DMatch>& matches, const GpuMat& mask)
{
GpuMat trainIdx, distance;
matchSingle(queryDescs, trainDescs, trainIdx, distance, mask);
matchSingle(query, train, trainIdx, distance, mask);
matchDownload(trainIdx, distance, matches);
}
......@@ -279,14 +296,13 @@ void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollect
{
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(DevMem2D)));
for (size_t i = 0; i < trainDescCollection.size(); ++i)
{
const GpuMat& trainDescs = trainDescCollection[i];
DevMem2D* trainCollectionCPU_ptr = trainCollectionCPU.ptr<DevMem2D>();
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
}
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr)
*trainCollectionCPU_ptr = trainDescCollection[i];
trainCollection.upload(trainCollectionCPU);
maskCollection.release();
}
else
{
......@@ -295,16 +311,18 @@ void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollect
Mat trainCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(DevMem2D)));
Mat maskCollectionCPU(1, static_cast<int>(trainDescCollection.size()), CV_8UC(sizeof(PtrStep)));
for (size_t i = 0; i < trainDescCollection.size(); ++i)
DevMem2D* trainCollectionCPU_ptr = trainCollectionCPU.ptr<DevMem2D>();
PtrStep* maskCollectionCPU_ptr = maskCollectionCPU.ptr<PtrStep>();
for (size_t i = 0, size = trainDescCollection.size(); i < size; ++i, ++trainCollectionCPU_ptr, ++maskCollectionCPU_ptr)
{
const GpuMat& trainDescs = trainDescCollection[i];
const GpuMat& train = trainDescCollection[i];
const GpuMat& mask = masks[i];
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == trainDescs.rows));
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.cols == train.rows));
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
maskCollectionCPU.ptr<PtrStep>(0)[i] = mask;
*trainCollectionCPU_ptr = train;
*maskCollectionCPU_ptr = mask;
}
trainCollection.upload(trainCollectionCPU);
......@@ -312,52 +330,53 @@ void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollect
}
}
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection, Stream& stream)
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& masks, Stream& stream)
{
if (queryDescs.empty() || trainCollection.empty())
if (query.empty() || trainCollection.empty())
return;
using namespace cv::gpu::bf_match;
typedef void (*match_caller_t)(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream);
typedef void (*caller_t)(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream);
static const match_caller_t match_callers[3][8] =
static const caller_t callers[3][6] =
{
{
matchCollectionL1_gpu<unsigned char>, 0/*matchCollectionL1_gpu<signed char>*/,
matchCollectionL1_gpu<unsigned short>, matchCollectionL1_gpu<short>,
matchCollectionL1_gpu<int>, matchCollectionL1_gpu<float>, 0, 0
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*matchCollectionL2_gpu<unsigned char>*/, 0/*matchCollectionL2_gpu<signed char>*/,
0/*matchCollectionL2_gpu<unsigned short>*/, 0/*matchCollectionL2_gpu<short>*/,
0/*matchCollectionL2_gpu<int>*/, matchCollectionL2_gpu<float>, 0, 0
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
},
{
matchCollectionHamming_gpu<unsigned char>, 0/*matchCollectionHamming_gpu<signed char>*/,
matchCollectionHamming_gpu<unsigned short>, 0/*matchCollectionHamming_gpu<short>*/,
matchCollectionHamming_gpu<int>, 0, 0, 0
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = queryDescs.rows;
const int nQuery = query.rows;
ensureSizeIsEnough(1, nQuery, CV_32S, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx);
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
match_caller_t func = match_callers[distType][queryDescs.depth()];
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream));
func(query, trainCollection, masks, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, vector<DMatch>& matches)
......@@ -377,9 +396,9 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous() && imgIdx.cols == trainIdx.cols);
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && imgIdx.cols == trainIdx.cols);
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.cols == trainIdx.cols);
CV_Assert(distance.type() == CV_32FC1 && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
......@@ -392,6 +411,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
continue;
......@@ -405,7 +425,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchConvert(const Mat& trainIdx, cons
}
}
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches, const vector<GpuMat>& masks)
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& query, vector<DMatch>& matches, const vector<GpuMat>& masks)
{
GpuMat trainCollection;
GpuMat maskCollection;
......@@ -414,46 +434,50 @@ void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector
GpuMat trainIdx, imgIdx, distance;
matchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, maskCollection);
matchCollection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection);
matchDownload(trainIdx, imgIdx, distance, matches);
}
////////////////////////////////////////////////////////////////////
// KnnMatch
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask, Stream& stream)
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
const GpuMat& mask, Stream& stream)
{
if (queryDescs.empty() || trainDescs.empty())
if (query.empty() || train.empty())
return;
using namespace cv::gpu::bf_knnmatch;
typedef void (*match_caller_t)(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
int cc, cudaStream_t stream);
typedef void (*caller_t)(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream);
static const match_caller_t match_callers[3][8] =
static const caller_t callers[3][6] =
{
{
knnMatchL1_gpu<unsigned char>, 0/*knnMatchL1_gpu<signed char>*/, knnMatchL1_gpu<unsigned short>,
knnMatchL1_gpu<short>, knnMatchL1_gpu<int>, knnMatchL1_gpu<float>, 0, 0
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*knnMatchL2_gpu<unsigned char>*/, 0/*knnMatchL2_gpu<signed char>*/, 0/*knnMatchL2_gpu<unsigned short>*/,
0/*knnMatchL2_gpu<short>*/, 0/*knnMatchL2_gpu<int>*/, knnMatchL2_gpu<float>, 0, 0
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
},
{
knnMatchHamming_gpu<unsigned char>, 0/*knnMatchHamming_gpu<signed char>*/, knnMatchHamming_gpu<unsigned short>,
0/*knnMatchHamming_gpu<short>*/, knnMatchHamming_gpu<int>, 0, 0, 0
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
const int nQuery = queryDescs.rows;
const int nTrain = trainDescs.rows;
const int nQuery = query.rows;
const int nTrain = train.rows;
if (k == 2)
{
......@@ -468,25 +492,17 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
}
if (stream)
{
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
if (k != 2)
stream.enqueueMemSet(allDist, Scalar::all(numeric_limits<float>::max()));
}
else
{
trainIdx.setTo(Scalar::all(-1));
if (k != 2)
allDist.setTo(Scalar::all(numeric_limits<float>::max()));
}
match_caller_t func = match_callers[distType][queryDescs.depth()];
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist, cc, StreamAccessor::getStream(stream));
func(query, train, k, mask, trainIdx, distance, allDist, cc, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
......@@ -502,7 +518,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainId
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat& trainIdx, const Mat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult)
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty())
return;
......@@ -546,14 +562,127 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatchConvert(const Mat& trainIdx, c
}
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& query, const GpuMat& train,
vector< vector<DMatch> >& matches, int k, const GpuMat& mask, bool compactResult)
{
GpuMat trainIdx, distance, allDist;
knnMatch(queryDescs, trainDescs, trainIdx, distance, allDist, k, mask);
knnMatchSingle(query, train, trainIdx, distance, allDist, k, mask);
knnMatchDownload(trainIdx, distance, matches, compactResult);
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection, Stream& stream)
{
if (query.empty() || trainCollection.empty())
return;
using namespace cv::gpu::bf_knnmatch;
typedef void (*caller_t)(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream);
static const caller_t callers[3][6] =
{
{
match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/,
match2L1_gpu<unsigned short>, match2L1_gpu<short>,
match2L1_gpu<int>, match2L1_gpu<float>
},
{
0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/,
0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/,
0/*match2L2_gpu<int>*/, match2L2_gpu<float>
},
{
match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/,
match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/,
match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/
}
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = query.rows;
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx);
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
if (stream)
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
else
trainIdx.setTo(Scalar::all(-1));
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
Mat trainIdxCPU = trainIdx;
Mat imgIdxCPU = imgIdx;
Mat distanceCPU = distance;
knnMatch2Convert(trainIdxCPU, imgIdxCPU, distanceCPU, matches, compactResult);
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC2);
CV_Assert(imgIdx.type() == CV_32SC2 && imgIdx.cols == trainIdx.cols);
CV_Assert(distance.type() == CV_32FC2 && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdx.ptr<int>();
const int* imgIdx_ptr = imgIdx.ptr<int>();
const float* distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(2);
for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx != -1)
{
int imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
curMatches.push_back(m);
}
}
if (compactResult && curMatches.empty())
matches.pop_back();
}
}
namespace
{
struct ImgIdxSetter
......@@ -564,103 +693,123 @@ namespace
};
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult)
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& query, vector< vector<DMatch> >& matches, int k,
const vector<GpuMat>& masks, bool compactResult)
{
if (queryDescs.empty() || empty())
return;
if (k == 2)
{
GpuMat trainCollection;
GpuMat maskCollection;
vector< vector<DMatch> > curMatches;
vector<DMatch> temp;
temp.reserve(2 * knn);
makeGpuCollection(trainCollection, maskCollection, masks);
matches.resize(queryDescs.rows);
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), knn));
GpuMat trainIdx, imgIdx, distance;
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
knnMatch2Collection(query, trainCollection, trainIdx, imgIdx, distance, maskCollection);
knnMatch2Download(trainIdx, imgIdx, distance, matches);
}
else
{
knnMatch(queryDescs, trainDescCollection[imgIdx], curMatches, knn,
masks.empty() ? GpuMat() : masks[imgIdx]);
if (query.empty() || empty())
return;
vector< vector<DMatch> > curMatches;
vector<DMatch> temp;
temp.reserve(2 * k);
matches.resize(query.rows);
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), k));
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
for (size_t imgIdx = 0, size = trainDescCollection.size(); imgIdx < size; ++imgIdx)
{
vector<DMatch>& localMatch = curMatches[queryIdx];
vector<DMatch>& globalMatch = matches[queryIdx];
knnMatch(query, trainDescCollection[imgIdx], curMatches, k, masks.empty() ? GpuMat() : masks[imgIdx]);
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(static_cast<int>(imgIdx)));
for (int queryIdx = 0; queryIdx < query.rows; ++queryIdx)
{
vector<DMatch>& localMatch = curMatches[queryIdx];
vector<DMatch>& globalMatch = matches[queryIdx];
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(static_cast<int>(imgIdx)));
temp.clear();
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp));
temp.clear();
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp));
globalMatch.clear();
const size_t count = std::min((size_t)knn, temp.size());
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch));
globalMatch.clear();
const size_t count = std::min((size_t)k, temp.size());
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch));
}
}
}
if (compactResult)
{
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
mem_fun_ref(&vector<DMatch>::empty));
matches.erase(new_end, matches.end());
if (compactResult)
{
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(), mem_fun_ref(&vector<DMatch>::empty));
matches.erase(new_end, matches.end());
}
}
}
////////////////////////////////////////////////////////////////////
// RadiusMatch
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask, Stream& stream)
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& mask, Stream& stream)
{
if (queryDescs.empty() || trainDescs.empty())
if (query.empty() || train.empty())
return;
using namespace cv::gpu::bf_radius_match;
typedef void (*radiusMatch_caller_t)(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
typedef void (*caller_t)(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
static const radiusMatch_caller_t radiusMatch_callers[3][8] =
static const caller_t callers[3][6] =
{
{
radiusMatchSingleL1_gpu<unsigned char>, 0/*radiusMatchSingleL1_gpu<signed char>*/, radiusMatchSingleL1_gpu<unsigned short>,
radiusMatchSingleL1_gpu<short>, radiusMatchSingleL1_gpu<int>, radiusMatchSingleL1_gpu<float>, 0, 0
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*radiusMatchSingleL2_gpu<unsigned char>*/, 0/*radiusMatchSingleL2_gpu<signed char>*/, 0/*radiusMatchSingleL2_gpu<unsigned short>*/,
0/*radiusMatchSingleL2_gpu<short>*/, 0/*radiusMatchSingleL2_gpu<int>*/, radiusMatchSingleL2_gpu<float>, 0, 0
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
},
{
radiusMatchSingleHamming_gpu<unsigned char>, 0/*radiusMatchSingleHamming_gpu<signed char>*/, radiusMatchSingleHamming_gpu<unsigned short>,
0/*radiusMatchSingleHamming_gpu<short>*/, radiusMatchSingleHamming_gpu<int>, 0, 0, 0
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
const int nQuery = queryDescs.rows;
const int nTrain = trainDescs.rows;
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && info.supports(GLOBAL_ATOMICS));
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
const int nQuery = query.rows;
const int nTrain = train.rows;
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
if (trainIdx.empty())
{
ensureSizeIsEnough(nQuery, nTrain / 2, CV_32SC1, trainIdx);
ensureSizeIsEnough(nQuery, nTrain / 2, CV_32FC1, distance);
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx);
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance);
}
radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
func(queryDescs, trainDescs, maxDistance, mask, trainIdx, distance, nMatches, StreamAccessor::getStream(stream));
func(query, train, maxDistance, mask, trainIdx, distance, nMatches, cc, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
vector< vector<DMatch> >& matches, bool compactResult)
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty() || nMatches.empty())
return;
......@@ -673,14 +822,14 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trai
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
vector< vector<DMatch> >& matches, bool compactResult)
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || distance.empty() || nMatches.empty())
return;
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.cols >= trainIdx.rows);
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows);
const int nQuery = trainIdx.rows;
......@@ -688,6 +837,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
matches.reserve(nQuery);
const int* nMatches_ptr = nMatches.ptr<int>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
......@@ -720,66 +870,75 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
}
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& query, const GpuMat& train,
vector< vector<DMatch> >& matches, float maxDistance, const GpuMat& mask, bool compactResult)
{
GpuMat trainIdx, distance, nMatches;
radiusMatchSingle(queryDescs, trainDescs, trainIdx, distance, nMatches, maxDistance, mask);
radiusMatchSingle(query, train, trainIdx, distance, nMatches, maxDistance, mask);
radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult);
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& maskCollection, Stream& stream)
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches,
float maxDistance, const vector<GpuMat>& masks, Stream& stream)
{
if (queryDescs.empty() || trainCollection.empty())
if (query.empty() || empty())
return;
using namespace cv::gpu::bf_radius_match;
typedef void (*radiusMatch_caller_t)(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream);
typedef void (*caller_t)(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream);
static const radiusMatch_caller_t radiusMatch_callers[3][8] =
static const caller_t callers[3][6] =
{
{
radiusMatchCollectionL1_gpu<unsigned char>, 0/*radiusMatchCollectionL1_gpu<signed char>*/, radiusMatchCollectionL1_gpu<unsigned short>,
radiusMatchCollectionL1_gpu<short>, radiusMatchCollectionL1_gpu<int>, radiusMatchCollectionL1_gpu<float>, 0, 0
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*radiusMatchCollectionL2_gpu<unsigned char>*/, 0/*radiusMatchCollectionL2_gpu<signed char>*/, 0/*radiusMatchCollectionL2_gpu<unsigned short>*/,
0/*radiusMatchCollectionL2_gpu<short>*/, 0/*radiusMatchCollectionL2_gpu<int>*/, radiusMatchCollectionL2_gpu<float>, 0, 0
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
},
{
radiusMatchCollectionHamming_gpu<unsigned char>, 0/*radiusMatchCollectionHamming_gpu<signed char>*/, radiusMatchCollectionHamming_gpu<unsigned short>,
0/*radiusMatchCollectionHamming_gpu<short>*/, radiusMatchCollectionHamming_gpu<int>, 0, 0, 0
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS));
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
const int nQuery = queryDescs.rows;
CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && info.supports(GLOBAL_ATOMICS));
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
const int nQuery = query.rows;
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size()));
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
if (trainIdx.empty())
{
ensureSizeIsEnough(nQuery, nQuery / 2, CV_32SC1, trainIdx);
ensureSizeIsEnough(nQuery, nQuery / 2, CV_32SC1, imgIdx);
ensureSizeIsEnough(nQuery, nQuery / 2, CV_32FC1, distance);
ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx);
ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx);
ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance);
}
radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()];
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
func(queryDescs, trainCollection, maxDistance, maskCollection, trainIdx, imgIdx, distance, nMatches, StreamAccessor::getStream(stream));
vector<DevMem2D> trains_(trainDescCollection.begin(), trainDescCollection.end());
vector<DevMem2D> masks_(masks.begin(), masks.end());
func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0],
trainIdx, imgIdx, distance, nMatches, cc, StreamAccessor::getStream(stream));
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
vector< vector<DMatch> >& matches, bool compactResult)
vector< vector<DMatch> >& matches, bool compactResult)
{
if (trainIdx.empty() || imgIdx.empty() || distance.empty() || nMatches.empty())
return;
......@@ -801,7 +960,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.size() == trainIdx.size());
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.cols >= trainIdx.rows);
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.cols == trainIdx.rows);
const int nQuery = trainIdx.rows;
......@@ -809,6 +968,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
matches.reserve(nQuery);
const int* nMatches_ptr = nMatches.ptr<int>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
const int* trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
......@@ -843,18 +1003,11 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchConvert(const Mat& trainIdx
}
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, vector< vector<DMatch> >& matches,
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& query, vector< vector<DMatch> >& matches,
float maxDistance, const vector<GpuMat>& masks, bool compactResult)
{
GpuMat trainCollection;
GpuMat maskCollection;
makeGpuCollection(trainCollection, maskCollection, masks);
GpuMat trainIdx, imgIdx, distance, nMatches;
radiusMatchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, nMatches, maxDistance, maskCollection);
radiusMatchCollection(query, trainIdx, imgIdx, distance, nMatches, maxDistance, masks);
radiusMatchDownload(trainIdx, imgIdx, distance, nMatches, matches, compactResult);
}
......
......@@ -49,153 +49,677 @@ using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace bf_knnmatch
{
template <typename VecDiff, typename Dist, typename T, typename Mask>
__device__ void distanceCalcLoop(const PtrStep_<T>& query, const DevMem2D_<T>& train, const Mask& m, int queryIdx,
typename Dist::result_type& distMin1, typename Dist::result_type& distMin2, int& bestTrainIdx1, int& bestTrainIdx2,
typename Dist::result_type* smem)
///////////////////////////////////////////////////////////////////////////////
// Reduction
template <int BLOCK_SIZE>
__device__ void findBestMatch(float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
float* s_distance, int* s_trainIdx)
{
const VecDiff vecDiff(query.ptr(queryIdx), train.cols, (typename Dist::value_type*)smem, threadIdx.y * blockDim.x + threadIdx.x, threadIdx.x);
typename Dist::result_type* sdiffRow = smem + blockDim.x * threadIdx.y;
distMin1 = numeric_limits<typename Dist::result_type>::max();
distMin2 = numeric_limits<typename Dist::result_type>::max();
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
s_distance += threadIdx.y * BLOCK_SIZE;
s_trainIdx += threadIdx.y * BLOCK_SIZE;
s_distance[threadIdx.x] = bestDistance1;
s_trainIdx[threadIdx.x] = bestTrainIdx1;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance1)
{
myBestDistance2 = myBestDistance1;
myBestTrainIdx2 = myBestTrainIdx1;
myBestDistance1 = val;
myBestTrainIdx1 = s_trainIdx[i];
}
else if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
}
}
}
__syncthreads();
bestTrainIdx1 = -1;
bestTrainIdx2 = -1;
s_distance[threadIdx.x] = bestDistance2;
s_trainIdx[threadIdx.x] = bestTrainIdx2;
for (int trainIdx = threadIdx.y; trainIdx < train.rows; trainIdx += blockDim.y)
__syncthreads();
if (threadIdx.x == 0)
{
if (m(queryIdx, trainIdx))
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
}
}
}
bestDistance1 = myBestDistance1;
bestDistance2 = myBestDistance2;
bestTrainIdx1 = myBestTrainIdx1;
bestTrainIdx2 = myBestTrainIdx2;
}
template <int BLOCK_SIZE>
__device__ void findBestMatch(float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2,
float* s_distance, int* s_trainIdx, int* s_imgIdx)
{
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
s_distance += threadIdx.y * BLOCK_SIZE;
s_trainIdx += threadIdx.y * BLOCK_SIZE;
s_imgIdx += threadIdx.y * BLOCK_SIZE;
s_distance[threadIdx.x] = bestDistance1;
s_trainIdx[threadIdx.x] = bestTrainIdx1;
s_imgIdx[threadIdx.x] = bestImgIdx1;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
Dist dist;
float val = s_distance[i];
if (val < myBestDistance1)
{
myBestDistance2 = myBestDistance1;
myBestTrainIdx2 = myBestTrainIdx1;
myBestImgIdx2 = myBestImgIdx1;
myBestDistance1 = val;
myBestTrainIdx1 = s_trainIdx[i];
myBestImgIdx1 = s_imgIdx[i];
}
else if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
myBestImgIdx2 = s_imgIdx[i];
}
}
}
__syncthreads();
s_distance[threadIdx.x] = bestDistance2;
s_trainIdx[threadIdx.x] = bestTrainIdx2;
s_imgIdx[threadIdx.x] = bestImgIdx2;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
myBestImgIdx2 = s_imgIdx[i];
}
}
}
bestDistance1 = myBestDistance1;
bestDistance2 = myBestDistance2;
bestTrainIdx1 = myBestTrainIdx1;
bestTrainIdx2 = myBestTrainIdx2;
bestImgIdx1 = myBestImgIdx1;
bestImgIdx2 = myBestImgIdx2;
}
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled Cached
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T, typename U>
__device__ void loadQueryToSmem(int queryIdx, const DevMem2D_<T>& query, U* s_query)
{
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_query[threadIdx.y * MAX_DESC_LEN + loadX] = loadX < query.cols ? query.ptr(min(queryIdx, query.rows - 1))[loadX] : 0;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__device__ void loopUnrolledCached(int queryIdx, const DevMem2D_<T>& query, int imgIdx, const DevMem2D_<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2)
{
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = loadX < train.cols ? train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX] : 0;
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * MAX_DESC_LEN + i * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
const T* trainRow = train.ptr(trainIdx);
vecDiff.calc(trainRow, train.cols, dist, sdiffRow, threadIdx.x);
typename Dist::result_type distVal = dist;
const typename Dist::result_type val = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (val < distMin1)
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx))
{
if (distVal < bestDistance1)
{
distMin1 = val;
bestImgIdx2 = bestImgIdx1;
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestImgIdx1 = imgIdx;
bestDistance1 = distVal;
bestTrainIdx1 = trainIdx;
}
else if (val < distMin2)
else if (distVal < bestDistance2)
{
distMin2 = val;
bestImgIdx2 = imgIdx;
bestDistance2 = distVal;
bestTrainIdx2 = trainIdx;
}
}
}
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename VecDiff, typename Dist, typename T, typename Mask>
__global__ void knnMatch2(const PtrStep_<T> query, const DevMem2D_<T> train, const Mask m, int2* trainIdx, float2* distance)
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolledCached(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, int2* bestTrainIdx, float2* bestDistance)
{
typedef typename Dist::result_type result_type;
typedef typename Dist::value_type value_type;
extern __shared__ int smem[];
__shared__ result_type smem[BLOCK_DIM_X * BLOCK_DIM_Y];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
const int queryIdx = blockIdx.x;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
result_type distMin1;
result_type distMin2;
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
int bestTrainIdx1;
int bestTrainIdx2;
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestTrainIdx1, myBestTrainIdx2);
distanceCalcLoop<VecDiff, Dist>(query, train, m, queryIdx, distMin1, distMin2, bestTrainIdx1, bestTrainIdx2, smem);
__syncthreads();
volatile result_type* sdistMinRow = smem;
volatile int* sbestTrainIdxRow = (int*)(sdistMinRow + 2 * BLOCK_DIM_Y);
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
if (threadIdx.x == 0)
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
sdistMinRow[threadIdx.y] = distMin1;
sdistMinRow[threadIdx.y + BLOCK_DIM_Y] = distMin2;
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolledCached(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolledCached(const DevMem2D_<T> query, const DevMem2D_<T>* trains, int n, const Mask mask, int2* bestTrainIdx, int2* bestImgIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
sbestTrainIdxRow[threadIdx.y] = bestTrainIdx1;
sbestTrainIdxRow[threadIdx.y + BLOCK_DIM_Y] = bestTrainIdx2;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const DevMem2D_<T> train = trains[imgIdx];
m.next();
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2);
}
__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0)
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2, s_distance, s_trainIdx, s_imgIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
distMin1 = numeric_limits<result_type>::max();
distMin2 = numeric_limits<result_type>::max();
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestImgIdx[queryIdx] = make_int2(myBestImgIdx1, myBestImgIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolledCached(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<int2>& imgIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
bestTrainIdx1 = -1;
bestTrainIdx2 = -1;
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__device__ void loopUnrolled(int queryIdx, const DevMem2D_<T>& query, int imgIdx, const DevMem2D_<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2)
{
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
#pragma unroll
for (int i = 0; i < BLOCK_DIM_Y; ++i)
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
result_type val = sdistMinRow[i];
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (val < distMin1)
if (loadX < query.cols)
{
distMin1 = val;
bestTrainIdx1 = sbestTrainIdxRow[i];
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else if (val < distMin2)
{
distMin2 = val;
bestTrainIdx2 = sbestTrainIdxRow[i];
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
#pragma unroll
for (int i = BLOCK_DIM_Y; i < 2 * BLOCK_DIM_Y; ++i)
typename Dist::result_type distVal = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx))
{
result_type val = sdistMinRow[i];
if (distVal < bestDistance1)
{
bestImgIdx2 = bestImgIdx1;
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
if (val < distMin2)
bestImgIdx1 = imgIdx;
bestDistance1 = distVal;
bestTrainIdx1 = trainIdx;
}
else if (distVal < bestDistance2)
{
distMin2 = val;
bestTrainIdx2 = sbestTrainIdxRow[i];
bestImgIdx2 = imgIdx;
bestDistance2 = distVal;
bestTrainIdx2 = trainIdx;
}
}
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, int2* bestTrainIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestTrainIdx1, myBestTrainIdx2);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const DevMem2D_<T> query, const DevMem2D_<T>* trains, int n, const Mask mask, int2* bestTrainIdx, int2* bestImgIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const DevMem2D_<T> train = trains[imgIdx];
m.next();
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2);
}
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2, s_distance, s_trainIdx, s_imgIdx);
trainIdx[queryIdx] = make_int2(bestTrainIdx1, bestTrainIdx2);
distance[queryIdx] = make_float2(distMin1, distMin2);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestImgIdx[queryIdx] = make_int2(myBestImgIdx1, myBestImgIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<int2>& imgIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Knn 2 Match kernel caller
// Match
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__device__ void loop(int queryIdx, const DevMem2D_<T>& query, int imgIdx, const DevMem2D_<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2)
{
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
typename Dist::result_type distVal = dist;
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void knnMatch2Simple_caller(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx))
{
if (distVal < bestDistance1)
{
bestImgIdx2 = bestImgIdx1;
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestImgIdx1 = imgIdx;
bestDistance1 = distVal;
bestTrainIdx1 = trainIdx;
}
else if (distVal < bestDistance2)
{
bestImgIdx2 = imgIdx;
bestDistance2 = distVal;
bestTrainIdx2 = trainIdx;
}
}
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void match(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, int2* bestTrainIdx, float2* bestDistance)
{
const dim3 grid(query.rows, 1, 1);
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
knnMatch2<BLOCK_DIM_X, BLOCK_DIM_Y, VecDiffGlobal<BLOCK_DIM_X, T>, Dist, T>
<<<grid, threads, 0, stream>>>(query, train, mask, trainIdx, distance);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
loop<BLOCK_SIZE, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestTrainIdx1, myBestTrainIdx2);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T, typename Mask>
void knnMatch2Cached_caller(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void match(const DevMem2D_<T> query, const DevMem2D_<T>* trains, int n, const Mask mask, int2* bestTrainIdx, int2* bestImgIdx, float2* bestDistance)
{
StaticAssert<BLOCK_DIM_X * BLOCK_DIM_Y >= MAX_LEN>::check(); // block size must be greter than descriptors length
StaticAssert<MAX_LEN % BLOCK_DIM_X == 0>::check(); // max descriptors length must divide to blockDimX
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
const dim3 grid(query.rows, 1, 1);
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
knnMatch2<BLOCK_DIM_X, BLOCK_DIM_Y, VecDiffCachedRegister<BLOCK_DIM_X, MAX_LEN, LEN_EQ_MAX_LEN, typename Dist::value_type>, Dist, T>
<<<grid, threads, 0, stream>>>(query, train, mask, trainIdx.data, distance.data);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const DevMem2D_<T> train = trains[imgIdx];
m.next();
loop<BLOCK_SIZE, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2);
}
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2, s_distance, s_trainIdx, s_imgIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestImgIdx[queryIdx] = make_int2(myBestImgIdx1, myBestImgIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2D_<int2>& trainIdx, const DevMem2D_<int2>& imgIdx, const DevMem2D_<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
......@@ -203,142 +727,254 @@ namespace cv { namespace gpu { namespace bf_knnmatch
}
///////////////////////////////////////////////////////////////////////////////
// Knn 2 Match Dispatcher
template <typename Dist, typename T, typename Mask>
void knnMatch2Dispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
// knnMatch 2 dispatcher
template <typename Dist, typename T, typename Mask>
void match2Dispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
{
if (query.cols < 64)
if (query.cols <= 64)
{
knnMatch2Cached_caller<16, 16, 64, false, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
matchUnrolledCached<16, 64, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols == 64)
else if (query.cols <= 128)
{
knnMatch2Cached_caller<16, 16, 64, true, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
matchUnrolledCached<16, 128, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols < 128)
else if (query.cols <= 256)
{
knnMatch2Cached_caller<16, 16, 128, false, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
matchUnrolled<16, 256, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols == 128 && cc >= 12)
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else
{
match<16, Dist>(query, train, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
}
template <typename Dist, typename T, typename Mask>
void match2Dispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
{
if (query.cols <= 64)
{
knnMatch2Cached_caller<16, 16, 128, true, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
matchUnrolledCached<16, 64, Dist>(query, trains, n, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<int2> >(imgIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols < 256 && cc >= 12)
else if (query.cols <= 128)
{
knnMatch2Cached_caller<16, 16, 256, false, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
matchUnrolledCached<16, 128, Dist>(query, trains, n, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<int2> >(imgIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols == 256 && cc >= 12)
else if (query.cols <= 256)
{
knnMatch2Cached_caller<16, 16, 256, true, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
matchUnrolled<16, 256, Dist>(query, trains, n, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<int2> >(imgIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<int2> >(imgIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<int2> >(imgIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
else
{
knnMatch2Simple_caller<16, 16, Dist>(
query, train, mask,
static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<float2> >(distance),
stream);
match<16, Dist>(query, trains, n, mask, static_cast< DevMem2D_<int2> >(trainIdx), static_cast< DevMem2D_<int2> >(imgIdx), static_cast< DevMem2D_<float2> > (distance), stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
__global__ void calcDistance(const PtrStep_<T> query, const DevMem2D_<T> train, const Mask mask, PtrStepf distance)
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void calcDistanceUnrolled(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, PtrStepf allDist)
{
__shared__ typename Dist::result_type sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
extern __shared__ int smem[];
typename Dist::result_type* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
const int queryIdx = blockIdx.x;
const T* queryDescs = query.ptr(queryIdx);
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
const int trainIdx = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
if (trainIdx < train.rows)
Dist dist;
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const T* trainDescs = train.ptr(trainIdx);
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
typename Dist::result_type myDist = numeric_limits<typename Dist::result_type>::max();
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
if (queryIdx < query.rows && trainIdx < train.rows)
{
float distVal = numeric_limits<float>::max();
if (mask(queryIdx, trainIdx))
{
Dist dist;
distVal = (typename Dist::result_type)dist;
allDist.ptr(queryIdx)[trainIdx] = distVal;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void calcDistanceUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask, const DevMem2Df& allDist, cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
calcDistanceUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, allDist);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void calcDistance(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, PtrStepf allDist)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
calcVecDiffGlobal<BLOCK_DIM_X>(queryDescs, trainDescs, train.cols, dist, sdiff_row, threadIdx.x);
Dist dist;
myDist = dist;
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
if (threadIdx.x == 0)
distance.ptr(queryIdx)[trainIdx] = myDist;
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
}
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel caller
if (queryIdx < query.rows && trainIdx < train.rows)
{
float distVal = numeric_limits<float>::max();
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void calcDistance_caller(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask, const DevMem2Df& distance, cudaStream_t stream)
if (mask(queryIdx, trainIdx))
distVal = (typename Dist::result_type)dist;
allDist.ptr(queryIdx)[trainIdx] = distVal;
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void calcDistance(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask, const DevMem2Df& allDist, cudaStream_t stream)
{
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
const dim3 grid(query.rows, divUp(train.rows, BLOCK_DIM_Y), 1);
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads, 0, stream>>>(query, train, mask, distance);
calcDistance<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, allDist);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename Dist, typename T, typename Mask>
void calcDistanceDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask, const DevMem2D& allDist, cudaStream_t stream)
///////////////////////////////////////////////////////////////////////////////
// Calc Distance dispatcher
template <typename Dist, typename T, typename Mask>
void calcDistanceDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2Df& allDist,
int cc, cudaStream_t stream)
{
calcDistance_caller<16, 16, Dist>(query, train, mask, static_cast<DevMem2Df>(allDist), stream);
if (query.cols <= 64)
{
calcDistanceUnrolled<16, 64, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 128)
{
calcDistanceUnrolled<16, 128, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 256)
{
calcDistanceUnrolled<16, 256, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 512)
{
calcDistanceUnrolled<16, 512, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 1024)
{
calcDistanceUnrolled<16, 1024, Dist>(query, train, mask, allDist, stream);
}
else
{
calcDistance<16, Dist>(query, train, mask, allDist, stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// find knn match kernel
template <int BLOCK_SIZE> __global__ void findBestMatch(DevMem2Df allDist_, int i, PtrStepi trainIdx_, PtrStepf distance_)
template <int BLOCK_SIZE>
__global__ void findBestMatch(DevMem2Df allDist, int i, PtrStepi trainIdx, PtrStepf distance)
{
const int SMEM_SIZE = BLOCK_SIZE > 64 ? BLOCK_SIZE : 64;
__shared__ float sdist[SMEM_SIZE];
__shared__ int strainIdx[SMEM_SIZE];
__shared__ float s_dist[SMEM_SIZE];
__shared__ int s_trainIdx[SMEM_SIZE];
const int queryIdx = blockIdx.x;
float* allDist = allDist_.ptr(queryIdx);
int* trainIdx = trainIdx_.ptr(queryIdx);
float* distance = distance_.ptr(queryIdx);
float* allDistRow = allDist.ptr(queryIdx);
float dist = numeric_limits<float>::max();
int bestIdx = -1;
for (int i = threadIdx.x; i < allDist_.cols; i += BLOCK_SIZE)
for (int i = threadIdx.x; i < allDist.cols; i += BLOCK_SIZE)
{
float reg = allDist[i];
float reg = allDistRow[i];
if (reg < dist)
{
dist = reg;
......@@ -346,34 +982,32 @@ namespace cv { namespace gpu { namespace bf_knnmatch
}
}
sdist[threadIdx.x] = dist;
strainIdx[threadIdx.x] = bestIdx;
s_dist[threadIdx.x] = dist;
s_trainIdx[threadIdx.x] = bestIdx;
__syncthreads();
reducePredVal<BLOCK_SIZE>(sdist, dist, strainIdx, bestIdx, threadIdx.x, less<volatile float>());
reducePredVal<BLOCK_SIZE>(s_dist, dist, s_trainIdx, bestIdx, threadIdx.x, less<volatile float>());
if (threadIdx.x == 0)
{
if (dist < numeric_limits<float>::max())
{
allDist[bestIdx] = numeric_limits<float>::max();
trainIdx[i] = bestIdx;
distance[i] = dist;
allDistRow[bestIdx] = numeric_limits<float>::max();
trainIdx.ptr(queryIdx)[i] = bestIdx;
distance.ptr(queryIdx)[i] = dist;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// find knn match kernel caller
template <int BLOCK_SIZE> void findKnnMatch_caller(int k, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
template <int BLOCK_SIZE>
void findKnnMatch(int k, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist, cudaStream_t stream)
{
const dim3 threads(BLOCK_SIZE, 1, 1);
const dim3 block(BLOCK_SIZE, 1, 1);
const dim3 grid(trainIdx.rows, 1, 1);
for (int i = 0; i < k; ++i)
{
findBestMatch<BLOCK_SIZE><<<grid, threads, 0, stream>>>(allDist, i, trainIdx, distance);
findBestMatch<BLOCK_SIZE><<<grid, block, 0, stream>>>(allDist, i, trainIdx, distance);
cudaSafeCall( cudaGetLastError() );
}
......@@ -381,84 +1015,130 @@ namespace cv { namespace gpu { namespace bf_knnmatch
cudaSafeCall( cudaDeviceSynchronize() );
}
void findKnnMatchDispatcher(int k, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, cudaStream_t stream)
void findKnnMatchDispatcher(int k, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream)
{
findKnnMatch_caller<256>(k, static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Df>(distance), static_cast<DevMem2Df>(allDist), stream);
findKnnMatch<256>(k, static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Df>(distance), allDist, stream);
}
///////////////////////////////////////////////////////////////////////////////
// knn match Dispatcher
template <typename Dist, typename T>
void knnMatchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename Dist, typename T, typename Mask>
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, int k, const Mask& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream)
{
if (mask.data)
if (k == 2)
{
if (k == 2)
{
knnMatch2Dispatcher<Dist>(query, train, SingleMask(mask), trainIdx, distance, cc, stream);
return;
}
calcDistanceDispatcher<Dist>(query, train, SingleMask(mask), allDist, stream);
match2Dispatcher<Dist>(query, train, mask, trainIdx, distance, cc, stream);
}
else
{
if (k == 2)
{
knnMatch2Dispatcher<Dist>(query, train, WithOutMask(), trainIdx, distance, cc, stream);
return;
}
calcDistanceDispatcher<Dist>(query, train, WithOutMask(), allDist, stream);
calcDistanceDispatcher<Dist>(query, train, mask, allDist, cc, stream);
findKnnMatchDispatcher(k, trainIdx, distance, allDist, cc, stream);
}
findKnnMatchDispatcher(k, trainIdx, distance, allDist, stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// knn match caller
template <typename T> void knnMatchL1_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream)
{
knnMatchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, mask, trainIdx, distance, allDist, cc, stream);
if (mask.data)
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, SingleMask(mask), trainIdx, distance, allDist, cc, stream);
else
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, WithOutMask(), trainIdx, distance, allDist, cc, stream);
}
template void knnMatchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template <typename T> void knnMatchL2_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream)
{
knnMatchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, mask, trainIdx, distance, allDist, cc, stream);
if (mask.data)
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, SingleMask(mask), trainIdx, distance, allDist, cc, stream);
else
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, WithOutMask(), trainIdx, distance, allDist, cc, stream);
}
//template void knnMatchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template <typename T> void knnMatchHamming_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist,
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& train, int k, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist,
int cc, cudaStream_t stream)
{
knnMatchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, mask, trainIdx, distance, allDist, cc, stream);
if (mask.data)
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, SingleMask(mask), trainIdx, distance, allDist, cc, stream);
else
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), k, WithOutMask(), trainIdx, distance, allDist, cc, stream);
}
template void knnMatchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
//template void knnMatchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void knnMatchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& allDist, int cc, cudaStream_t stream);
template void matchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
//template void matchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template void matchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int k, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2Df& allDist, int cc, cudaStream_t stream);
template <typename T> void match2L1_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
{
if (masks.data)
match2Dispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data), trainIdx, imgIdx, distance, cc, stream);
else
match2Dispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
}
template void match2L1_gpu<uchar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2L1_gpu<schar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<ushort>(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<short >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<int >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<float >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template <typename T> void match2L2_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
{
if (masks.data)
match2Dispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data), trainIdx, imgIdx, distance, cc, stream);
else
match2Dispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
}
//template void match2L2_gpu<uchar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<schar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<ushort>(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<short >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<int >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2Di& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2L2_gpu<float >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template <typename T> void match2Hamming_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
{
if (masks.data)
match2Dispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data), trainIdx, imgIdx, distance, cc, stream);
else
match2Dispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
}
template void match2Hamming_gpu<uchar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2Hamming_gpu<schar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2Hamming_gpu<ushort>(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void match2Hamming_gpu<short >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void match2Hamming_gpu<int >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
}}}
......@@ -49,355 +49,715 @@ using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace bf_match
{
template <int BLOCK_DIM_Y, typename T>
__device__ void findBestMatch(T& myDist, int2& myIdx, T* smin, int2* sIdx)
///////////////////////////////////////////////////////////////////////////////
// Reduction
template <int BLOCK_SIZE>
__device__ void findBestMatch(float& bestDistance, int& bestTrainIdx, float* s_distance, int* s_trainIdx)
{
if (threadIdx.x == 0)
{
smin[threadIdx.y] = myDist;
sIdx[threadIdx.y] = myIdx;
}
s_distance += threadIdx.y * BLOCK_SIZE;
s_trainIdx += threadIdx.y * BLOCK_SIZE;
s_distance[threadIdx.x] = bestDistance;
s_trainIdx[threadIdx.x] = bestTrainIdx;
__syncthreads();
reducePredVal<BLOCK_SIZE>(s_distance, bestDistance, s_trainIdx, bestTrainIdx, threadIdx.x, less<volatile float>());
}
template <int BLOCK_SIZE>
__device__ void findBestMatch(float& bestDistance, int& bestTrainIdx, int& bestImgIdx, float* s_distance, int* s_trainIdx, int* s_imgIdx)
{
s_distance += threadIdx.y * BLOCK_SIZE;
s_trainIdx += threadIdx.y * BLOCK_SIZE;
s_imgIdx += threadIdx.y * BLOCK_SIZE;
s_distance[threadIdx.x] = bestDistance;
s_trainIdx[threadIdx.x] = bestTrainIdx;
s_imgIdx [threadIdx.x] = bestImgIdx;
__syncthreads();
reducePredVal<BLOCK_DIM_Y>(smin, myDist, sIdx, myIdx, threadIdx.y * blockDim.x + threadIdx.x, less<volatile T>());
reducePredVal2<BLOCK_SIZE>(s_distance, bestDistance, s_trainIdx, bestTrainIdx, s_imgIdx, bestImgIdx, threadIdx.x, less<volatile float>());
}
template <typename Dist, typename VecDiff, typename T, typename Mask>
__device__ void matchDescs(int queryIdx, int imgIdx, const DevMem2D_<T>& train, const Mask& m, const VecDiff& vecDiff,
typename Dist::result_type& myDist, int2& myIdx, typename Dist::result_type* sdiff_row)
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled Cached
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T, typename U>
__device__ void loadQueryToSmem(int queryIdx, const DevMem2D_<T>& query, U* s_query)
{
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_query[threadIdx.y * MAX_DESC_LEN + loadX] = loadX < query.cols ? query.ptr(min(queryIdx, query.rows - 1))[loadX] : 0;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__device__ void loopUnrolledCached(int queryIdx, const DevMem2D_<T>& query, int imgIdx, const DevMem2D_<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance, int& bestTrainIdx, int& bestImgIdx)
{
for (int trainIdx = threadIdx.y; trainIdx < train.rows; trainIdx += blockDim.y)
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
if (m(queryIdx, trainIdx))
Dist dist;
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const T* trainDescs = train.ptr(trainIdx);
const int loadX = threadIdx.x + i * BLOCK_SIZE;
Dist dist;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = loadX < train.cols ? train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX] : 0;
vecDiff.calc(trainDescs, train.cols, dist, sdiff_row, threadIdx.x);
__syncthreads();
const typename Dist::result_type res = dist;
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * MAX_DESC_LEN + i * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
if (res < myDist)
{
myDist = res;
myIdx.x = trainIdx;
myIdx.y = imgIdx;
}
__syncthreads();
}
typename Dist::result_type distVal = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && distVal < bestDistance && mask(queryIdx, trainIdx))
{
bestImgIdx = imgIdx;
bestDistance = distVal;
bestTrainIdx = trainIdx;
}
}
}
template <typename T> struct SingleTrain
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolledCached(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, int* bestTrainIdx, float* bestDistance)
{
explicit SingleTrain(const DevMem2D_<T>& train_) : train(train_)
{
}
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
float myBestDistance = numeric_limits<float>::max();
int myBestTrainIdx = -1;
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance, myBestTrainIdx, myBestTrainIdx);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, s_distance, s_trainIdx);
template <typename Dist, typename VecDiff, typename Mask>
__device__ __forceinline__ void loop(int queryIdx, Mask& m, const VecDiff& vecDiff,
typename Dist::result_type& myDist, int2& myIdx, typename Dist::result_type* sdiff_row) const
if (queryIdx < query.rows && threadIdx.x == 0)
{
matchDescs<Dist>(queryIdx, 0, train, m, vecDiff, myDist, myIdx, sdiff_row);
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolledCached(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolledCached(const DevMem2D_<T> query, const DevMem2D_<T>* trains, int n, const Mask mask,
int* bestTrainIdx, int* bestImgIdx, float* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
__device__ __forceinline__ int desc_len() const
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
float myBestDistance = numeric_limits<float>::max();
int myBestTrainIdx = -1;
int myBestImgIdx = -1;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
return train.cols;
const DevMem2D_<T> train = trains[imgIdx];
m.next();
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance, myBestTrainIdx, myBestImgIdx);
}
static __device__ __forceinline__ void storeResult(float* distance, int* trainIdx, int* imgIdx,
float myDist, const int2& myIdx, int queryIdx)
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, myBestImgIdx, s_distance, s_trainIdx, s_imgIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
trainIdx[queryIdx] = myIdx.x;
distance[queryIdx] = myDist;
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestImgIdx[queryIdx] = myBestImgIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolledCached(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
const DevMem2D_<T> train;
};
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled
template <typename T> struct TrainCollection
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__device__ void loopUnrolled(int queryIdx, const DevMem2D_<T>& query, int imgIdx, const DevMem2D_<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance, int& bestTrainIdx, int& bestImgIdx)
{
TrainCollection(const DevMem2D_<T>* trainCollection_, int nImg_, int desclen_) :
trainCollection(trainCollection_), nImg(nImg_), desclen(desclen_)
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
}
Dist dist;
template <typename Dist, typename VecDiff, typename Mask>
__device__ void loop(int queryIdx, Mask& m, const VecDiff& vecDiff,
typename Dist::result_type& myDist, int2& myIdx, typename Dist::result_type* sdiff_row) const
{
for (int imgIdx = 0; imgIdx < nImg; ++imgIdx)
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
typename Dist::result_type distVal = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && distVal < bestDistance && mask(queryIdx, trainIdx))
{
const DevMem2D_<T> train = trainCollection[imgIdx];
m.next();
matchDescs<Dist>(queryIdx, imgIdx, train, m, vecDiff, myDist, myIdx, sdiff_row);
bestImgIdx = imgIdx;
bestDistance = distVal;
bestTrainIdx = trainIdx;
}
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, int* bestTrainIdx, float* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
float myBestDistance = numeric_limits<float>::max();
int myBestTrainIdx = -1;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance, myBestTrainIdx, myBestTrainIdx);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
__device__ __forceinline__ int desc_len() const
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const DevMem2D_<T> query, const DevMem2D_<T>* trains, int n, const Mask mask,
int* bestTrainIdx, int* bestImgIdx, float* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
float myBestDistance = numeric_limits<float>::max();
int myBestTrainIdx = -1;
int myBestImgIdx = -1;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
return desclen;
const DevMem2D_<T> train = trains[imgIdx];
m.next();
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance, myBestTrainIdx, myBestImgIdx);
}
static __device__ __forceinline__ void storeResult(float* distance, int* trainIdx, int* imgIdx,
float myDist, const int2& myIdx, int queryIdx)
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdxIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, myBestImgIdx, s_distance, s_trainIdx, s_imgIdxIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
trainIdx[queryIdx] = myIdx.x;
imgIdx[queryIdx] = myIdx.y;
distance[queryIdx] = myDist;
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestImgIdx[queryIdx] = myBestImgIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
const DevMem2D_<T>* trainCollection;
const int nImg;
const int desclen;
};
///////////////////////////////////////////////////////////////////////////////
// Match
template <typename VecDiff, typename Dist, typename T, typename Train, typename Mask>
__device__ void distanceCalcLoop(const PtrStep_<T>& query, const Train& train, const Mask& mask, int queryIdx,
typename Dist::result_type& myDist, int2& myIdx, typename Dist::result_type* smem)
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__device__ void loop(int queryIdx, const DevMem2D_<T>& query, int imgIdx, const DevMem2D_<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance, int& bestTrainIdx, int& bestImgIdx)
{
const VecDiff vecDiff(query.ptr(queryIdx), train.desc_len(), (typename Dist::value_type*)smem, threadIdx.y * blockDim.x + threadIdx.x, threadIdx.x);
typename Dist::result_type* sdiff_row = smem + blockDim.x * threadIdx.y;
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
Mask m = mask;
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
myIdx.x = -1;
myIdx.y = -1;
myDist = numeric_limits<typename Dist::result_type>::max();
typename Dist::result_type distVal = dist;
train.template loop<Dist>(queryIdx, m, vecDiff, myDist, myIdx, sdiff_row);
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && distVal < bestDistance && mask(queryIdx, trainIdx))
{
bestImgIdx = imgIdx;
bestDistance = distVal;
bestTrainIdx = trainIdx;
}
}
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename VecDiff, typename Dist, typename T, typename Train, typename Mask>
__global__ void match(const PtrStep_<T> query, const Train train, const Mask mask, int* trainIdx, int* imgIdx, float* distance)
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void match(const DevMem2D_<T> query, const DevMem2D_<T> train, const Mask mask, int* bestTrainIdx, float* bestDistance)
{
__shared__ typename Dist::result_type smem[BLOCK_DIM_X * BLOCK_DIM_Y];
const int queryIdx = blockIdx.x;
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
float myBestDistance = numeric_limits<float>::max();
int myBestTrainIdx = -1;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int2 myIdx;
typename Dist::result_type myDist;
loop<BLOCK_SIZE, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance, myBestTrainIdx, myBestTrainIdx);
distanceCalcLoop<VecDiff, Dist>(query, train, mask, queryIdx, myDist, myIdx, smem);
__syncthreads();
typename Dist::result_type* smin = smem;
int2* sIdx = (int2*)(smin + BLOCK_DIM_Y);
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_DIM_Y>(myDist, myIdx, smin, sIdx);
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, s_distance, s_trainIdx);
if (threadIdx.x == 0 && threadIdx.y == 0)
Train::storeResult(distance, trainIdx, imgIdx, myDist, myIdx, queryIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
///////////////////////////////////////////////////////////////////////////////
// Match kernel caller
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Train, typename Mask>
void matchSimple_caller(const DevMem2D_<T>& query, const Train& train, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
cudaStream_t stream)
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
cudaStream_t stream)
{
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const dim3 grid(query.rows, 1, 1);
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
match<BLOCK_DIM_X, BLOCK_DIM_Y, VecDiffGlobal<BLOCK_DIM_X, T>, Dist, T>
<<<grid, threads, 0, stream>>>(query, train, mask, trainIdx.data, imgIdx.data, distance.data);
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T, typename Train, typename Mask>
void matchCached_caller(const DevMem2D_<T>& query, const Train& train, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
cudaStream_t stream)
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void match(const DevMem2D_<T> query, const DevMem2D_<T>* trains, int n, const Mask mask,
int* bestTrainIdx, int* bestImgIdx, float* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
float myBestDistance = numeric_limits<float>::max();
int myBestTrainIdx = -1;
int myBestImgIdx = -1;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const DevMem2D_<T> train = trains[imgIdx];
m.next();
loop<BLOCK_SIZE, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance, myBestTrainIdx, myBestImgIdx);
}
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdxIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance, myBestTrainIdx, myBestImgIdx, s_distance, s_trainIdx, s_imgIdxIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = myBestTrainIdx;
bestImgIdx[queryIdx] = myBestImgIdx;
bestDistance[queryIdx] = myBestDistance;
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
cudaStream_t stream)
{
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
StaticAssert<BLOCK_DIM_X * BLOCK_DIM_Y >= MAX_LEN>::check(); // block size must be greter than descriptors length
StaticAssert<MAX_LEN % BLOCK_DIM_X == 0>::check(); // max descriptors length must divide to blockDimX
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const dim3 grid(query.rows, 1, 1);
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
match<BLOCK_DIM_X, BLOCK_DIM_Y, VecDiffCachedRegister<BLOCK_DIM_X, MAX_LEN, LEN_EQ_MAX_LEN, typename Dist::value_type>, Dist, T>
<<<grid, threads, 0, stream>>>(query, train, mask, trainIdx.data, imgIdx.data, distance.data);
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Match Dispatcher
// Match dispatcher
template <typename Dist, typename T, typename Train, typename Mask>
void matchDispatcher(const DevMem2D_<T>& query, const Train& train, const Mask& mask,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename Dist, typename T, typename Mask>
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
if (query.cols < 64)
if (query.cols <= 64)
{
matchCached_caller<16, 16, 64, false, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
matchUnrolledCached<16, 64, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols == 64)
else if (query.cols <= 128)
{
matchCached_caller<16, 16, 64, true, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
matchUnrolledCached<16, 128, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols < 128)
else if (query.cols <= 256)
{
matchCached_caller<16, 16, 128, false, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
matchUnrolled<16, 256, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols == 128 && cc >= 12)
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, mask, trainIdx, distance, stream);
}
else
{
matchCached_caller<16, 16, 128, true, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
match<16, Dist>(query, train, mask, trainIdx, distance, stream);
}
else if (query.cols < 256 && cc >= 12)
}
template <typename Dist, typename T, typename Mask>
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
if (query.cols <= 64)
{
matchCached_caller<16, 16, 256, false, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
matchUnrolledCached<16, 64, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols == 256 && cc >= 12)
else if (query.cols <= 128)
{
matchCached_caller<16, 16, 256, true, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
matchUnrolledCached<16, 128, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
else
{
matchSimple_caller<16, 16, Dist>(
query, train, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance),
stream);
match<16, Dist>(query, trains, n, mask, trainIdx, imgIdx, distance, stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// Match caller
template <typename T> void matchSingleL1_gpu(const DevMem2D& query, const DevMem2D& train_, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
SingleTrain<T> train(static_cast< DevMem2D_<T> >(train_));
if (mask.data)
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, SingleMask(mask), trainIdx, DevMem2D(), distance, cc, stream);
{
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), SingleMask(mask),
trainIdx, distance,
cc, stream);
}
else
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, WithOutMask(), trainIdx, DevMem2D(), distance, cc, stream);
{
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), WithOutMask(),
trainIdx, distance,
cc, stream);
}
}
template void matchSingleL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template <typename T> void matchSingleL2_gpu(const DevMem2D& query, const DevMem2D& train_, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
SingleTrain<T> train(static_cast< DevMem2D_<T> >(train_));
if (mask.data)
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, SingleMask(mask), trainIdx, DevMem2D(), distance, cc, stream);
{
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), SingleMask(mask),
trainIdx, distance,
cc, stream);
}
else
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, WithOutMask(), trainIdx, DevMem2D(), distance, cc, stream);
{
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), WithOutMask(),
trainIdx, distance,
cc, stream);
}
}
//template void matchSingleL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template <typename T> void matchSingleHamming_gpu(const DevMem2D& query, const DevMem2D& train_, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& train, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
SingleTrain<T> train(static_cast< DevMem2D_<T> >(train_));
if (mask.data)
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, SingleMask(mask), trainIdx, DevMem2D(), distance, cc, stream);
{
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), SingleMask(mask),
trainIdx, distance,
cc, stream);
}
else
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, WithOutMask(), trainIdx, DevMem2D(), distance, cc, stream);
{
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), WithOutMask(),
trainIdx, distance,
cc, stream);
}
}
template void matchSingleHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchSingleHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchSingleHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template <typename T> void matchCollectionL1_gpu(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, query.cols);
if (maskCollection.data)
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, MaskCollection(maskCollection.data), trainIdx, imgIdx, distance, cc, stream);
if (masks.data)
{
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data),
trainIdx, imgIdx, distance,
cc, stream);
}
else
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
{
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, WithOutMask(),
trainIdx, imgIdx, distance,
cc, stream);
}
}
template void matchCollectionL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<uchar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL1_gpu<schar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<ushort>(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<short >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<int >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL1_gpu<float >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template <typename T> void matchCollectionL2_gpu(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, query.cols);
if (maskCollection.data)
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, MaskCollection(maskCollection.data), trainIdx, imgIdx, distance, cc, stream);
if (masks.data)
{
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data),
trainIdx, imgIdx, distance,
cc, stream);
}
else
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
{
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, WithOutMask(),
trainIdx, imgIdx, distance,
cc, stream);
}
}
//template void matchCollectionL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<uchar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<schar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<ushort>(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<short >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchL2_gpu<int >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchL2_gpu<float >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template <typename T> void matchCollectionHamming_gpu(const DevMem2D& query, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance,
int cc, cudaStream_t stream)
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance,
int cc, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, query.cols);
if (maskCollection.data)
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, MaskCollection(maskCollection.data), trainIdx, imgIdx, distance, cc, stream);
if (masks.data)
{
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data),
trainIdx, imgIdx, distance,
cc, stream);
}
else
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
{
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains.ptr(), trains.cols, WithOutMask(),
trainIdx, imgIdx, distance,
cc, stream);
}
}
template void matchCollectionHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
//template void matchCollectionHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchCollectionHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainCollection, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, int cc, cudaStream_t stream);
template void matchHamming_gpu<uchar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchHamming_gpu<schar >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchHamming_gpu<ushort>(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
//template void matchHamming_gpu<short >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
template void matchHamming_gpu<int >(const DevMem2D& query, const DevMem2D& trains, const DevMem2D_<PtrStep>& masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int cc, cudaStream_t stream);
}}}
......@@ -49,466 +49,410 @@ using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace bf_radius_match
{
template <typename T> struct SingleTrain
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled
template <int BLOCK_SIZE, int MAX_DESC_LEN, bool SAVE_IMG_IDX, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const DevMem2D_<T> query, int imgIdx, const DevMem2D_<T> train, float maxDistance, const Mask mask,
PtrStepi bestTrainIdx, PtrStepi bestImgIdx, PtrStepf bestDistance, unsigned int* nMatches, int maxCount)
{
enum {USE_IMG_IDX = 0};
#if __CUDA_ARCH__ >= 110
explicit SingleTrain(const DevMem2D_<T>& train_) : train(train_)
{
}
extern __shared__ int smem[];
static __device__ __forceinline__ void store(const int* s_trainIdx, const int* s_imgIdx, const float* s_dist, unsigned int& s_count, int& s_globInd,
int* trainIdx, int* imgIdx, float* distance, int maxCount)
{
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
if (tid < s_count && s_globInd + tid < maxCount)
{
trainIdx[s_globInd + tid] = s_trainIdx[tid];
distance[s_globInd + tid] = s_dist[tid];
}
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
if (tid == 0)
{
s_globInd += s_count;
s_count = 0;
}
}
Dist dist;
template <int BLOCK_STACK, typename Dist, typename VecDiff, typename Mask>
__device__ __forceinline__ void loop(float maxDistance, Mask& mask, const VecDiff& vecDiff,
int* s_trainIdx, int* s_imgIdx, float* s_dist, unsigned int& s_count, int& s_globInd,
int* trainIdxRow, int* imgIdxRow, float* distanceRow, int maxCount,
typename Dist::result_type* s_diffRow) const
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
#if __CUDA_ARCH__ >= 120
const int loadX = threadIdx.x + i * BLOCK_SIZE;
for (int i = 0; i < train.rows; i += blockDim.y)
if (loadX < query.cols)
{
int trainIdx = i + threadIdx.y;
if (trainIdx < train.rows && mask(blockIdx.x, trainIdx))
{
Dist dist;
vecDiff.calc(train.ptr(trainIdx), train.cols, dist, s_diffRow, threadIdx.x);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
const typename Dist::result_type val = dist;
__syncthreads();
if (threadIdx.x == 0 && val < maxDistance)
{
unsigned int ind = atomicInc(&s_count, (unsigned int) -1);
s_trainIdx[ind] = trainIdx;
s_dist[ind] = val;
}
}
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
__syncthreads();
}
if (s_count >= BLOCK_STACK - blockDim.y)
store(s_trainIdx, s_imgIdx, s_dist, s_count, s_globInd, trainIdxRow, imgIdxRow, distanceRow, maxCount);
float distVal = (typename Dist::result_type)dist;
__syncthreads();
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx) && distVal < maxDistance)
{
unsigned int ind = atomicInc(nMatches + queryIdx, (unsigned int) -1);
if (ind < maxCount)
{
bestTrainIdx.ptr(queryIdx)[ind] = trainIdx;
if (SAVE_IMG_IDX) bestImgIdx.ptr(queryIdx)[ind] = imgIdx;
bestDistance.ptr(queryIdx)[ind] = distVal;
}
}
store(s_trainIdx, s_imgIdx, s_dist, s_count, s_globInd, trainIdxRow, imgIdxRow, distanceRow, maxCount);
#endif
}
#endif
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
__device__ __forceinline__ int descLen() const
{
return train.cols;
}
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, false, Dist><<<grid, block, smemSize, stream>>>(query, 0, train, maxDistance, mask,
trainIdx, PtrStepi(), distance, nMatches.data, trainIdx.cols);
cudaSafeCall( cudaGetLastError() );
const DevMem2D_<T> train;
};
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T> struct TrainCollection
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T>
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
cudaStream_t stream)
{
enum {USE_IMG_IDX = 1};
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
TrainCollection(const DevMem2D_<T>* trainCollection_, int nImg_, int desclen_) :
trainCollection(trainCollection_), nImg(nImg_), desclen(desclen_)
{
}
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
static __device__ __forceinline__ void store(const int* s_trainIdx, const int* s_imgIdx, const float* s_dist, unsigned int& s_count, int& s_globInd,
int* trainIdx, int* imgIdx, float* distance, int maxCount)
for (int i = 0; i < n; ++i)
{
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const DevMem2D_<T> train = trains[i];
if (tid < s_count && s_globInd + tid < maxCount)
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
if (masks != 0 && masks[i].data)
{
trainIdx[s_globInd + tid] = s_trainIdx[tid];
imgIdx[s_globInd + tid] = s_imgIdx[tid];
distance[s_globInd + tid] = s_dist[tid];
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, SingleMask(masks[i]),
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
}
if (tid == 0)
else
{
s_globInd += s_count;
s_count = 0;
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, WithOutMask(),
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
}
cudaSafeCall( cudaGetLastError() );
}
template <int BLOCK_STACK, typename Dist, typename VecDiff, typename Mask>
__device__ void loop(float maxDistance, Mask& mask, const VecDiff& vecDiff,
int* s_trainIdx, int* s_imgIdx, float* s_dist, unsigned int& s_count, int& s_globInd,
int* trainIdxRow, int* imgIdxRow, float* distanceRow, int maxCount,
typename Dist::result_type* s_diffRow) const
{
#if __CUDA_ARCH__ >= 120
for (int imgIdx = 0; imgIdx < nImg; ++imgIdx)
{
const DevMem2D_<T> train = trainCollection[imgIdx];
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
mask.next();
///////////////////////////////////////////////////////////////////////////////
// Match
for (int i = 0; i < train.rows; i += blockDim.y)
{
int trainIdx = i + threadIdx.y;
template <int BLOCK_SIZE, bool SAVE_IMG_IDX, typename Dist, typename T, typename Mask>
__global__ void match(const DevMem2D_<T> query, int imgIdx, const DevMem2D_<T> train, float maxDistance, const Mask mask,
PtrStepi bestTrainIdx, PtrStepi bestImgIdx, PtrStepf bestDistance, unsigned int* nMatches, int maxCount)
{
#if __CUDA_ARCH__ >= 110
if (trainIdx < train.rows && mask(blockIdx.x, trainIdx))
{
Dist dist;
vecDiff.calc(train.ptr(trainIdx), desclen, dist, s_diffRow, threadIdx.x);
extern __shared__ int smem[];
const typename Dist::result_type val = dist;
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
if (threadIdx.x == 0 && val < maxDistance)
{
unsigned int ind = atomicInc(&s_count, (unsigned int) -1);
s_trainIdx[ind] = trainIdx;
s_imgIdx[ind] = imgIdx;
s_dist[ind] = val;
}
}
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
__syncthreads();
Dist dist;
if (s_count >= BLOCK_STACK - blockDim.y)
store(s_trainIdx, s_imgIdx, s_dist, s_count, s_globInd, trainIdxRow, imgIdxRow, distanceRow, maxCount);
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
__syncthreads();
}
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
store(s_trainIdx, s_imgIdx, s_dist, s_count, s_globInd, trainIdxRow, imgIdxRow, distanceRow, maxCount);
__syncthreads();
#endif
}
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__device__ __forceinline__ int descLen() const
{
return desclen;
__syncthreads();
}
const DevMem2D_<T>* trainCollection;
const int nImg;
const int desclen;
};
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int BLOCK_STACK, typename VecDiff, typename Dist, typename T, typename Train, typename Mask>
__global__ void radiusMatch(const PtrStep_<T> query, const Train train, float maxDistance, const Mask mask,
PtrStepi trainIdx, PtrStepi imgIdx, PtrStepf distance, int* nMatches, int maxCount)
{
typedef typename Dist::result_type result_type;
typedef typename Dist::value_type value_type;
__shared__ result_type s_mem[BLOCK_DIM_X * BLOCK_DIM_Y];
float distVal = (typename Dist::result_type)dist;
__shared__ int s_trainIdx[BLOCK_STACK];
__shared__ int s_imgIdx[Train::USE_IMG_IDX ? BLOCK_STACK : 1];
__shared__ float s_dist[BLOCK_STACK];
__shared__ unsigned int s_count;
__shared__ int s_globInd;
if (threadIdx.x == 0 && threadIdx.y == 0)
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx) && distVal < maxDistance)
{
s_count = 0;
s_globInd = 0;
unsigned int ind = atomicInc(nMatches + queryIdx, (unsigned int) -1);
if (ind < maxCount)
{
bestTrainIdx.ptr(queryIdx)[ind] = trainIdx;
if (SAVE_IMG_IDX) bestImgIdx.ptr(queryIdx)[ind] = imgIdx;
bestDistance.ptr(queryIdx)[ind] = distVal;
}
}
__syncthreads();
const VecDiff vecDiff(query.ptr(blockIdx.x), train.descLen(), (typename Dist::value_type*)s_mem, threadIdx.y * BLOCK_DIM_X + threadIdx.x, threadIdx.x);
Mask m = mask;
train.template loop<BLOCK_STACK, Dist>(maxDistance, m, vecDiff,
s_trainIdx, s_imgIdx, s_dist, s_count, s_globInd,
trainIdx.ptr(blockIdx.x), imgIdx.ptr(blockIdx.x), distance.ptr(blockIdx.x), maxCount,
s_mem + BLOCK_DIM_X * threadIdx.y);
if (threadIdx.x == 0 && threadIdx.y == 0)
nMatches[blockIdx.x] = s_globInd;
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Radius Match kernel caller
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int BLOCK_STACK, typename Dist, typename T, typename Train, typename Mask>
void radiusMatchSimple_caller(const DevMem2D_<T>& query, const Train& train, float maxDistance, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int* nMatches,
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
cudaStream_t stream)
{
StaticAssert<BLOCK_STACK >= BLOCK_DIM_Y>::check();
StaticAssert<BLOCK_STACK <= BLOCK_DIM_X * BLOCK_DIM_Y>::check();
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
const dim3 grid(query.rows, 1, 1);
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_STACK, VecDiffGlobal<BLOCK_DIM_X, T>, Dist, T>
<<<grid, threads, 0, stream>>>(query, train, maxDistance, mask, trainIdx, imgIdx, distance, nMatches, trainIdx.cols);
match<BLOCK_SIZE, false, Dist><<<grid, block, smemSize, stream>>>(query, 0, train, maxDistance, mask,
trainIdx, PtrStepi(), distance, nMatches.data, trainIdx.cols);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int BLOCK_STACK, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T, typename Train, typename Mask>
void radiusMatchCached_caller(const DevMem2D_<T>& query, const Train& train, float maxDistance, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, int* nMatches,
template <int BLOCK_SIZE, typename Dist, typename T>
void match(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
cudaStream_t stream)
{
StaticAssert<BLOCK_STACK >= BLOCK_DIM_Y>::check();
StaticAssert<BLOCK_STACK <= BLOCK_DIM_X * BLOCK_DIM_Y>::check();
StaticAssert<BLOCK_DIM_X * BLOCK_DIM_Y >= MAX_LEN>::check();
StaticAssert<MAX_LEN % BLOCK_DIM_X == 0>::check();
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(query.rows, 1, 1);
const dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_STACK, VecDiffCachedRegister<BLOCK_DIM_X, MAX_LEN, LEN_EQ_MAX_LEN, typename Dist::value_type>, Dist, T>
<<<grid, threads, 0, stream>>>(query, train, maxDistance, mask, trainIdx, imgIdx, distance, nMatches, trainIdx.cols);
cudaSafeCall( cudaGetLastError() );
for (int i = 0; i < n; ++i)
{
const DevMem2D_<T> train = trains[i];
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
if (masks != 0 && masks[i].data)
{
match<BLOCK_SIZE, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, SingleMask(masks[i]),
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
}
else
{
match<BLOCK_SIZE, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, WithOutMask(),
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
}
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Radius Match Dispatcher
template <typename Dist, typename T, typename Train, typename Mask>
void radiusMatchDispatcher(const DevMem2D_<T>& query, const Train& train, float maxDistance, const Mask& mask,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
// Match dispatcher
template <typename Dist, typename T, typename Mask>
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
if (query.cols < 64)
if (query.cols <= 64)
{
radiusMatchCached_caller<16, 16, 64, 64, false, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
matchUnrolled<16, 64, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols == 64)
else if (query.cols <= 128)
{
radiusMatchCached_caller<16, 16, 64, 64, true, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
matchUnrolled<16, 128, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols < 128)
else if (query.cols <= 256)
{
radiusMatchCached_caller<16, 16, 64, 128, false, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols == 128)
else
{
radiusMatchCached_caller<16, 16, 64, 128, true, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
match<16, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
}
else if (query.cols < 256)
}
template <typename Dist, typename T>
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
if (query.cols <= 64)
{
matchUnrolled<16, 64, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 128)
{
radiusMatchCached_caller<16, 16, 64, 256, false, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
matchUnrolled<16, 128, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols == 256)
else if (query.cols <= 256)
{
radiusMatchCached_caller<16, 16, 64, 256, true, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
else
{
radiusMatchSimple_caller<16, 16, 64, Dist>(
query, train, maxDistance, mask,
static_cast<DevMem2Di>(trainIdx), static_cast<DevMem2Di>(imgIdx), static_cast<DevMem2Df>(distance), (int*)nMatches.data,
stream);
match<16, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Radius Match caller
template <typename T> void radiusMatchSingleL1_gpu(const DevMem2D& query, const DevMem2D& train_, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
SingleTrain<T> train(static_cast< DevMem2D_<T> >(train_));
if (mask.data)
{
radiusMatchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, maxDistance, SingleMask(mask),
trainIdx, DevMem2D(), distance, nMatches,
stream);
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
trainIdx, distance, nMatches,
cc, stream);
}
else
{
radiusMatchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, maxDistance, WithOutMask(),
trainIdx, DevMem2D(), distance, nMatches,
stream);
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
trainIdx, distance, nMatches,
cc, stream);
}
}
template void radiusMatchSingleL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void matchL1_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL1_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template <typename T> void radiusMatchSingleL2_gpu(const DevMem2D& query, const DevMem2D& train_, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
SingleTrain<T> train(static_cast< DevMem2D_<T> >(train_));
if (mask.data)
{
radiusMatchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, SingleMask(mask),
trainIdx, DevMem2D(), distance, nMatches,
stream);
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
trainIdx, distance, nMatches,
cc, stream);
}
else
{
radiusMatchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, WithOutMask(),
trainIdx, DevMem2D(), distance, nMatches,
stream);
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
trainIdx, distance, nMatches,
cc, stream);
}
}
//template void radiusMatchSingleL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void matchL2_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL2_gpu<float >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template <typename T> void radiusMatchSingleHamming_gpu(const DevMem2D& query, const DevMem2D& train_, float maxDistance, const DevMem2D& mask,
const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D& train, float maxDistance, const DevMem2D& mask,
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
SingleTrain<T> train(static_cast< DevMem2D_<T> >(train_));
if (mask.data)
{
radiusMatchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, SingleMask(mask),
trainIdx, DevMem2D(), distance, nMatches,
stream);
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
trainIdx, distance, nMatches,
cc, stream);
}
else
{
radiusMatchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, WithOutMask(),
trainIdx, DevMem2D(), distance, nMatches,
stream);
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
trainIdx, distance, nMatches,
cc, stream);
}
}
template void radiusMatchSingleHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchSingleHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchSingleHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2D& trainIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void matchHamming_gpu<uchar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchHamming_gpu<schar >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchHamming_gpu<ushort>(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchHamming_gpu<short >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchHamming_gpu<int >(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template <typename T> void radiusMatchCollectionL1_gpu(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
template <typename T> void matchL1_gpu(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, query.cols);
if (maskCollection.data)
{
radiusMatchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, maxDistance, MaskCollection(maskCollection.data),
trainIdx, imgIdx, distance, nMatches,
stream);
}
else
{
radiusMatchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), train, maxDistance, WithOutMask(),
trainIdx, imgIdx, distance, nMatches,
stream);
}
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
trainIdx, imgIdx, distance, nMatches,
cc, stream);
}
template void radiusMatchCollectionL1_gpu<uchar >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionL1_gpu<schar >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionL1_gpu<ushort>(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionL1_gpu<short >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionL1_gpu<int >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionL1_gpu<float >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void matchL1_gpu<uchar >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL1_gpu<schar >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<ushort>(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<short >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<int >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL1_gpu<float >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template <typename T> void radiusMatchCollectionL2_gpu(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
template <typename T> void matchL2_gpu(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, query.cols);
if (maskCollection.data)
{
radiusMatchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, MaskCollection(maskCollection.data),
trainIdx, imgIdx, distance, nMatches,
stream);
}
else
{
radiusMatchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, WithOutMask(),
trainIdx, imgIdx, distance, nMatches,
stream);
}
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
trainIdx, imgIdx, distance, nMatches,
cc, stream);
}
//template void radiusMatchCollectionL2_gpu<uchar >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionL2_gpu<schar >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionL2_gpu<ushort>(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionL2_gpu<short >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionL2_gpu<int >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionL2_gpu<float >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void matchL2_gpu<uchar >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<schar >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<ushort>(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<short >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchL2_gpu<int >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchL2_gpu<float >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template <typename T> void radiusMatchCollectionHamming_gpu(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection,
const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches,
cudaStream_t stream)
template <typename T> void matchHamming_gpu(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks,
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
int cc, cudaStream_t stream)
{
TrainCollection<T> train((DevMem2D_<T>*)trainCollection.ptr(), trainCollection.cols, query.cols);
if (maskCollection.data)
{
radiusMatchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, MaskCollection(maskCollection.data),
trainIdx, imgIdx, distance, nMatches,
stream);
}
else
{
radiusMatchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), train, maxDistance, WithOutMask(),
trainIdx, imgIdx, distance, nMatches,
stream);
}
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
trainIdx, imgIdx, distance, nMatches,
cc, stream);
}
template void radiusMatchCollectionHamming_gpu<uchar >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionHamming_gpu<schar >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionHamming_gpu<ushort>(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
//template void radiusMatchCollectionHamming_gpu<short >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void radiusMatchCollectionHamming_gpu<int >(const DevMem2D& query, const DevMem2D& trainCollection, float maxDistance, const DevMem2D_<PtrStep>& maskCollection, const DevMem2D& trainIdx, const DevMem2D& imgIdx, const DevMem2D& distance, const DevMem2D& nMatches, cudaStream_t stream);
template void matchHamming_gpu<uchar >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchHamming_gpu<schar >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchHamming_gpu<ushort>(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
//template void matchHamming_gpu<short >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
template void matchHamming_gpu<int >(const DevMem2D& query, const DevMem2D* trains, int n, float maxDistance, const DevMem2D* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
}}}
......@@ -47,6 +47,9 @@ namespace cv { namespace gpu { namespace device
{
namespace detail
{
///////////////////////////////////////////////////////////////////////////////
// Reduction
template <int n> struct WarpReductor
{
template <typename T, typename Op> static __device__ __forceinline__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
......@@ -209,6 +212,8 @@ namespace cv { namespace gpu { namespace device
}
};
///////////////////////////////////////////////////////////////////////////////
// PredValWarpReductor
template <int n> struct PredValWarpReductor;
template <> struct PredValWarpReductor<64>
......@@ -501,6 +506,335 @@ namespace cv { namespace gpu { namespace device
}
}
};
///////////////////////////////////////////////////////////////////////////////
// PredVal2WarpReductor
template <int n> struct PredVal2WarpReductor;
template <> struct PredVal2WarpReductor<64>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 32)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = sdata[tid + 32];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 32];
sval2[tid] = myVal2 = sval2[tid + 32];
}
reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 16];
sval2[tid] = myVal2 = sval2[tid + 16];
}
reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <> struct PredVal2WarpReductor<32>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 16)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 16];
sval2[tid] = myVal2 = sval2[tid + 16];
}
reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <> struct PredVal2WarpReductor<16>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 8)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <> struct PredVal2WarpReductor<8>
{
template <typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
if (tid < 4)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
T reg = reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
};
template <bool warp> struct PredVal2ReductionDispatcher;
template <> struct PredVal2ReductionDispatcher<true>
{
template <int n, typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
PredVal2WarpReductor<n>::reduce(myData, myVal1, myVal2, sdata, sval1, sval2, tid, pred);
}
};
template <> struct PredVal2ReductionDispatcher<false>
{
template <int n, typename T, typename V1, typename V2, typename Pred>
static __device__ void reduce(T& myData, V1& myVal1, V2& myVal2, volatile T* sdata, V1* sval1, V2* sval2, int tid, const Pred& pred)
{
myData = sdata[tid];
myVal1 = sval1[tid];
myVal2 = sval2[tid];
if (n >= 512 && tid < 256)
{
T reg = sdata[tid + 256];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 256];
sval2[tid] = myVal2 = sval2[tid + 256];
}
__syncthreads();
}
if (n >= 256 && tid < 128)
{
T reg = sdata[tid + 128];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 128];
sval2[tid] = myVal2 = sval2[tid + 128];
}
__syncthreads();
}
if (n >= 128 && tid < 64)
{
T reg = sdata[tid + 64];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 64];
sval2[tid] = myVal2 = sval2[tid + 64];
}
__syncthreads();
}
if (tid < 32)
{
if (n >= 64)
{
T reg = sdata[tid + 32];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 32];
sval2[tid] = myVal2 = sval2[tid + 32];
}
}
if (n >= 32)
{
T reg = sdata[tid + 16];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 16];
sval2[tid] = myVal2 = sval2[tid + 16];
}
}
if (n >= 16)
{
T reg = sdata[tid + 8];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 8];
sval2[tid] = myVal2 = sval2[tid + 8];
}
}
if (n >= 8)
{
T reg = sdata[tid + 4];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 4];
sval2[tid] = myVal2 = sval2[tid + 4];
}
}
if (n >= 4)
{
T reg = sdata[tid + 2];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 2];
sval2[tid] = myVal2 = sval2[tid + 2];
}
}
if (n >= 2)
{
T reg = sdata[tid + 1];
if (pred(reg, myData))
{
sdata[tid] = myData = reg;
sval1[tid] = myVal1 = sval1[tid + 1];
sval2[tid] = myVal2 = sval2[tid + 1];
}
}
}
}
};
}
}}}
......
......@@ -121,7 +121,6 @@ namespace cv { namespace gpu { namespace device
///////////////////////////////////////////////////////////////////////////////
// Reduction
// reduction
template <int n, typename T, typename Op> __device__ __forceinline__ void reduce(volatile T* data, T& partial_reduction, int tid, const Op& op)
{
StaticAssert<n >= 8 && n <= 512>::check();
......@@ -134,6 +133,13 @@ namespace cv { namespace gpu { namespace device
StaticAssert<n >= 8 && n <= 512>::check();
detail::PredValReductionDispatcher<n <= 64>::reduce<n>(myData, myVal, sdata, sval, tid, pred);
}
template <int n, typename T, typename V1, typename V2, typename Pred>
__device__ __forceinline__ void reducePredVal2(volatile T* sdata, T& myData, V1* sval1, V1& myVal1, V2* sval2, V2& myVal2, int tid, const Pred& pred)
{
StaticAssert<n >= 8 && n <= 512>::check();
detail::PredVal2ReductionDispatcher<n <= 64>::reduce<n>(myData, myVal1, myVal2, sdata, sval1, sval2, tid, pred);
}
///////////////////////////////////////////////////////////////////////////////
// Solve linear system
......
......@@ -198,7 +198,7 @@ void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &feat
// Find 1->2 matches
pair_matches.clear();
matcher.knnMatch(descriptors1_, descriptors2_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchSingle(descriptors1_, descriptors2_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
......@@ -215,7 +215,7 @@ void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &feat
// Find 2->1 matches
pair_matches.clear();
matcher.knnMatch(descriptors2_, descriptors1_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchSingle(descriptors2_, descriptors1_, train_idx_, distance_, all_dist_, 2);
matcher.knnMatchDownload(train_idx_, distance_, pair_matches);
for (size_t i = 0; i < pair_matches.size(); ++i)
{
......
......@@ -413,38 +413,55 @@ TEST(BruteForceMatcher)
// Output
vector< vector<DMatch> > matches(2);
vector< vector<DMatch> > d_matches(2);
gpu::GpuMat d_trainIdx, d_distance, d_allDist, d_nMatches;
SUBTEST << "match";
matcher.match(query, train, matches[0]);
CPU_ON;
matcher.match(query, train, matches[0]);
CPU_OFF;
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
GPU_ON;
d_matcher.match(d_query, d_train, d_matches[0]);
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
GPU_OFF;
SUBTEST << "knnMatch";
int knn = 2;
SUBTEST << "knnMatch, 2";
matcher.knnMatch(query, train, matches, 2);
CPU_ON;
matcher.knnMatch(query, train, matches, knn);
matcher.knnMatch(query, train, matches, 2);
CPU_OFF;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
GPU_ON;
d_matcher.knnMatch(d_query, d_train, d_matches, knn);
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2);
GPU_OFF;
SUBTEST << "knnMatch, 3";
matcher.knnMatch(query, train, matches, 3);
CPU_ON;
matcher.knnMatch(query, train, matches, 3);
CPU_OFF;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 3);
GPU_ON;
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 3);
GPU_OFF;
SUBTEST << "radiusMatch";
float max_distance = 2.0f;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_ON;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_OFF;
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
GPU_ON;
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance);
GPU_OFF;
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment