Commit d00e58cd authored by Alexander Alekhin's avatar Alexander Alekhin

Merge remote-tracking branch 'upstream/3.4' into merge-3.4

parents 3befdb4a 9f82b747
...@@ -266,21 +266,21 @@ Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) c ...@@ -266,21 +266,21 @@ Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) c
template<typename _Tp, int m, int n> static inline A& operator op (A& a, const Matx<_Tp,m,n>& b) { cvop; return a; } \ template<typename _Tp, int m, int n> static inline A& operator op (A& a, const Matx<_Tp,m,n>& b) { cvop; return a; } \
template<typename _Tp, int m, int n> static inline const A& operator op (const A& a, const Matx<_Tp,m,n>& b) { cvop; return a; } template<typename _Tp, int m, int n> static inline const A& operator op (const A& a, const Matx<_Tp,m,n>& b) { cvop; return a; }
CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (+=, cv::add(a, b, (const Mat&)a), Mat, Mat)
CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR (+=, cv::add(a, b, (const Mat&)a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(+=, cv::add(a, b, (const Mat&)a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(+=, cv::add(a, b, (const Mat&)a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR_T(+=, cv::add(a, b, (const Mat&)a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR_TN(+=, cv::add(a,Mat(b),a), Mat) CV_MAT_AUG_OPERATOR_TN(+=, cv::add(a, Mat(b), (const Mat&)a), Mat)
CV_MAT_AUG_OPERATOR_TN(+=, cv::add(a,Mat(b),a), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(+=, cv::add(a, Mat(b), (const Mat&)a), Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (-=, cv::subtract(a, b, (const Mat&)a), Mat, Mat)
CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR (-=, cv::subtract(a, b, (const Mat&)a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a, b, (const Mat&)a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a, b, (const Mat&)a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a, b, (const Mat&)a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR_TN(-=, cv::subtract(a,Mat(b),a), Mat) CV_MAT_AUG_OPERATOR_TN(-=, cv::subtract(a, Mat(b), (const Mat&)a), Mat)
CV_MAT_AUG_OPERATOR_TN(-=, cv::subtract(a,Mat(b),a), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(-=, cv::subtract(a, Mat(b), (const Mat&)a), Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat) CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat)
CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat)
...@@ -290,37 +290,37 @@ CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double) ...@@ -290,37 +290,37 @@ CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double)
CV_MAT_AUG_OPERATOR_TN(*=, cv::gemm(a, Mat(b), 1, Mat(), 0, a, 0), Mat) CV_MAT_AUG_OPERATOR_TN(*=, cv::gemm(a, Mat(b), 1, Mat(), 0, a, 0), Mat)
CV_MAT_AUG_OPERATOR_TN(*=, cv::gemm(a, Mat(b), 1, Mat(), 0, a, 0), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(*=, cv::gemm(a, Mat(b), 1, Mat(), 0, a, 0), Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (/=, cv::divide(a, b, (const Mat&)a), Mat, Mat)
CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a, b, (const Mat&)a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a, b, (const Mat&)a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double) CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double)
CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double) CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double)
CV_MAT_AUG_OPERATOR_TN(/=, cv::divide(a, Mat(b), a), Mat) CV_MAT_AUG_OPERATOR_TN(/=, cv::divide(a, Mat(b), (const Mat&)a), Mat)
CV_MAT_AUG_OPERATOR_TN(/=, cv::divide(a, Mat(b), a), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(/=, cv::divide(a, Mat(b), (const Mat&)a), Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a, b, (const Mat&)a), Mat, Mat)
CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a, b, (const Mat&)a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a, b, (const Mat&)a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a, b, (const Mat&)a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a, b, (const Mat&)a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR_TN(&=, cv::bitwise_and(a, Mat(b), a), Mat) CV_MAT_AUG_OPERATOR_TN(&=, cv::bitwise_and(a, Mat(b), (const Mat&)a), Mat)
CV_MAT_AUG_OPERATOR_TN(&=, cv::bitwise_and(a, Mat(b), a), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(&=, cv::bitwise_and(a, Mat(b), (const Mat&)a), Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a, b, (const Mat&)a), Mat, Mat)
CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a, b, (const Mat&)a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a, b, (const Mat&)a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a, b, (const Mat&)a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a, b, (const Mat&)a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR_TN(|=, cv::bitwise_or(a, Mat(b), a), Mat) CV_MAT_AUG_OPERATOR_TN(|=, cv::bitwise_or(a, Mat(b), (const Mat&)a), Mat)
CV_MAT_AUG_OPERATOR_TN(|=, cv::bitwise_or(a, Mat(b), a), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(|=, cv::bitwise_or(a, Mat(b), (const Mat&)a), Mat_<_Tp>)
CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a, b, (const Mat&)a), Mat, Mat)
CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a, b, (const Mat&)a), Mat, Scalar)
CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a, b, (const Mat&)a), Mat_<_Tp>, Mat)
CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a, b, (const Mat&)a), Mat_<_Tp>, Scalar)
CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a, b, (const Mat&)a), Mat_<_Tp>, Mat_<_Tp>)
CV_MAT_AUG_OPERATOR_TN(^=, cv::bitwise_xor(a, Mat(b), a), Mat) CV_MAT_AUG_OPERATOR_TN(^=, cv::bitwise_xor(a, Mat(b), (const Mat&)a), Mat)
CV_MAT_AUG_OPERATOR_TN(^=, cv::bitwise_xor(a, Mat(b), a), Mat_<_Tp>) CV_MAT_AUG_OPERATOR_TN(^=, cv::bitwise_xor(a, Mat(b), (const Mat&)a), Mat_<_Tp>)
#undef CV_MAT_AUG_OPERATOR_TN #undef CV_MAT_AUG_OPERATOR_TN
#undef CV_MAT_AUG_OPERATOR_T #undef CV_MAT_AUG_OPERATOR_T
......
...@@ -151,13 +151,12 @@ ...@@ -151,13 +151,12 @@
using namespace cv; using namespace cv;
namespace cv namespace cv {
{
ParallelLoopBody::~ParallelLoopBody() {} ParallelLoopBody::~ParallelLoopBody() {}
}
namespace {
namespace
{
#ifdef CV_PARALLEL_FRAMEWORK #ifdef CV_PARALLEL_FRAMEWORK
#ifdef ENABLE_INSTRUMENTATION #ifdef ENABLE_INSTRUMENTATION
static void SyncNodes(cv::instr::InstrNode *pNode) static void SyncNodes(cv::instr::InstrNode *pNode)
...@@ -476,7 +475,7 @@ static SchedPtr pplScheduler; ...@@ -476,7 +475,7 @@ static SchedPtr pplScheduler;
#endif // CV_PARALLEL_FRAMEWORK #endif // CV_PARALLEL_FRAMEWORK
} //namespace } // namespace anon
/* ================================ parallel_for_ ================================ */ /* ================================ parallel_for_ ================================ */
...@@ -484,7 +483,7 @@ static SchedPtr pplScheduler; ...@@ -484,7 +483,7 @@ static SchedPtr pplScheduler;
static void parallel_for_impl(const cv::Range& range, const cv::ParallelLoopBody& body, double nstripes); // forward declaration static void parallel_for_impl(const cv::Range& range, const cv::ParallelLoopBody& body, double nstripes); // forward declaration
#endif #endif
void cv::parallel_for_(const cv::Range& range, const cv::ParallelLoopBody& body, double nstripes) void parallel_for_(const cv::Range& range, const cv::ParallelLoopBody& body, double nstripes)
{ {
#ifdef OPENCV_TRACE #ifdef OPENCV_TRACE
CV__TRACE_OPENCV_FUNCTION_NAME_("parallel_for", 0); CV__TRACE_OPENCV_FUNCTION_NAME_("parallel_for", 0);
...@@ -596,7 +595,7 @@ static void parallel_for_impl(const cv::Range& range, const cv::ParallelLoopBody ...@@ -596,7 +595,7 @@ static void parallel_for_impl(const cv::Range& range, const cv::ParallelLoopBody
#endif // CV_PARALLEL_FRAMEWORK #endif // CV_PARALLEL_FRAMEWORK
int cv::getNumThreads(void) int getNumThreads(void)
{ {
#ifdef CV_PARALLEL_FRAMEWORK #ifdef CV_PARALLEL_FRAMEWORK
...@@ -654,7 +653,6 @@ int cv::getNumThreads(void) ...@@ -654,7 +653,6 @@ int cv::getNumThreads(void)
#endif #endif
} }
namespace cv {
unsigned defaultNumberOfThreads() unsigned defaultNumberOfThreads()
{ {
#ifdef __ANDROID__ #ifdef __ANDROID__
...@@ -676,9 +674,8 @@ unsigned defaultNumberOfThreads() ...@@ -676,9 +674,8 @@ unsigned defaultNumberOfThreads()
} }
return result; return result;
} }
}
void cv::setNumThreads( int threads_ ) void setNumThreads( int threads_ )
{ {
CV_UNUSED(threads_); CV_UNUSED(threads_);
#ifdef CV_PARALLEL_FRAMEWORK #ifdef CV_PARALLEL_FRAMEWORK
...@@ -738,7 +735,7 @@ void cv::setNumThreads( int threads_ ) ...@@ -738,7 +735,7 @@ void cv::setNumThreads( int threads_ )
} }
int cv::getThreadNum(void) int getThreadNum()
{ {
#if defined HAVE_TBB #if defined HAVE_TBB
#if TBB_INTERFACE_VERSION >= 9100 #if TBB_INTERFACE_VERSION >= 9100
...@@ -860,14 +857,17 @@ T minNonZero(const T& val_1, const T& val_2) ...@@ -860,14 +857,17 @@ T minNonZero(const T& val_1, const T& val_2)
return (val_1 != 0) ? val_1 : val_2; return (val_1 != 0) ? val_1 : val_2;
} }
int cv::getNumberOfCPUs(void) static
int getNumberOfCPUs_()
{ {
/* /*
* Logic here is to try different methods of getting CPU counts and return * Logic here is to try different methods of getting CPU counts and return
* the minimum most value as it has high probablity of being right and safe. * the minimum most value as it has high probablity of being right and safe.
* Return 1 if we get 0 or not found on all methods. * Return 1 if we get 0 or not found on all methods.
*/ */
#if defined CV_CXX11 #if defined CV_CXX11 \
&& !defined(__MINGW32__) /* not implemented (2020-03) */ \
/* /*
* Check for this standard C++11 way, we do not return directly because * Check for this standard C++11 way, we do not return directly because
* running in a docker or K8s environment will mean this is the host * running in a docker or K8s environment will mean this is the host
...@@ -881,13 +881,13 @@ int cv::getNumberOfCPUs(void) ...@@ -881,13 +881,13 @@ int cv::getNumberOfCPUs(void)
#if defined _WIN32 #if defined _WIN32
SYSTEM_INFO sysinfo; SYSTEM_INFO sysinfo = {};
#if (defined(_M_ARM) || defined(_M_ARM64) || defined(_M_X64) || defined(WINRT)) && _WIN32_WINNT >= 0x501 #if (defined(_M_ARM) || defined(_M_ARM64) || defined(_M_X64) || defined(WINRT)) && _WIN32_WINNT >= 0x501
GetNativeSystemInfo( &sysinfo ); GetNativeSystemInfo( &sysinfo );
#else #else
GetSystemInfo( &sysinfo ); GetSystemInfo( &sysinfo );
#endif #endif
unsigned ncpus_sysinfo = sysinfo.dwNumberOfProcessors < 0 ? 1 : sysinfo.dwNumberOfProcessors; /* Just a fail safe */ unsigned ncpus_sysinfo = sysinfo.dwNumberOfProcessors;
ncpus = minNonZero(ncpus, ncpus_sysinfo); ncpus = minNonZero(ncpus, ncpus_sysinfo);
#elif defined __APPLE__ #elif defined __APPLE__
...@@ -930,6 +930,7 @@ int cv::getNumberOfCPUs(void) ...@@ -930,6 +930,7 @@ int cv::getNumberOfCPUs(void)
#endif #endif
#if defined _GNU_SOURCE \ #if defined _GNU_SOURCE \
&& !defined(__MINGW32__) /* not implemented (2020-03) */ \
&& !defined(__EMSCRIPTEN__) \ && !defined(__EMSCRIPTEN__) \
&& !defined(__ANDROID__) // TODO: add check for modern Android NDK && !defined(__ANDROID__) // TODO: add check for modern Android NDK
...@@ -952,7 +953,13 @@ int cv::getNumberOfCPUs(void) ...@@ -952,7 +953,13 @@ int cv::getNumberOfCPUs(void)
return ncpus != 0 ? ncpus : 1; return ncpus != 0 ? ncpus : 1;
} }
const char* cv::currentParallelFramework() { int getNumberOfCPUs()
{
static int nCPUs = getNumberOfCPUs_();
return nCPUs; // cached value
}
const char* currentParallelFramework() {
#ifdef CV_PARALLEL_FRAMEWORK #ifdef CV_PARALLEL_FRAMEWORK
return CV_PARALLEL_FRAMEWORK; return CV_PARALLEL_FRAMEWORK;
#else #else
...@@ -960,6 +967,8 @@ const char* cv::currentParallelFramework() { ...@@ -960,6 +967,8 @@ const char* cv::currentParallelFramework() {
#endif #endif
} }
} // namespace cv::
CV_IMPL void cvSetNumThreads(int nt) CV_IMPL void cvSetNumThreads(int nt)
{ {
cv::setNumThreads(nt); cv::setNumThreads(nt);
......
...@@ -1519,6 +1519,23 @@ TEST(Core_sortIdx, regression_8941) ...@@ -1519,6 +1519,23 @@ TEST(Core_sortIdx, regression_8941)
"expected=" << std::endl << expected; "expected=" << std::endl << expected;
} }
TEST(Core_Mat, augmentation_operations_9688)
{
{
Mat x(1, 1, CV_64FC1, 1.0f);
Mat p(1, 4, CV_64FC1, 5.0f);
EXPECT_ANY_THROW(
x += p;
) << x;
}
{
Mat x(1, 1, CV_64FC1, 1.0f);
Mat p(1, 4, CV_64FC1, 5.0f);
EXPECT_ANY_THROW(
x -= p;
) << x;
}
}
//These tests guard regressions against running MatExpr //These tests guard regressions against running MatExpr
//operations on empty operands and giving bogus //operations on empty operands and giving bogus
......
...@@ -128,7 +128,7 @@ endif() ...@@ -128,7 +128,7 @@ endif()
set(dnn_runtime_libs "") set(dnn_runtime_libs "")
if(INF_ENGINE_TARGET) if(INF_ENGINE_TARGET)
ocv_option(OPENCV_DNN_IE_NN_BUILDER_2019 "Build with Inference Engine NN Builder API support" ON) ocv_option(OPENCV_DNN_IE_NN_BUILDER_2019 "Build with Inference Engine NN Builder API support" ON) # future: NOT HAVE_NGRAPH
if(OPENCV_DNN_IE_NN_BUILDER_2019) if(OPENCV_DNN_IE_NN_BUILDER_2019)
message(STATUS "DNN: Enabling Inference Engine NN Builder API support") message(STATUS "DNN: Enabling Inference Engine NN Builder API support")
add_definitions(-DHAVE_DNN_IE_NN_BUILDER_2019=1) add_definitions(-DHAVE_DNN_IE_NN_BUILDER_2019=1)
......
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
#define OPENCV_DNN_VERSION_HPP #define OPENCV_DNN_VERSION_HPP
/// Use with major OpenCV version only. /// Use with major OpenCV version only.
#define OPENCV_DNN_API_VERSION 20200128 #define OPENCV_DNN_API_VERSION 20200310
#if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_INLINE_NS #if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_INLINE_NS
#define CV__DNN_INLINE_NS __CV_CAT(dnn4_v, OPENCV_DNN_API_VERSION) #define CV__DNN_INLINE_NS __CV_CAT(dnn4_v, OPENCV_DNN_API_VERSION)
......
...@@ -149,7 +149,7 @@ namespace cv { ...@@ -149,7 +149,7 @@ namespace cv {
void setConvolution(int kernel, int pad, int stride, void setConvolution(int kernel, int pad, int stride,
int filters_num, int channels_num, int use_batch_normalize) int filters_num, int channels_num, int groups, int use_batch_normalize)
{ {
cv::dnn::LayerParams conv_param = cv::dnn::LayerParams conv_param =
getParamConvolution(kernel, pad, stride, filters_num); getParamConvolution(kernel, pad, stride, filters_num);
...@@ -162,6 +162,8 @@ namespace cv { ...@@ -162,6 +162,8 @@ namespace cv {
conv_param.set<bool>("bias_term", true); conv_param.set<bool>("bias_term", true);
} }
conv_param.set<int>("group", groups);
lp.layer_name = layer_name; lp.layer_name = layer_name;
lp.layer_type = conv_param.type; lp.layer_type = conv_param.type;
lp.layerParams = conv_param; lp.layerParams = conv_param;
...@@ -215,15 +217,30 @@ namespace cv { ...@@ -215,15 +217,30 @@ namespace cv {
fused_layer_names.push_back(last_layer); fused_layer_names.push_back(last_layer);
} }
void setReLU() void setActivation(String type)
{ {
cv::dnn::LayerParams activation_param; cv::dnn::LayerParams activation_param;
if (type == "relu")
{
activation_param.set<float>("negative_slope", 0.1f); activation_param.set<float>("negative_slope", 0.1f);
activation_param.name = "ReLU-name";
activation_param.type = "ReLU"; activation_param.type = "ReLU";
}
else if (type == "swish")
{
activation_param.type = "Swish";
}
else if (type == "logistic")
{
activation_param.type = "Sigmoid";
}
else
{
CV_Error(cv::Error::StsParseError, "Unsupported activation: " + type);
}
std::string layer_name = cv::format("%s_%d", type.c_str(), layer_id);
darknet::LayerParameter lp; darknet::LayerParameter lp;
std::string layer_name = cv::format("relu_%d", layer_id);
lp.layer_name = layer_name; lp.layer_name = layer_name;
lp.layer_type = activation_param.type; lp.layer_type = activation_param.type;
lp.layerParams = activation_param; lp.layerParams = activation_param;
...@@ -487,6 +504,25 @@ namespace cv { ...@@ -487,6 +504,25 @@ namespace cv {
fused_layer_names.push_back(last_layer); fused_layer_names.push_back(last_layer);
} }
void setScaleChannels(int from)
{
cv::dnn::LayerParams shortcut_param;
shortcut_param.type = "Scale";
darknet::LayerParameter lp;
std::string layer_name = cv::format("scale_channels_%d", layer_id);
lp.layer_name = layer_name;
lp.layer_type = shortcut_param.type;
lp.layerParams = shortcut_param;
lp.bottom_indexes.push_back(fused_layer_names.at(from));
lp.bottom_indexes.push_back(last_layer);
last_layer = layer_name;
net->layers.push_back(lp);
layer_id++;
fused_layer_names.push_back(last_layer);
}
void setUpsample(int scaleFactor) void setUpsample(int scaleFactor)
{ {
cv::dnn::LayerParams param; cv::dnn::LayerParams param;
...@@ -608,6 +644,7 @@ namespace cv { ...@@ -608,6 +644,7 @@ namespace cv {
int padding = getParam<int>(layer_params, "padding", 0); int padding = getParam<int>(layer_params, "padding", 0);
int stride = getParam<int>(layer_params, "stride", 1); int stride = getParam<int>(layer_params, "stride", 1);
int filters = getParam<int>(layer_params, "filters", -1); int filters = getParam<int>(layer_params, "filters", -1);
int groups = getParam<int>(layer_params, "groups", 1);
bool batch_normalize = getParam<int>(layer_params, "batch_normalize", 0) == 1; bool batch_normalize = getParam<int>(layer_params, "batch_normalize", 0) == 1;
int flipped = getParam<int>(layer_params, "flipped", 0); int flipped = getParam<int>(layer_params, "flipped", 0);
if (flipped == 1) if (flipped == 1)
...@@ -618,9 +655,10 @@ namespace cv { ...@@ -618,9 +655,10 @@ namespace cv {
CV_Assert(kernel_size > 0 && filters > 0); CV_Assert(kernel_size > 0 && filters > 0);
CV_Assert(tensor_shape[0] > 0); CV_Assert(tensor_shape[0] > 0);
CV_Assert(tensor_shape[0] % groups == 0);
setParams.setConvolution(kernel_size, padding, stride, filters, tensor_shape[0], setParams.setConvolution(kernel_size, padding, stride, filters, tensor_shape[0],
batch_normalize); groups, batch_normalize);
tensor_shape[0] = filters; tensor_shape[0] = filters;
tensor_shape[1] = (tensor_shape[1] - kernel_size + 2 * padding) / stride + 1; tensor_shape[1] = (tensor_shape[1] - kernel_size + 2 * padding) / stride + 1;
...@@ -727,6 +765,14 @@ namespace cv { ...@@ -727,6 +765,14 @@ namespace cv {
from = from < 0 ? from + layers_counter : from; from = from < 0 ? from + layers_counter : from;
setParams.setShortcut(from, alpha); setParams.setShortcut(from, alpha);
} }
else if (layer_type == "scale_channels")
{
std::string bottom_layer = getParam<std::string>(layer_params, "from", "");
CV_Assert(!bottom_layer.empty());
int from = std::atoi(bottom_layer.c_str());
from = from < 0 ? from + layers_counter : from;
setParams.setScaleChannels(from);
}
else if (layer_type == "upsample") else if (layer_type == "upsample")
{ {
int scaleFactor = getParam<int>(layer_params, "stride", 1); int scaleFactor = getParam<int>(layer_params, "stride", 1);
...@@ -761,7 +807,15 @@ namespace cv { ...@@ -761,7 +807,15 @@ namespace cv {
std::string activation = getParam<std::string>(layer_params, "activation", "linear"); std::string activation = getParam<std::string>(layer_params, "activation", "linear");
if (activation == "leaky") if (activation == "leaky")
{ {
setParams.setReLU(); setParams.setActivation("relu");
}
else if (activation == "swish")
{
setParams.setActivation("swish");
}
else if (activation == "logistic")
{
setParams.setActivation("logistic");
} }
else if (activation != "linear") else if (activation != "linear")
CV_Error(cv::Error::StsParseError, "Unsupported activation: " + activation); CV_Error(cv::Error::StsParseError, "Unsupported activation: " + activation);
...@@ -818,13 +872,15 @@ namespace cv { ...@@ -818,13 +872,15 @@ namespace cv {
{ {
int kernel_size = getParam<int>(layer_params, "size", -1); int kernel_size = getParam<int>(layer_params, "size", -1);
filters = getParam<int>(layer_params, "filters", -1); filters = getParam<int>(layer_params, "filters", -1);
int groups = getParam<int>(layer_params, "groups", 1);
use_batch_normalize = getParam<int>(layer_params, "batch_normalize", 0) == 1; use_batch_normalize = getParam<int>(layer_params, "batch_normalize", 0) == 1;
CV_Assert(kernel_size > 0 && filters > 0); CV_Assert(kernel_size > 0 && filters > 0);
CV_Assert(tensor_shape[0] > 0); CV_Assert(tensor_shape[0] > 0);
CV_Assert(tensor_shape[0] % groups == 0);
weights_size = filters * tensor_shape[0] * kernel_size * kernel_size; weights_size = filters * (tensor_shape[0] / groups) * kernel_size * kernel_size;
int sizes_weights[] = { filters, tensor_shape[0], kernel_size, kernel_size }; int sizes_weights[] = { filters, tensor_shape[0] / groups, kernel_size, kernel_size };
weightsBlob.create(4, sizes_weights, CV_32F); weightsBlob.create(4, sizes_weights, CV_32F);
} }
else else
...@@ -879,8 +935,8 @@ namespace cv { ...@@ -879,8 +935,8 @@ namespace cv {
} }
std::string activation = getParam<std::string>(layer_params, "activation", "linear"); std::string activation = getParam<std::string>(layer_params, "activation", "linear");
if(activation == "leaky") if(activation == "leaky" || activation == "swish" || activation == "logistic")
++cv_layers_counter; // For ReLU ++cv_layers_counter; // For ReLU, Swish, Sigmoid
if(!darknet_layers_counter) if(!darknet_layers_counter)
tensor_shape.resize(1); tensor_shape.resize(1);
......
...@@ -41,11 +41,13 @@ static const char* dumpInferenceEngineBackendType(Backend backend) ...@@ -41,11 +41,13 @@ static const char* dumpInferenceEngineBackendType(Backend backend)
Backend& getInferenceEngineBackendTypeParam() Backend& getInferenceEngineBackendTypeParam()
{ {
static Backend param = parseInferenceEngineBackendType( static Backend param = parseInferenceEngineBackendType(
utils::getConfigurationParameterString("OPENCV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019_TYPE", utils::getConfigurationParameterString("OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE",
#ifndef HAVE_DNN_IE_NN_BUILDER_2019 #ifdef HAVE_DNN_NGRAPH
CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
#else #elif defined(HAVE_DNN_IE_NN_BUILDER_2019)
CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API
#else
#error "Build configuration error: nGraph or NN Builder API backend should be enabled"
#endif #endif
) )
); );
......
...@@ -97,7 +97,7 @@ TEST(Test_Darknet, read_yolo_voc_stream) ...@@ -97,7 +97,7 @@ TEST(Test_Darknet, read_yolo_voc_stream)
class Test_Darknet_layers : public DNNTestLayer class Test_Darknet_layers : public DNNTestLayer
{ {
public: public:
void testDarknetLayer(const std::string& name, bool hasWeights = false) void testDarknetLayer(const std::string& name, bool hasWeights = false, bool testBatchProcessing = true)
{ {
SCOPED_TRACE(name); SCOPED_TRACE(name);
Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy")); Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy"));
...@@ -117,7 +117,7 @@ public: ...@@ -117,7 +117,7 @@ public:
Mat out = net.forward(); Mat out = net.forward();
normAssert(out, ref, "", default_l1, default_lInf); normAssert(out, ref, "", default_l1, default_lInf);
if (inp.size[0] == 1) // test handling of batch size if (inp.size[0] == 1 && testBatchProcessing) // test handling of batch size
{ {
SCOPED_TRACE("batch size 2"); SCOPED_TRACE("batch size 2");
...@@ -578,6 +578,12 @@ TEST_P(Test_Darknet_layers, convolutional) ...@@ -578,6 +578,12 @@ TEST_P(Test_Darknet_layers, convolutional)
testDarknetLayer("convolutional", true); testDarknetLayer("convolutional", true);
} }
TEST_P(Test_Darknet_layers, scale_channels)
{
// TODO: test fails for batches due to a bug/missing feature in ScaleLayer
testDarknetLayer("scale_channels", false, false);
}
TEST_P(Test_Darknet_layers, connected) TEST_P(Test_Darknet_layers, connected)
{ {
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
......
...@@ -1099,14 +1099,6 @@ inline static void recordPropertyVerbose(const std::string & property, ...@@ -1099,14 +1099,6 @@ inline static void recordPropertyVerbose(const std::string & property,
} }
} }
inline static void recordPropertyVerbose(const std::string& property, const std::string& msg,
const char* value, const char* build_value = NULL)
{
return recordPropertyVerbose(property, msg,
value ? std::string(value) : std::string(),
build_value ? std::string(build_value) : std::string());
}
#ifdef _DEBUG #ifdef _DEBUG
#define CV_TEST_BUILD_CONFIG "Debug" #define CV_TEST_BUILD_CONFIG "Debug"
#else #else
...@@ -1120,7 +1112,14 @@ void SystemInfoCollector::OnTestProgramStart(const testing::UnitTest&) ...@@ -1120,7 +1112,14 @@ void SystemInfoCollector::OnTestProgramStart(const testing::UnitTest&)
recordPropertyVerbose("cv_vcs_version", "OpenCV VCS version", getSnippetFromConfig("Version control:", "\n")); recordPropertyVerbose("cv_vcs_version", "OpenCV VCS version", getSnippetFromConfig("Version control:", "\n"));
recordPropertyVerbose("cv_build_type", "Build type", getSnippetFromConfig("Configuration:", "\n"), CV_TEST_BUILD_CONFIG); recordPropertyVerbose("cv_build_type", "Build type", getSnippetFromConfig("Configuration:", "\n"), CV_TEST_BUILD_CONFIG);
recordPropertyVerbose("cv_compiler", "Compiler", getSnippetFromConfig("C++ Compiler:", "\n")); recordPropertyVerbose("cv_compiler", "Compiler", getSnippetFromConfig("C++ Compiler:", "\n"));
recordPropertyVerbose("cv_parallel_framework", "Parallel framework", cv::currentParallelFramework()); const char* parallelFramework = cv::currentParallelFramework();
if (parallelFramework)
{
::testing::Test::RecordProperty("cv_parallel_framework", parallelFramework);
int threads = testThreads > 0 ? testThreads : cv::getNumThreads();
::testing::Test::RecordProperty("cv_parallel_threads", threads);
std::cout << "Parallel framework: " << parallelFramework << " (nthreads=" << threads << ")" << std::endl;
}
recordPropertyVerbose("cv_cpu_features", "CPU features", cv::getCPUFeaturesLine()); recordPropertyVerbose("cv_cpu_features", "CPU features", cv::getCPUFeaturesLine());
#ifdef HAVE_IPP #ifdef HAVE_IPP
recordPropertyVerbose("cv_ipp_version", "Intel(R) IPP version", cv::ipp::useIPP() ? cv::ipp::getIppVersion() : "disabled"); recordPropertyVerbose("cv_ipp_version", "Intel(R) IPP version", cv::ipp::useIPP() ? cv::ipp::getIppVersion() : "disabled");
......
...@@ -177,6 +177,7 @@ enum VideoCaptureProperties { ...@@ -177,6 +177,7 @@ enum VideoCaptureProperties {
CAP_PROP_AUTO_WB =44, //!< enable/ disable auto white-balance CAP_PROP_AUTO_WB =44, //!< enable/ disable auto white-balance
CAP_PROP_WB_TEMPERATURE=45, //!< white-balance color temperature CAP_PROP_WB_TEMPERATURE=45, //!< white-balance color temperature
CAP_PROP_CODEC_PIXEL_FORMAT =46, //!< (read-only) codec's pixel format. 4-character code - see VideoWriter::fourcc . Subset of [AV_PIX_FMT_*](https://github.com/FFmpeg/FFmpeg/blob/master/libavcodec/raw.c) or -1 if unknown CAP_PROP_CODEC_PIXEL_FORMAT =46, //!< (read-only) codec's pixel format. 4-character code - see VideoWriter::fourcc . Subset of [AV_PIX_FMT_*](https://github.com/FFmpeg/FFmpeg/blob/master/libavcodec/raw.c) or -1 if unknown
CAP_PROP_BITRATE =47, //!< (read-only) Video bitrate in kbits/s
#ifndef CV_DOXYGEN #ifndef CV_DOXYGEN
CV__CAP_PROP_LATEST CV__CAP_PROP_LATEST
#endif #endif
......
...@@ -495,7 +495,7 @@ struct CvCapture_FFMPEG ...@@ -495,7 +495,7 @@ struct CvCapture_FFMPEG
int64_t get_total_frames() const; int64_t get_total_frames() const;
double get_duration_sec() const; double get_duration_sec() const;
double get_fps() const; double get_fps() const;
int get_bitrate() const; int64_t get_bitrate() const;
double r2d(AVRational r) const; double r2d(AVRational r) const;
int64_t dts_to_frame_number(int64_t dts); int64_t dts_to_frame_number(int64_t dts);
...@@ -1425,6 +1425,8 @@ double CvCapture_FFMPEG::getProperty( int property_id ) const ...@@ -1425,6 +1425,8 @@ double CvCapture_FFMPEG::getProperty( int property_id ) const
if (rawMode) if (rawMode)
return -1; return -1;
break; break;
case CAP_PROP_BITRATE:
return static_cast<double>(get_bitrate());
default: default:
break; break;
} }
...@@ -1449,9 +1451,9 @@ double CvCapture_FFMPEG::get_duration_sec() const ...@@ -1449,9 +1451,9 @@ double CvCapture_FFMPEG::get_duration_sec() const
return sec; return sec;
} }
int CvCapture_FFMPEG::get_bitrate() const int64_t CvCapture_FFMPEG::get_bitrate() const
{ {
return ic->bit_rate; return ic->bit_rate / 1000;
} }
double CvCapture_FFMPEG::get_fps() const double CvCapture_FFMPEG::get_fps() const
......
...@@ -333,4 +333,70 @@ TEST(videoio_ffmpeg, parallel) ...@@ -333,4 +333,70 @@ TEST(videoio_ffmpeg, parallel)
} }
} }
typedef std::pair<VideoCaptureProperties, double> cap_property_t;
typedef std::vector<cap_property_t> cap_properties_t;
typedef std::pair<std::string, cap_properties_t> ffmpeg_cap_properties_param_t;
typedef testing::TestWithParam<ffmpeg_cap_properties_param_t> ffmpeg_cap_properties;
#ifdef _WIN32
namespace {
::testing::AssertionResult IsOneOf(double value, double expected1, double expected2)
{
// internal floating point class is used to perform accurate floating point types comparison
typedef ::testing::internal::FloatingPoint<double> FloatingPoint;
FloatingPoint val(value);
if (val.AlmostEquals(FloatingPoint(expected1)) || val.AlmostEquals(FloatingPoint(expected2)))
{
return ::testing::AssertionSuccess();
}
else
{
return ::testing::AssertionFailure()
<< value << " is neither equal to " << expected1 << " nor " << expected2;
}
}
}
#endif
TEST_P(ffmpeg_cap_properties, can_read_property)
{
if (!videoio_registry::hasBackend(CAP_FFMPEG))
throw SkipTestException("FFmpeg backend was not found");
ffmpeg_cap_properties_param_t parameters = GetParam();
const std::string path = parameters.first;
const cap_properties_t properties = parameters.second;
VideoCapture cap(findDataFile(path), CAP_FFMPEG);
ASSERT_TRUE(cap.isOpened()) << "Can not open " << findDataFile(path);
for (std::size_t i = 0; i < properties.size(); ++i)
{
const cap_property_t& prop = properties[i];
const double actualValue = cap.get(static_cast<int>(prop.first));
#ifndef _WIN32
EXPECT_DOUBLE_EQ(actualValue, prop.second)
<< "Property " << static_cast<int>(prop.first) << " has wrong value";
#else
EXPECT_TRUE(IsOneOf(actualValue, prop.second, 0.0))
<< "Property " << static_cast<int>(prop.first) << " has wrong value";
#endif
}
}
cap_properties_t loadBigBuckBunnyFFProbeResults() {
cap_property_t properties[] = { cap_property_t(CAP_PROP_BITRATE, 5851.),
cap_property_t(CAP_PROP_FPS, 24.),
cap_property_t(CAP_PROP_FRAME_HEIGHT, 384.),
cap_property_t(CAP_PROP_FRAME_WIDTH, 672.) };
return cap_properties_t(properties, properties + sizeof(properties) / sizeof(cap_property_t));
}
const ffmpeg_cap_properties_param_t videoio_ffmpeg_properties[] = {
ffmpeg_cap_properties_param_t("video/big_buck_bunny.avi", loadBigBuckBunnyFFProbeResults())
};
INSTANTIATE_TEST_CASE_P(videoio, ffmpeg_cap_properties, testing::ValuesIn(videoio_ffmpeg_properties));
}} // namespace }} // namespace
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment