Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
d27068f7
Commit
d27068f7
authored
Feb 13, 2014
by
Ilya Lavrenov
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
some more refactoring
parent
e16d89e8
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
84 additions
and
76 deletions
+84
-76
arrays.hpp
modules/photo/src/arrays.hpp
+50
-30
denoising.cpp
modules/photo/src/denoising.cpp
+14
-11
fast_nlmeans_denoising_invoker.hpp
modules/photo/src/fast_nlmeans_denoising_invoker.hpp
+19
-34
fast_nlmeans_denoising_invoker_commons.hpp
modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
+1
-1
No files found.
modules/photo/src/arrays.hpp
View file @
d27068f7
...
...
@@ -39,10 +39,14 @@
//
//M*/
#include "opencv2/core/base.hpp"
#ifndef __OPENCV_DENOISING_ARRAYS_HPP__
#define __OPENCV_DENOISING_ARRAYS_HPP__
template
<
class
T
>
struct
Array2d
{
template
<
class
T
>
struct
Array2d
{
T
*
a
;
int
n1
,
n2
;
bool
needToDeallocArray
;
...
...
@@ -50,14 +54,16 @@ template <class T> struct Array2d {
Array2d
(
const
Array2d
&
array2d
)
:
a
(
array2d
.
a
),
n1
(
array2d
.
n1
),
n2
(
array2d
.
n2
),
needToDeallocArray
(
false
)
{
if
(
array2d
.
needToDeallocArray
)
{
// copy constructor for self allocating arrays not supported
throw
new
std
::
exception
(
);
if
(
array2d
.
needToDeallocArray
)
{
CV_Error
(
Error
::
BadDataPtr
,
"Copy constructor for self allocating arrays not supported"
);
}
}
Array2d
(
T
*
_a
,
int
_n1
,
int
_n2
)
:
a
(
_a
),
n1
(
_n1
),
n2
(
_n2
),
needToDeallocArray
(
false
)
{}
a
(
_a
),
n1
(
_n1
),
n2
(
_n2
),
needToDeallocArray
(
false
)
{
}
Array2d
(
int
_n1
,
int
_n2
)
:
n1
(
_n1
),
n2
(
_n2
),
needToDeallocArray
(
true
)
...
...
@@ -65,28 +71,34 @@ template <class T> struct Array2d {
a
=
new
T
[
n1
*
n2
];
}
~
Array2d
()
{
if
(
needToDeallocArray
)
{
~
Array2d
()
{
if
(
needToDeallocArray
)
delete
[]
a
;
}
}
T
*
operator
[]
(
int
i
)
{
T
*
operator
[]
(
int
i
)
{
return
a
+
i
*
n2
;
}
inline
T
*
row_ptr
(
int
i
)
{
inline
T
*
row_ptr
(
int
i
)
{
return
(
*
this
)[
i
];
}
};
template
<
class
T
>
struct
Array3d
{
template
<
class
T
>
struct
Array3d
{
T
*
a
;
int
n1
,
n2
,
n3
;
bool
needToDeallocArray
;
Array3d
(
T
*
_a
,
int
_n1
,
int
_n2
,
int
_n3
)
:
a
(
_a
),
n1
(
_n1
),
n2
(
_n2
),
n3
(
_n3
),
needToDeallocArray
(
false
)
{}
a
(
_a
),
n1
(
_n1
),
n2
(
_n2
),
n3
(
_n3
),
needToDeallocArray
(
false
)
{
}
Array3d
(
int
_n1
,
int
_n2
,
int
_n3
)
:
n1
(
_n1
),
n2
(
_n2
),
n3
(
_n3
),
needToDeallocArray
(
true
)
...
...
@@ -94,64 +106,72 @@ template <class T> struct Array3d {
a
=
new
T
[
n1
*
n2
*
n3
];
}
~
Array3d
()
{
if
(
needToDeallocArray
)
{
~
Array3d
()
{
if
(
needToDeallocArray
)
delete
[]
a
;
}
}
Array2d
<
T
>
operator
[]
(
int
i
)
{
Array2d
<
T
>
operator
[]
(
int
i
)
{
Array2d
<
T
>
array2d
(
a
+
i
*
n2
*
n3
,
n2
,
n3
);
return
array2d
;
}
inline
T
*
row_ptr
(
int
i1
,
int
i2
)
{
inline
T
*
row_ptr
(
int
i1
,
int
i2
)
{
return
a
+
i1
*
n2
*
n3
+
i2
*
n3
;
}
};
template
<
class
T
>
struct
Array4d
{
template
<
class
T
>
struct
Array4d
{
T
*
a
;
int
n1
,
n2
,
n3
,
n4
;
bool
needToDeallocArray
;
int
steps
[
4
];
void
init_steps
()
{
void
init_steps
()
{
steps
[
0
]
=
n2
*
n3
*
n4
;
steps
[
1
]
=
n3
*
n4
;
steps
[
2
]
=
n4
;
steps
[
3
]
=
1
;
}
Array4d
(
T
*
_a
,
int
_n1
,
int
_n2
,
int
_n3
,
int
_n4
)
:
Array4d
(
T
*
_a
,
int
_n1
,
int
_n2
,
int
_n3
,
int
_n4
)
:
a
(
_a
),
n1
(
_n1
),
n2
(
_n2
),
n3
(
_n3
),
n4
(
_n4
),
needToDeallocArray
(
false
)
{
{
init_steps
();
}
}
Array4d
(
int
_n1
,
int
_n2
,
int
_n3
,
int
_n4
)
:
Array4d
(
int
_n1
,
int
_n2
,
int
_n3
,
int
_n4
)
:
n1
(
_n1
),
n2
(
_n2
),
n3
(
_n3
),
n4
(
_n4
),
needToDeallocArray
(
true
)
{
a
=
new
T
[
n1
*
n2
*
n3
*
n4
];
init_steps
();
}
}
~
Array4d
()
{
if
(
needToDeallocArray
)
{
~
Array4d
()
{
if
(
needToDeallocArray
)
delete
[]
a
;
}
}
Array3d
<
T
>
operator
[]
(
int
i
)
{
Array3d
<
T
>
operator
[]
(
int
i
)
{
Array3d
<
T
>
array3d
(
a
+
i
*
n2
*
n3
*
n4
,
n2
,
n3
,
n4
);
return
array3d
;
}
inline
T
*
row_ptr
(
int
i1
,
int
i2
,
int
i3
)
{
inline
T
*
row_ptr
(
int
i1
,
int
i2
,
int
i3
)
{
return
a
+
i1
*
n2
*
n3
*
n4
+
i2
*
n3
*
n4
+
i3
*
n4
;
}
inline
int
step_size
(
int
dimension
)
{
inline
int
step_size
(
int
dimension
)
{
return
steps
[
dimension
];
}
};
...
...
modules/photo/src/denoising.cpp
View file @
d27068f7
...
...
@@ -117,7 +117,8 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
int
templateWindowSize
,
int
searchWindowSize
)
{
int
src_imgs_size
=
static_cast
<
int
>
(
srcImgs
.
size
());
if
(
src_imgs_size
==
0
)
{
if
(
src_imgs_size
==
0
)
{
CV_Error
(
Error
::
StsBadArg
,
"Input images vector should not be empty!"
);
}
...
...
@@ -136,11 +137,11 @@ static void fastNlMeansDenoisingMultiCheckPreconditions(
"should be choosen corresponding srcImgs size!"
);
}
for
(
int
i
=
1
;
i
<
src_imgs_size
;
i
++
)
{
if
(
srcImgs
[
0
].
size
()
!=
srcImgs
[
i
].
size
()
||
srcImgs
[
0
].
type
()
!=
srcImgs
[
i
].
type
())
{
for
(
int
i
=
1
;
i
<
src_imgs_size
;
i
++
)
if
(
srcImgs
[
0
].
size
()
!=
srcImgs
[
i
].
size
()
||
srcImgs
[
0
].
type
()
!=
srcImgs
[
i
].
type
())
{
CV_Error
(
Error
::
StsBadArg
,
"Input images should have the same size and type!"
);
}
}
}
void
cv
::
fastNlMeansDenoisingMulti
(
InputArrayOfArrays
_srcImgs
,
OutputArray
_dst
,
...
...
@@ -152,12 +153,13 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
fastNlMeansDenoisingMultiCheckPreconditions
(
srcImgs
,
imgToDenoiseIndex
,
temporalWindowSize
,
templateWindowSize
,
searchWindowSize
);
temporalWindowSize
,
templateWindowSize
,
searchWindowSize
);
_dst
.
create
(
srcImgs
[
0
].
size
(),
srcImgs
[
0
].
type
());
Mat
dst
=
_dst
.
getMat
();
switch
(
srcImgs
[
0
].
type
())
{
switch
(
srcImgs
[
0
].
type
())
{
case
CV_8U
:
parallel_for_
(
cv
::
Range
(
0
,
srcImgs
[
0
].
rows
),
FastNlMeansMultiDenoisingInvoker
<
uchar
>
(
...
...
@@ -192,15 +194,15 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
fastNlMeansDenoisingMultiCheckPreconditions
(
srcImgs
,
imgToDenoiseIndex
,
temporalWindowSize
,
templateWindowSize
,
searchWindowSize
);
temporalWindowSize
,
templateWindowSize
,
searchWindowSize
);
_dst
.
create
(
srcImgs
[
0
].
size
(),
srcImgs
[
0
].
type
());
Mat
dst
=
_dst
.
getMat
();
int
src_imgs_size
=
static_cast
<
int
>
(
srcImgs
.
size
());
if
(
srcImgs
[
0
].
type
()
!=
CV_8UC3
)
{
if
(
srcImgs
[
0
].
type
()
!=
CV_8UC3
)
{
CV_Error
(
Error
::
StsBadArg
,
"Type of input images should be CV_8UC3!"
);
return
;
}
...
...
@@ -211,7 +213,8 @@ void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputAr
std
::
vector
<
Mat
>
src_lab
(
src_imgs_size
);
std
::
vector
<
Mat
>
l
(
src_imgs_size
);
std
::
vector
<
Mat
>
ab
(
src_imgs_size
);
for
(
int
i
=
0
;
i
<
src_imgs_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
src_imgs_size
;
i
++
)
{
src_lab
[
i
]
=
Mat
::
zeros
(
srcImgs
[
0
].
size
(),
CV_8UC3
);
l
[
i
]
=
Mat
::
zeros
(
srcImgs
[
0
].
size
(),
CV_8UC1
);
ab
[
i
]
=
Mat
::
zeros
(
srcImgs
[
0
].
size
(),
CV_8UC2
);
...
...
modules/photo/src/fast_nlmeans_denoising_invoker.hpp
View file @
d27068f7
...
...
@@ -101,7 +101,7 @@ inline int getNearestPowerOf2(int value)
template
<
class
T
>
FastNlMeansDenoisingInvoker
<
T
>::
FastNlMeansDenoisingInvoker
(
const
cv
::
Mat
&
src
,
cv
::
Mat
&
dst
,
const
Mat
&
src
,
Mat
&
dst
,
int
template_window_size
,
int
search_window_size
,
const
float
h
)
:
...
...
@@ -115,22 +115,20 @@ FastNlMeansDenoisingInvoker<T>::FastNlMeansDenoisingInvoker(
search_window_size_
=
search_window_half_size_
*
2
+
1
;
border_size_
=
search_window_half_size_
+
template_window_half_size_
;
copyMakeBorder
(
src_
,
extended_src_
,
border_size_
,
border_size_
,
border_size_
,
border_size_
,
cv
::
BORDER_DEFAULT
);
copyMakeBorder
(
src_
,
extended_src_
,
border_size_
,
border_size_
,
border_size_
,
border_size_
,
BORDER_DEFAULT
);
const
int
max_estimate_sum_value
=
search_window_size_
*
search_window_size_
*
255
;
fixed_point_mult_
=
std
::
numeric_limits
<
int
>::
max
()
/
max_estimate_sum_value
;
// precalc weight for every possible l2 dist between blocks
// additional optimization of precalced weights to replace division(averaging) by binary shift
CV_Assert
(
template_window_size_
<=
46340
);
// sqrt(INT_MAX)
CV_Assert
(
template_window_size_
<=
46340
);
// sqrt(INT_MAX)
int
template_window_size_sq
=
template_window_size_
*
template_window_size_
;
almost_template_window_size_sq_bin_shift_
=
getNearestPowerOf2
(
template_window_size_sq
);
double
almost_dist2actual_dist_multiplier
=
((
double
)(
1
<<
almost_template_window_size_sq_bin_shift_
))
/
template_window_size_sq
;
int
max_dist
=
255
*
255
*
sizeof
(
T
);
int
almost_max_dist
=
(
int
)
(
max_dist
/
almost_dist2actual_dist_multiplier
+
1
);
int
almost_max_dist
=
(
int
)(
max_dist
/
almost_dist2actual_dist_multiplier
+
1
);
almost_dist2weight_
.
resize
(
almost_max_dist
);
const
double
WEIGHT_THRESHOLD
=
0.001
;
...
...
@@ -157,12 +155,14 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
int
row_from
=
range
.
start
;
int
row_to
=
range
.
end
-
1
;
// sums of cols anf rows for current pixel p
Array2d
<
int
>
dist_sums
(
search_window_size_
,
search_window_size_
);
// for lazy calc optimization
// for lazy calc optimization
(sum of cols for current pixel)
Array3d
<
int
>
col_dist_sums
(
template_window_size_
,
search_window_size_
,
search_window_size_
);
int
first_col_num
=
-
1
;
// last elements of column sum (for each element in row)
Array3d
<
int
>
up_col_dist_sums
(
src_
.
cols
,
search_window_size_
,
search_window_size_
);
for
(
int
i
=
row_from
;
i
<=
row_to
;
i
++
)
...
...
@@ -177,7 +177,6 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
{
calcDistSumsForFirstElementInRow
(
i
,
dist_sums
,
col_dist_sums
,
up_col_dist_sums
);
first_col_num
=
0
;
}
else
{
...
...
@@ -186,7 +185,6 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
{
calcDistSumsForElementInFirstRow
(
i
,
j
,
first_col_num
,
dist_sums
,
col_dist_sums
,
up_col_dist_sums
);
}
else
{
...
...
@@ -204,29 +202,23 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
for
(
int
y
=
0
;
y
<
search_window_size
;
y
++
)
{
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
int
*
col_dist_sums_row
=
col_dist_sums
.
row_ptr
(
first_col_num
,
y
);
int
*
up_col_dist_sums_row
=
up_col_dist_sums
.
row_ptr
(
j
,
y
);
int
*
col_dist_sums_row
=
col_dist_sums
.
row_ptr
(
first_col_num
,
y
);
int
*
up_col_dist_sums_row
=
up_col_dist_sums
.
row_ptr
(
j
,
y
);
const
T
*
b_up_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
const
T
*
b_up_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
-
template_window_half_size_
-
1
+
y
);
const
T
*
b_down_ptr
=
extended_src_
.
ptr
<
T
>
(
start_by
+
template_window_half_size_
+
y
);
for
(
int
x
=
0
;
x
<
search_window_size
;
x
++
)
{
// remove from current pixel sum column sum with index "first_col_num"
dist_sums_row
[
x
]
-=
col_dist_sums_row
[
x
];
col_dist_sums_row
[
x
]
=
up_col_dist_sums_row
[
x
]
+
calcUpDownDist
(
a_up
,
a_down
,
b_up_ptr
[
start_bx
+
x
],
b_down_ptr
[
start_bx
+
x
]
);
int
bx
=
start_bx
+
x
;
col_dist_sums_row
[
x
]
=
up_col_dist_sums_row
[
x
]
+
calcUpDownDist
(
a_up
,
a_down
,
b_up_ptr
[
bx
],
b_down_ptr
[
bx
]);
dist_sums_row
[
x
]
+=
col_dist_sums_row
[
x
];
up_col_dist_sums_row
[
x
]
=
col_dist_sums_row
[
x
];
}
}
}
...
...
@@ -235,9 +227,7 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
}
// calc weights
int
weights_sum
=
0
;
int
estimation
[
3
];
int
estimation
[
3
],
weights_sum
=
0
;
for
(
size_t
channel_num
=
0
;
channel_num
<
sizeof
(
T
);
channel_num
++
)
estimation
[
channel_num
]
=
0
;
...
...
@@ -247,9 +237,7 @@ void FastNlMeansDenoisingInvoker<T>::operator() (const Range& range) const
int
*
dist_sums_row
=
dist_sums
.
row_ptr
(
y
);
for
(
int
x
=
0
;
x
<
search_window_size_
;
x
++
)
{
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift_
;
int
almostAvgDist
=
dist_sums_row
[
x
]
>>
almost_template_window_size_sq_bin_shift_
;
int
weight
=
almost_dist2weight_
[
almostAvgDist
];
weights_sum
+=
weight
;
...
...
@@ -302,9 +290,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForFirstElementInRow(
template
<
class
T
>
inline
void
FastNlMeansDenoisingInvoker
<
T
>::
calcDistSumsForElementInFirstRow
(
int
i
,
int
j
,
int
first_col_num
,
int
i
,
int
j
,
int
first_col_num
,
Array2d
<
int
>&
dist_sums
,
Array3d
<
int
>&
col_dist_sums
,
Array3d
<
int
>&
up_col_dist_sums
)
const
...
...
@@ -326,8 +312,7 @@ inline void FastNlMeansDenoisingInvoker<T>::calcDistSumsForElementInFirstRow(
int
by
=
start_by
+
y
;
int
bx
=
start_bx
+
x
;
for
(
int
ty
=
-
template_window_half_size_
;
ty
<=
template_window_half_size_
;
ty
++
)
col_dist_sums
[
new_last_col_num
][
y
][
x
]
+=
calcDist
<
T
>
(
extended_src_
,
ay
+
ty
,
ax
,
by
+
ty
,
bx
);
col_dist_sums
[
new_last_col_num
][
y
][
x
]
+=
calcDist
<
T
>
(
extended_src_
,
ay
+
ty
,
ax
,
by
+
ty
,
bx
);
dist_sums
[
y
][
x
]
+=
col_dist_sums
[
new_last_col_num
][
y
][
x
];
up_col_dist_sums
[
j
][
y
][
x
]
=
col_dist_sums
[
new_last_col_num
][
y
][
x
];
...
...
modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
View file @
d27068f7
...
...
@@ -70,7 +70,7 @@ template <typename T> static inline int calcDist(const Mat& m, int i1, int j1, i
template
<
typename
T
>
static
inline
int
calcUpDownDist
(
T
a_up
,
T
a_down
,
T
b_up
,
T
b_down
)
{
return
calcDist
(
a_down
,
b_down
)
-
calcDist
(
a_up
,
b_up
);
return
calcDist
(
a_down
,
b_down
)
-
calcDist
(
a_up
,
b_up
);
}
template
<>
inline
int
calcUpDownDist
(
uchar
a_up
,
uchar
a_down
,
uchar
b_up
,
uchar
b_down
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment