Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
d389edd8
Commit
d389edd8
authored
Sep 17, 2018
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #12528 from dkurt:dnn_py_tests
parents
27a4e370
d259eb28
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
194 additions
and
15 deletions
+194
-15
test_dnn.py
modules/python/test/test_dnn.py
+179
-0
tests_common.py
modules/python/test/tests_common.py
+15
-15
No files found.
modules/python/test/test_dnn.py
0 → 100644
View file @
d389edd8
#!/usr/bin/env python
import
os
import
cv2
as
cv
import
numpy
as
np
from
tests_common
import
NewOpenCVTests
def
normAssert
(
test
,
a
,
b
,
lInf
=
1e-5
):
test
.
assertLess
(
np
.
max
(
np
.
abs
(
a
-
b
)),
lInf
)
def
inter_area
(
box1
,
box2
):
x_min
,
x_max
=
max
(
box1
[
0
],
box2
[
0
]),
min
(
box1
[
2
],
box2
[
2
])
y_min
,
y_max
=
max
(
box1
[
1
],
box2
[
1
]),
min
(
box1
[
3
],
box2
[
3
])
return
(
x_max
-
x_min
)
*
(
y_max
-
y_min
)
def
area
(
box
):
return
(
box
[
2
]
-
box
[
0
])
*
(
box
[
3
]
-
box
[
1
])
def
box2str
(
box
):
left
,
top
=
box
[
0
],
box
[
1
]
width
,
height
=
box
[
2
]
-
left
,
box
[
3
]
-
top
return
'[
%
f x
%
f from (
%
f,
%
f)]'
%
(
width
,
height
,
left
,
top
)
def
normAssertDetections
(
test
,
ref
,
out
,
confThreshold
=
0.0
,
scores_diff
=
1e-5
,
boxes_iou_diff
=
1e-4
):
ref
=
np
.
array
(
ref
,
np
.
float32
)
refClassIds
,
testClassIds
=
ref
[:,
1
],
out
[:,
1
]
refScores
,
testScores
=
ref
[:,
2
],
out
[:,
2
]
refBoxes
,
testBoxes
=
ref
[:,
3
:],
out
[:,
3
:]
matchedRefBoxes
=
[
False
]
*
len
(
refBoxes
)
errMsg
=
''
for
i
in
range
(
len
(
refBoxes
)):
testScore
=
testScores
[
i
]
if
testScore
<
confThreshold
:
continue
testClassId
,
testBox
=
testClassIds
[
i
],
testBoxes
[
i
]
matched
=
False
for
j
in
range
(
len
(
refBoxes
)):
if
(
not
matchedRefBoxes
[
j
])
and
testClassId
==
refClassIds
[
j
]
and
\
abs
(
testScore
-
refScores
[
j
])
<
scores_diff
:
interArea
=
inter_area
(
testBox
,
refBoxes
[
j
])
iou
=
interArea
/
(
area
(
testBox
)
+
area
(
refBoxes
[
j
])
-
interArea
)
if
abs
(
iou
-
1.0
)
<
boxes_iou_diff
:
matched
=
True
matchedRefBoxes
[
j
]
=
True
if
not
matched
:
errMsg
+=
'
\n
Unmatched prediction: class
%
d score
%
f box
%
s'
%
(
testClassId
,
testScore
,
box2str
(
testBox
))
for
i
in
range
(
len
(
refBoxes
)):
if
(
not
matchedRefBoxes
[
i
])
and
refScores
[
i
]
>
confThreshold
:
errMsg
+=
'
\n
Unmatched reference: class
%
d score
%
f box
%
s'
%
(
refClassIds
[
i
],
refScores
[
i
],
box2str
(
refBoxes
[
i
]))
if
errMsg
:
test
.
fail
(
errMsg
)
# Returns a simple one-layer network created from Caffe's format
def
getSimpleNet
():
prototxt
=
"""
name: "simpleNet"
input: "data"
layer {
type: "Identity"
name: "testLayer"
top: "testLayer"
bottom: "data"
}
"""
return
cv
.
dnn
.
readNetFromCaffe
(
bytearray
(
prototxt
,
'utf8'
))
def
testBackendAndTarget
(
backend
,
target
):
net
=
getSimpleNet
()
net
.
setPreferableBackend
(
backend
)
net
.
setPreferableTarget
(
target
)
inp
=
np
.
random
.
standard_normal
([
1
,
2
,
3
,
4
])
.
astype
(
np
.
float32
)
try
:
net
.
setInput
(
inp
)
net
.
forward
()
except
BaseException
as
e
:
return
False
return
True
haveInfEngine
=
testBackendAndTarget
(
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
,
cv
.
dnn
.
DNN_TARGET_CPU
)
dnnBackendsAndTargets
=
[
[
cv
.
dnn
.
DNN_BACKEND_OPENCV
,
cv
.
dnn
.
DNN_TARGET_CPU
],
]
if
haveInfEngine
:
dnnBackendsAndTargets
.
append
([
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
,
cv
.
dnn
.
DNN_TARGET_CPU
])
if
testBackendAndTarget
(
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
,
cv
.
dnn
.
DNN_TARGET_MYRIAD
):
dnnBackendsAndTargets
.
append
([
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
,
cv
.
dnn
.
DNN_TARGET_MYRIAD
])
if
cv
.
ocl
.
haveOpenCL
()
and
cv
.
ocl
.
useOpenCL
():
dnnBackendsAndTargets
.
append
([
cv
.
dnn
.
DNN_BACKEND_OPENCV
,
cv
.
dnn
.
DNN_TARGET_OPENCL
])
dnnBackendsAndTargets
.
append
([
cv
.
dnn
.
DNN_BACKEND_OPENCV
,
cv
.
dnn
.
DNN_TARGET_OPENCL_FP16
])
if
haveInfEngine
:
dnnBackendsAndTargets
.
append
([
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
,
cv
.
dnn
.
DNN_TARGET_OPENCL
])
dnnBackendsAndTargets
.
append
([
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
,
cv
.
dnn
.
DNN_TARGET_OPENCL_FP16
])
def
printParams
(
backend
,
target
):
backendNames
=
{
cv
.
dnn
.
DNN_BACKEND_OPENCV
:
'OCV'
,
cv
.
dnn
.
DNN_BACKEND_INFERENCE_ENGINE
:
'DLIE'
}
targetNames
=
{
cv
.
dnn
.
DNN_TARGET_CPU
:
'CPU'
,
cv
.
dnn
.
DNN_TARGET_OPENCL
:
'OCL'
,
cv
.
dnn
.
DNN_TARGET_OPENCL_FP16
:
'OCL_FP16'
,
cv
.
dnn
.
DNN_TARGET_MYRIAD
:
'MYRIAD'
}
print
(
'
%
s/
%
s'
%
(
backendNames
[
backend
],
targetNames
[
target
]))
class
dnn_test
(
NewOpenCVTests
):
def
find_dnn_file
(
self
,
filename
):
return
self
.
find_file
(
filename
,
[
os
.
environ
[
'OPENCV_DNN_TEST_DATA_PATH'
]])
def
test_blobFromImage
(
self
):
np
.
random
.
seed
(
324
)
width
=
6
height
=
7
scale
=
1.0
/
127.5
mean
=
(
10
,
20
,
30
)
# Test arguments names.
img
=
np
.
random
.
randint
(
0
,
255
,
[
4
,
5
,
3
])
.
astype
(
np
.
uint8
)
blob
=
cv
.
dnn
.
blobFromImage
(
img
,
scale
,
(
width
,
height
),
mean
,
True
,
False
)
blob_args
=
cv
.
dnn
.
blobFromImage
(
img
,
scalefactor
=
scale
,
size
=
(
width
,
height
),
mean
=
mean
,
swapRB
=
True
,
crop
=
False
)
normAssert
(
self
,
blob
,
blob_args
)
# Test values.
target
=
cv
.
resize
(
img
,
(
width
,
height
),
interpolation
=
cv
.
INTER_LINEAR
)
target
=
target
.
astype
(
np
.
float32
)
target
=
target
[:,:,[
2
,
1
,
0
]]
# BGR2RGB
target
[:,:,
0
]
-=
mean
[
0
]
target
[:,:,
1
]
-=
mean
[
1
]
target
[:,:,
2
]
-=
mean
[
2
]
target
*=
scale
target
=
target
.
transpose
(
2
,
0
,
1
)
.
reshape
(
1
,
3
,
height
,
width
)
# to NCHW
normAssert
(
self
,
blob
,
target
)
def
test_face_detection
(
self
):
proto
=
self
.
find_dnn_file
(
'dnn/opencv_face_detector.prototxt'
)
model
=
self
.
find_dnn_file
(
'dnn/opencv_face_detector.caffemodel'
)
img
=
self
.
get_sample
(
'gpu/lbpcascade/er.png'
)
blob
=
cv
.
dnn
.
blobFromImage
(
img
,
mean
=
(
104
,
177
,
123
),
swapRB
=
False
,
crop
=
False
)
ref
=
[[
0
,
1
,
0.99520785
,
0.80997437
,
0.16379407
,
0.87996572
,
0.26685631
],
[
0
,
1
,
0.9934696
,
0.2831718
,
0.50738752
,
0.345781
,
0.5985168
],
[
0
,
1
,
0.99096733
,
0.13629119
,
0.24892329
,
0.19756334
,
0.3310290
],
[
0
,
1
,
0.98977017
,
0.23901358
,
0.09084064
,
0.29902688
,
0.1769477
],
[
0
,
1
,
0.97203469
,
0.67965847
,
0.06876482
,
0.73999709
,
0.1513494
],
[
0
,
1
,
0.95097077
,
0.51901293
,
0.45863652
,
0.5777427
,
0.5347801
]]
print
(
'
\n
'
)
for
backend
,
target
in
dnnBackendsAndTargets
:
printParams
(
backend
,
target
)
net
=
cv
.
dnn
.
readNet
(
proto
,
model
)
net
.
setPreferableBackend
(
backend
)
net
.
setPreferableTarget
(
target
)
net
.
setInput
(
blob
)
out
=
net
.
forward
()
.
reshape
(
-
1
,
7
)
scoresDiff
=
4e-3
if
target
in
[
cv
.
dnn
.
DNN_TARGET_OPENCL_FP16
,
cv
.
dnn
.
DNN_TARGET_MYRIAD
]
else
1e-5
iouDiff
=
2e-2
if
target
in
[
cv
.
dnn
.
DNN_TARGET_OPENCL_FP16
,
cv
.
dnn
.
DNN_TARGET_MYRIAD
]
else
1e-4
normAssertDetections
(
self
,
ref
,
out
,
0.5
,
scoresDiff
,
iouDiff
)
if
__name__
==
'__main__'
:
NewOpenCVTests
.
bootstrap
()
modules/python/test/tests_common.py
View file @
d389edd8
...
...
@@ -26,23 +26,24 @@ class NewOpenCVTests(unittest.TestCase):
# github repository url
repoUrl
=
'https://raw.github.com/opencv/opencv/master'
def
find_file
(
self
,
filename
,
searchPaths
=
[]):
searchPaths
=
searchPaths
if
searchPaths
else
[
self
.
repoPath
,
self
.
extraTestDataPath
]
for
path
in
searchPaths
:
if
path
is
not
None
:
candidate
=
path
+
'/'
+
filename
if
os
.
path
.
isfile
(
candidate
):
return
candidate
self
.
fail
(
'File '
+
filename
+
' not found'
)
return
None
def
get_sample
(
self
,
filename
,
iscolor
=
None
):
if
iscolor
is
None
:
iscolor
=
cv
.
IMREAD_COLOR
if
not
filename
in
self
.
image_cache
:
filedata
=
None
if
NewOpenCVTests
.
repoPath
is
not
None
:
candidate
=
NewOpenCVTests
.
repoPath
+
'/'
+
filename
if
os
.
path
.
isfile
(
candidate
):
with
open
(
candidate
,
'rb'
)
as
f
:
filedata
=
f
.
read
()
if
NewOpenCVTests
.
extraTestDataPath
is
not
None
:
candidate
=
NewOpenCVTests
.
extraTestDataPath
+
'/'
+
filename
if
os
.
path
.
isfile
(
candidate
):
with
open
(
candidate
,
'rb'
)
as
f
:
filedata
=
f
.
read
()
if
filedata
is
None
:
return
None
#filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
filepath
=
self
.
find_file
(
filename
)
with
open
(
filepath
,
'rb'
)
as
f
:
filedata
=
f
.
read
()
self
.
image_cache
[
filename
]
=
cv
.
imdecode
(
np
.
fromstring
(
filedata
,
dtype
=
np
.
uint8
),
iscolor
)
return
self
.
image_cache
[
filename
]
...
...
@@ -102,4 +103,4 @@ def isPointInRect(p, rect):
if
rect
[
0
]
<=
p
[
0
]
and
rect
[
1
]
<=
p
[
1
]
and
p
[
0
]
<=
rect
[
2
]
and
p
[
1
]
<=
rect
[
3
]:
return
True
else
:
return
False
\ No newline at end of file
return
False
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment