Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
d1606b4a
Commit
d1606b4a
authored
Jan 30, 2014
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ocl: added SVM perf test
parent
e0d991cf
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
105 additions
and
2 deletions
+105
-2
perf_ml.cpp
modules/ocl/perf/perf_ml.cpp
+105
-2
No files found.
modules/ocl/perf/perf_ml.cpp
View file @
d1606b4a
...
...
@@ -106,4 +106,108 @@ PERF_TEST_P(KNNFixture, KNN,
}
else
OCL_PERF_ELSE
SANITY_CHECK
(
best_label
);
}
\ No newline at end of file
}
typedef
TestBaseWithParam
<
tuple
<
int
>
>
SVMFixture
;
// code is based on: samples\cpp\tutorial_code\ml\non_linear_svms\non_linear_svms.cpp
PERF_TEST_P
(
SVMFixture
,
DISABLED_SVM
,
testing
::
Values
(
50
,
100
))
{
const
int
NTRAINING_SAMPLES
=
get
<
0
>
(
GetParam
());
// Number of training samples per class
#define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
const
int
WIDTH
=
512
,
HEIGHT
=
512
;
Mat
trainData
(
2
*
NTRAINING_SAMPLES
,
2
,
CV_32FC1
);
Mat
labels
(
2
*
NTRAINING_SAMPLES
,
1
,
CV_32FC1
);
RNG
rng
(
100
);
// Random value generation class
// Set up the linearly separable part of the training data
int
nLinearSamples
=
(
int
)
(
FRAC_LINEAR_SEP
*
NTRAINING_SAMPLES
);
// Generate random points for the class 1
Mat
trainClass
=
trainData
.
rowRange
(
0
,
nLinearSamples
);
// The x coordinate of the points is in [0, 0.4)
Mat
c
=
trainClass
.
colRange
(
0
,
1
);
rng
.
fill
(
c
,
RNG
::
UNIFORM
,
Scalar
(
1
),
Scalar
(
0.4
*
WIDTH
));
// The y coordinate of the points is in [0, 1)
c
=
trainClass
.
colRange
(
1
,
2
);
rng
.
fill
(
c
,
RNG
::
UNIFORM
,
Scalar
(
1
),
Scalar
(
HEIGHT
));
// Generate random points for the class 2
trainClass
=
trainData
.
rowRange
(
2
*
NTRAINING_SAMPLES
-
nLinearSamples
,
2
*
NTRAINING_SAMPLES
);
// The x coordinate of the points is in [0.6, 1]
c
=
trainClass
.
colRange
(
0
,
1
);
rng
.
fill
(
c
,
RNG
::
UNIFORM
,
Scalar
(
0.6
*
WIDTH
),
Scalar
(
WIDTH
));
// The y coordinate of the points is in [0, 1)
c
=
trainClass
.
colRange
(
1
,
2
);
rng
.
fill
(
c
,
RNG
::
UNIFORM
,
Scalar
(
1
),
Scalar
(
HEIGHT
));
//------------------ Set up the non-linearly separable part of the training data ---------------
// Generate random points for the classes 1 and 2
trainClass
=
trainData
.
rowRange
(
nLinearSamples
,
2
*
NTRAINING_SAMPLES
-
nLinearSamples
);
// The x coordinate of the points is in [0.4, 0.6)
c
=
trainClass
.
colRange
(
0
,
1
);
rng
.
fill
(
c
,
RNG
::
UNIFORM
,
Scalar
(
0.4
*
WIDTH
),
Scalar
(
0.6
*
WIDTH
));
// The y coordinate of the points is in [0, 1)
c
=
trainClass
.
colRange
(
1
,
2
);
rng
.
fill
(
c
,
RNG
::
UNIFORM
,
Scalar
(
1
),
Scalar
(
HEIGHT
));
//------------------------- Set up the labels for the classes ---------------------------------
labels
.
rowRange
(
0
,
NTRAINING_SAMPLES
).
setTo
(
1
);
// Class 1
labels
.
rowRange
(
NTRAINING_SAMPLES
,
2
*
NTRAINING_SAMPLES
).
setTo
(
2
);
// Class 2
//------------------------ Set up the support vector machines parameters --------------------
CvSVMParams
params
;
params
.
svm_type
=
SVM
::
C_SVC
;
params
.
C
=
0.1
;
params
.
kernel_type
=
SVM
::
LINEAR
;
params
.
term_crit
=
TermCriteria
(
CV_TERMCRIT_ITER
,
(
int
)
1e7
,
1e-6
);
Mat
dst
=
Mat
::
zeros
(
HEIGHT
,
WIDTH
,
CV_8UC1
);
Mat
samples
(
WIDTH
*
HEIGHT
,
2
,
CV_32FC1
);
int
k
=
0
;
for
(
int
i
=
0
;
i
<
HEIGHT
;
++
i
)
{
for
(
int
j
=
0
;
j
<
WIDTH
;
++
j
)
{
samples
.
at
<
float
>
(
k
,
0
)
=
(
float
)
i
;
samples
.
at
<
float
>
(
k
,
0
)
=
(
float
)
j
;
k
++
;
}
}
Mat
results
(
WIDTH
*
HEIGHT
,
1
,
CV_32FC1
);
CvMat
samples_
=
samples
;
CvMat
results_
=
results
;
if
(
RUN_PLAIN_IMPL
)
{
CvSVM
svm
;
svm
.
train
(
trainData
,
labels
,
Mat
(),
Mat
(),
params
);
TEST_CYCLE
()
{
svm
.
predict
(
&
samples_
,
&
results_
);
}
}
else
if
(
RUN_OCL_IMPL
)
{
CvSVM_OCL
svm
;
svm
.
train
(
trainData
,
labels
,
Mat
(),
Mat
(),
params
);
OCL_TEST_CYCLE
()
{
svm
.
predict
(
&
samples_
,
&
results_
);
}
}
else
OCL_PERF_ELSE
SANITY_CHECK_NOTHING
();
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment