Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ce20efb8
Commit
ce20efb8
authored
Dec 12, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #9804 from woodychow:optimize_cveigen
parents
b0bce60c
c0b6061a
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
292 additions
and
292 deletions
+292
-292
CoreTest.java
modules/core/misc/java/test/CoreTest.java
+51
-13
lapack.cpp
modules/core/src/lapack.cpp
+48
-0
test_eigen.cpp
modules/core/test/test_eigen.cpp
+22
-37
test_mat.cpp
modules/core/test/test_mat.cpp
+171
-242
No files found.
modules/core/misc/java/test/CoreTest.java
View file @
ce20efb8
...
@@ -394,7 +394,13 @@ public class CoreTest extends OpenCVTestCase {
...
@@ -394,7 +394,13 @@ public class CoreTest extends OpenCVTestCase {
}
}
public
void
testEigen
()
{
public
void
testEigen
()
{
Mat
src
=
new
Mat
(
3
,
3
,
CvType
.
CV_32FC1
,
new
Scalar
(
2.0
));
Mat
src
=
new
Mat
(
3
,
3
,
CvType
.
CV_32FC1
)
{
{
put
(
0
,
0
,
2
,
0
,
0
);
put
(
1
,
0
,
0
,
6
,
0
);
put
(
2
,
0
,
0
,
0
,
4
);
}
};
Mat
eigenVals
=
new
Mat
();
Mat
eigenVals
=
new
Mat
();
Mat
eigenVecs
=
new
Mat
();
Mat
eigenVecs
=
new
Mat
();
...
@@ -402,18 +408,22 @@ public class CoreTest extends OpenCVTestCase {
...
@@ -402,18 +408,22 @@ public class CoreTest extends OpenCVTestCase {
Mat
expectedEigenVals
=
new
Mat
(
3
,
1
,
CvType
.
CV_32FC1
)
{
Mat
expectedEigenVals
=
new
Mat
(
3
,
1
,
CvType
.
CV_32FC1
)
{
{
{
put
(
0
,
0
,
6
,
0
,
0
);
put
(
0
,
0
,
6
,
4
,
2
);
}
};
Mat
expectedEigenVecs
=
new
Mat
(
3
,
3
,
CvType
.
CV_32FC1
)
{
{
put
(
0
,
0
,
0.57735026
,
0.57735026
,
0.57735032
);
put
(
1
,
0
,
0.70710677
,
-
0.70710677
,
0
);
put
(
2
,
0
,
-
0.40824831
,
-
0.40824831
,
0.81649661
);
}
}
};
};
assertMatEqual
(
eigenVals
,
expectedEigenVals
,
EPS
);
assertMatEqual
(
eigenVals
,
expectedEigenVals
,
EPS
);
assertMatEqual
(
eigenVecs
,
expectedEigenVecs
,
EPS
);
// check by definition
double
eps
=
1
e
-
3
;
for
(
int
i
=
0
;
i
<
3
;
i
++)
{
Mat
vec
=
eigenVecs
.
row
(
i
).
t
();
Mat
lhs
=
new
Mat
(
3
,
1
,
CvType
.
CV_32FC1
);
Core
.
gemm
(
src
,
vec
,
1.0
,
new
Mat
(),
1.0
,
lhs
);
Mat
rhs
=
new
Mat
(
3
,
1
,
CvType
.
CV_32FC1
);
Core
.
gemm
(
vec
,
eigenVals
.
row
(
i
),
1.0
,
new
Mat
(),
1.0
,
rhs
);
assertMatEqual
(
lhs
,
rhs
,
eps
);
}
}
}
public
void
testExp
()
{
public
void
testExp
()
{
...
@@ -1326,7 +1336,8 @@ public class CoreTest extends OpenCVTestCase {
...
@@ -1326,7 +1336,8 @@ public class CoreTest extends OpenCVTestCase {
Mat
vectors
=
new
Mat
();
Mat
vectors
=
new
Mat
();
Core
.
PCACompute
(
data
,
mean
,
vectors
);
Core
.
PCACompute
(
data
,
mean
,
vectors
);
//System.out.println(mean.dump());
//System.out.println(vectors.dump());
Mat
mean_truth
=
new
Mat
(
1
,
4
,
CvType
.
CV_32F
)
{
Mat
mean_truth
=
new
Mat
(
1
,
4
,
CvType
.
CV_32F
)
{
{
{
put
(
0
,
0
,
2
,
4
,
4
,
8
);
put
(
0
,
0
,
2
,
4
,
4
,
8
);
...
@@ -1338,7 +1349,21 @@ public class CoreTest extends OpenCVTestCase {
...
@@ -1338,7 +1349,21 @@ public class CoreTest extends OpenCVTestCase {
}
}
};
};
assertMatEqual
(
mean_truth
,
mean
,
EPS
);
assertMatEqual
(
mean_truth
,
mean
,
EPS
);
assertMatEqual
(
vectors_truth
,
vectors
,
EPS
);
// eigenvectors are normalized (length = 1),
// but direction is unknown (v and -v are both eigen vectors)
// so this direct check doesn't work:
// assertMatEqual(vectors_truth, vectors, EPS);
for
(
int
i
=
0
;
i
<
3
;
i
++)
{
Mat
vec0
=
vectors_truth
.
row
(
i
);
Mat
vec1
=
vectors
.
row
(
i
);
Mat
vec1_
=
new
Mat
();
Core
.
subtract
(
new
Mat
(
1
,
4
,
CvType
.
CV_32F
,
new
Scalar
(
0
)),
vec1
,
vec1_
);
double
scale1
=
Core
.
norm
(
vec0
,
vec1
);
double
scale2
=
Core
.
norm
(
vec0
,
vec1_
);
assertTrue
(
Math
.
min
(
scale1
,
scale2
)
<
EPS
);
}
}
}
public
void
testPCAComputeMatMatMatInt
()
{
public
void
testPCAComputeMatMatMatInt
()
{
...
@@ -1365,7 +1390,20 @@ public class CoreTest extends OpenCVTestCase {
...
@@ -1365,7 +1390,20 @@ public class CoreTest extends OpenCVTestCase {
}
}
};
};
assertMatEqual
(
mean_truth
,
mean
,
EPS
);
assertMatEqual
(
mean_truth
,
mean
,
EPS
);
assertMatEqual
(
vectors_truth
,
vectors
,
EPS
);
// eigenvectors are normalized (length = 1),
// but direction is unknown (v and -v are both eigen vectors)
// so this direct check doesn't work:
// assertMatEqual(vectors_truth, vectors, EPS);
for
(
int
i
=
0
;
i
<
1
;
i
++)
{
Mat
vec0
=
vectors_truth
.
row
(
i
);
Mat
vec1
=
vectors
.
row
(
i
);
Mat
vec1_
=
new
Mat
();
Core
.
subtract
(
new
Mat
(
1
,
4
,
CvType
.
CV_32F
,
new
Scalar
(
0
)),
vec1
,
vec1_
);
double
scale1
=
Core
.
norm
(
vec0
,
vec1
);
double
scale2
=
Core
.
norm
(
vec0
,
vec1_
);
assertTrue
(
Math
.
min
(
scale1
,
scale2
)
<
EPS
);
}
}
}
public
void
testPCAProject
()
{
public
void
testPCAProject
()
{
...
...
modules/core/src/lapack.cpp
View file @
ce20efb8
...
@@ -43,6 +43,12 @@
...
@@ -43,6 +43,12 @@
#include "precomp.hpp"
#include "precomp.hpp"
#include <limits>
#include <limits>
#ifdef HAVE_EIGEN
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include "opencv2/core/eigen.hpp"
#endif
#if defined _M_IX86 && defined _MSC_VER && _MSC_VER < 1700
#if defined _M_IX86 && defined _MSC_VER && _MSC_VER < 1700
#pragma float_control(precise, on)
#pragma float_control(precise, on)
#endif
#endif
...
@@ -1396,6 +1402,47 @@ bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
...
@@ -1396,6 +1402,47 @@ bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
v
=
_evects
.
getMat
();
v
=
_evects
.
getMat
();
}
}
#ifdef HAVE_EIGEN
const
bool
evecNeeded
=
_evects
.
needed
();
const
int
esOptions
=
evecNeeded
?
Eigen
::
ComputeEigenvectors
:
Eigen
::
EigenvaluesOnly
;
_evals
.
create
(
n
,
1
,
type
);
cv
::
Mat
evals
=
_evals
.
getMat
();
if
(
type
==
CV_64F
)
{
Eigen
::
MatrixXd
src_eig
,
zeros_eig
;
cv
::
cv2eigen
(
src
,
src_eig
);
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
MatrixXd
>
es
;
es
.
compute
(
src_eig
,
esOptions
);
if
(
es
.
info
()
==
Eigen
::
Success
)
{
cv
::
eigen2cv
(
es
.
eigenvalues
().
reverse
().
eval
(),
evals
);
if
(
evecNeeded
)
{
cv
::
Mat
evects
=
_evects
.
getMat
();
cv
::
eigen2cv
(
es
.
eigenvectors
().
rowwise
().
reverse
().
transpose
().
eval
(),
v
);
}
return
true
;
}
}
else
{
// CV_32F
Eigen
::
MatrixXf
src_eig
,
zeros_eig
;
cv
::
cv2eigen
(
src
,
src_eig
);
Eigen
::
SelfAdjointEigenSolver
<
Eigen
::
MatrixXf
>
es
;
es
.
compute
(
src_eig
,
esOptions
);
if
(
es
.
info
()
==
Eigen
::
Success
)
{
cv
::
eigen2cv
(
es
.
eigenvalues
().
reverse
().
eval
(),
evals
);
if
(
evecNeeded
)
{
cv
::
eigen2cv
(
es
.
eigenvectors
().
rowwise
().
reverse
().
transpose
().
eval
(),
v
);
}
return
true
;
}
}
return
false
;
#else
size_t
elemSize
=
src
.
elemSize
(),
astep
=
alignSize
(
n
*
elemSize
,
16
);
size_t
elemSize
=
src
.
elemSize
(),
astep
=
alignSize
(
n
*
elemSize
,
16
);
AutoBuffer
<
uchar
>
buf
(
n
*
astep
+
n
*
5
*
elemSize
+
32
);
AutoBuffer
<
uchar
>
buf
(
n
*
astep
+
n
*
5
*
elemSize
+
32
);
uchar
*
ptr
=
alignPtr
((
uchar
*
)
buf
,
16
);
uchar
*
ptr
=
alignPtr
((
uchar
*
)
buf
,
16
);
...
@@ -1408,6 +1455,7 @@ bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
...
@@ -1408,6 +1455,7 @@ bool cv::eigen( InputArray _src, OutputArray _evals, OutputArray _evects )
w
.
copyTo
(
_evals
);
w
.
copyTo
(
_evals
);
return
ok
;
return
ok
;
#endif
}
}
namespace
cv
namespace
cv
...
...
modules/core/test/test_eigen.cpp
View file @
ce20efb8
...
@@ -59,7 +59,7 @@ using namespace std;
...
@@ -59,7 +59,7 @@ using namespace std;
#define MESSAGE_ERROR_DIFF_1 "Accuracy of eigen values computing less than required."
#define MESSAGE_ERROR_DIFF_1 "Accuracy of eigen values computing less than required."
#define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required."
#define MESSAGE_ERROR_DIFF_2 "Accuracy of eigen vectors computing less than required."
#define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal."
#define MESSAGE_ERROR_ORTHO "Matrix of eigen vectors is not orthogonal."
#define MESSAGE_ERROR_ORDER "Eigen values are not sorted in
a
scending order."
#define MESSAGE_ERROR_ORDER "Eigen values are not sorted in
de
scending order."
const
int
COUNT_NORM_TYPES
=
3
;
const
int
COUNT_NORM_TYPES
=
3
;
const
int
NORM_TYPE
[
COUNT_NORM_TYPES
]
=
{
cv
::
NORM_L1
,
cv
::
NORM_L2
,
cv
::
NORM_INF
};
const
int
NORM_TYPE
[
COUNT_NORM_TYPES
]
=
{
cv
::
NORM_L1
,
cv
::
NORM_L2
,
cv
::
NORM_INF
};
...
@@ -164,8 +164,8 @@ void Core_EigenTest_32::run(int) { check_full(CV_32FC1); }
...
@@ -164,8 +164,8 @@ void Core_EigenTest_32::run(int) { check_full(CV_32FC1); }
void
Core_EigenTest_64
::
run
(
int
)
{
check_full
(
CV_64FC1
);
}
void
Core_EigenTest_64
::
run
(
int
)
{
check_full
(
CV_64FC1
);
}
Core_EigenTest
::
Core_EigenTest
()
Core_EigenTest
::
Core_EigenTest
()
:
eps_val_32
(
1e-3
f
),
eps_vec_32
(
1
2
e-3
f
),
:
eps_val_32
(
1e-3
f
),
eps_vec_32
(
1e-3
f
),
eps_val_64
(
1e-4
f
),
eps_vec_64
(
1e-
3
f
),
ntests
(
100
)
{}
eps_val_64
(
1e-4
f
),
eps_vec_64
(
1e-
4
f
),
ntests
(
100
)
{}
Core_EigenTest
::~
Core_EigenTest
()
{}
Core_EigenTest
::~
Core_EigenTest
()
{}
bool
Core_EigenTest
::
check_pair_count
(
const
cv
::
Mat
&
src
,
const
cv
::
Mat
&
evalues
,
int
low_index
,
int
high_index
)
bool
Core_EigenTest
::
check_pair_count
(
const
cv
::
Mat
&
src
,
const
cv
::
Mat
&
evalues
,
int
low_index
,
int
high_index
)
...
@@ -234,7 +234,7 @@ bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
...
@@ -234,7 +234,7 @@ bool Core_EigenTest::check_orthogonality(const cv::Mat& U)
for
(
int
i
=
0
;
i
<
COUNT_NORM_TYPES
;
++
i
)
for
(
int
i
=
0
;
i
<
COUNT_NORM_TYPES
;
++
i
)
{
{
double
diff
=
cvtest
::
norm
(
UUt
,
E
,
NORM_TYPE
[
i
]);
double
diff
=
cvtest
::
norm
(
UUt
,
E
,
NORM_TYPE
[
i
]
|
cv
::
NORM_RELATIVE
);
if
(
diff
>
eps_vec
)
if
(
diff
>
eps_vec
)
{
{
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking orthogonality of matrix "
<<
U
<<
": "
;
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking orthogonality of matrix "
<<
U
<<
": "
;
...
@@ -257,7 +257,7 @@ bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
...
@@ -257,7 +257,7 @@ bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
if
(
!
(
eigen_values
.
at
<
float
>
(
i
,
0
)
>
eigen_values
.
at
<
float
>
(
i
+
1
,
0
)))
if
(
!
(
eigen_values
.
at
<
float
>
(
i
,
0
)
>
eigen_values
.
at
<
float
>
(
i
+
1
,
0
)))
{
{
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking order of eigen values vector "
<<
eigen_values
<<
"..."
<<
endl
;
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking order of eigen values vector "
<<
eigen_values
<<
"..."
<<
endl
;
std
::
cout
<<
"Pair of indexes with non
a
scending of eigen values: ("
<<
i
<<
", "
<<
i
+
1
<<
")."
<<
endl
;
std
::
cout
<<
"Pair of indexes with non
de
scending of eigen values: ("
<<
i
<<
", "
<<
i
+
1
<<
")."
<<
endl
;
std
::
cout
<<
endl
;
std
::
cout
<<
endl
;
CV_Error
(
CORE_EIGEN_ERROR_ORDER
,
MESSAGE_ERROR_ORDER
);
CV_Error
(
CORE_EIGEN_ERROR_ORDER
,
MESSAGE_ERROR_ORDER
);
return
false
;
return
false
;
...
@@ -272,9 +272,9 @@ bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
...
@@ -272,9 +272,9 @@ bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values)
if
(
!
(
eigen_values
.
at
<
double
>
(
i
,
0
)
>
eigen_values
.
at
<
double
>
(
i
+
1
,
0
)))
if
(
!
(
eigen_values
.
at
<
double
>
(
i
,
0
)
>
eigen_values
.
at
<
double
>
(
i
+
1
,
0
)))
{
{
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking order of eigen values vector "
<<
eigen_values
<<
"..."
<<
endl
;
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking order of eigen values vector "
<<
eigen_values
<<
"..."
<<
endl
;
std
::
cout
<<
"Pair of indexes with non
a
scending of eigen values: ("
<<
i
<<
", "
<<
i
+
1
<<
")."
<<
endl
;
std
::
cout
<<
"Pair of indexes with non
de
scending of eigen values: ("
<<
i
<<
", "
<<
i
+
1
<<
")."
<<
endl
;
std
::
cout
<<
endl
;
std
::
cout
<<
endl
;
CV_Error
(
CORE_EIGEN_ERROR_ORDER
,
"Eigen values are not sorted in
a
scending order."
);
CV_Error
(
CORE_EIGEN_ERROR_ORDER
,
"Eigen values are not sorted in
de
scending order."
);
return
false
;
return
false
;
}
}
...
@@ -307,43 +307,28 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src)
...
@@ -307,43 +307,28 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src)
cv
::
Mat
eigen_vectors_t
;
cv
::
transpose
(
eigen_vectors
,
eigen_vectors_t
);
cv
::
Mat
eigen_vectors_t
;
cv
::
transpose
(
eigen_vectors
,
eigen_vectors_t
);
cv
::
Mat
src_evec
(
src
.
rows
,
src
.
cols
,
type
);
// Check:
src_evec
=
src
*
eigen_vectors_t
;
// src * eigenvector = eigenval * eigenvector
cv
::
Mat
lhs
(
src
.
rows
,
src
.
cols
,
type
);
cv
::
Mat
rhs
(
src
.
rows
,
src
.
cols
,
type
);
cv
::
Mat
eval_evec
(
src
.
rows
,
src
.
cols
,
type
)
;
lhs
=
src
*
eigen_vectors_t
;
switch
(
type
)
for
(
int
i
=
0
;
i
<
src
.
cols
;
++
i
)
{
{
case
CV_32FC1
:
double
eigenval
=
0
;
{
switch
(
type
)
for
(
int
i
=
0
;
i
<
src
.
cols
;
++
i
)
{
cv
::
Mat
tmp
=
eigen_values
.
at
<
float
>
(
i
,
0
)
*
eigen_vectors_t
.
col
(
i
);
for
(
int
j
=
0
;
j
<
src
.
rows
;
++
j
)
eval_evec
.
at
<
float
>
(
j
,
i
)
=
tmp
.
at
<
float
>
(
j
,
0
);
}
break
;
}
case
CV_64FC1
:
{
{
for
(
int
i
=
0
;
i
<
src
.
cols
;
++
i
)
case
CV_32FC1
:
eigenval
=
eigen_values
.
at
<
float
>
(
i
,
0
);
break
;
{
case
CV_64FC1
:
eigenval
=
eigen_values
.
at
<
double
>
(
i
,
0
);
break
;
cv
::
Mat
tmp
=
eigen_values
.
at
<
double
>
(
i
,
0
)
*
eigen_vectors_t
.
col
(
i
);
for
(
int
j
=
0
;
j
<
src
.
rows
;
++
j
)
eval_evec
.
at
<
double
>
(
j
,
i
)
=
tmp
.
at
<
double
>
(
j
,
0
);
}
break
;
}
}
cv
::
Mat
rhs_v
=
eigenval
*
eigen_vectors_t
.
col
(
i
);
default
:
;
rhs_v
.
copyTo
(
rhs
.
col
(
i
))
;
}
}
cv
::
Mat
disparity
=
src_evec
-
eval_evec
;
for
(
int
i
=
0
;
i
<
COUNT_NORM_TYPES
;
++
i
)
for
(
int
i
=
0
;
i
<
COUNT_NORM_TYPES
;
++
i
)
{
{
double
diff
=
cvtest
::
norm
(
disparity
,
NORM_TYPE
[
i
]
);
double
diff
=
cvtest
::
norm
(
lhs
,
rhs
,
NORM_TYPE
[
i
]
|
cv
::
NORM_RELATIVE
);
if
(
diff
>
eps_vec
)
if
(
diff
>
eps_vec
)
{
{
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking accuracy of eigen vectors computing for matrix "
<<
src
<<
": "
;
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking accuracy of eigen vectors computing for matrix "
<<
src
<<
": "
;
...
@@ -372,7 +357,7 @@ bool Core_EigenTest::test_values(const cv::Mat& src)
...
@@ -372,7 +357,7 @@ bool Core_EigenTest::test_values(const cv::Mat& src)
for
(
int
i
=
0
;
i
<
COUNT_NORM_TYPES
;
++
i
)
for
(
int
i
=
0
;
i
<
COUNT_NORM_TYPES
;
++
i
)
{
{
double
diff
=
cvtest
::
norm
(
eigen_values_1
,
eigen_values_2
,
NORM_TYPE
[
i
]);
double
diff
=
cvtest
::
norm
(
eigen_values_1
,
eigen_values_2
,
NORM_TYPE
[
i
]
|
cv
::
NORM_RELATIVE
);
if
(
diff
>
eps_val
)
if
(
diff
>
eps_val
)
{
{
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking accuracy of eigen values computing for matrix "
<<
src
<<
": "
;
std
::
cout
<<
endl
;
std
::
cout
<<
"Checking accuracy of eigen values computing for matrix "
<<
src
<<
": "
;
...
@@ -419,7 +404,7 @@ static void testEigen(const Mat_<T>& src, const Mat_<T>& expected_eigenvalues, b
...
@@ -419,7 +404,7 @@ static void testEigen(const Mat_<T>& src, const Mat_<T>& expected_eigenvalues, b
SCOPED_TRACE
(
runSymmetric
?
"cv::eigen"
:
"cv::eigenNonSymmetric"
);
SCOPED_TRACE
(
runSymmetric
?
"cv::eigen"
:
"cv::eigenNonSymmetric"
);
int
type
=
traits
::
Type
<
T
>::
value
;
int
type
=
traits
::
Type
<
T
>::
value
;
const
T
eps
=
1e-6
f
;
const
T
eps
=
src
.
type
()
==
CV_32F
?
1e-4
f
:
1e-6
f
;
Mat
eigenvalues
,
eigenvectors
,
eigenvalues0
;
Mat
eigenvalues
,
eigenvectors
,
eigenvalues0
;
...
...
modules/core/test/test_mat.cpp
View file @
ce20efb8
...
@@ -286,258 +286,188 @@ void Core_ReduceTest::run( int )
...
@@ -286,258 +286,188 @@ void Core_ReduceTest::run( int )
#define CHECK_C
#define CHECK_C
class
Core_PCATest
:
public
cvtest
::
BaseTest
TEST
(
Core_PCA
,
accuracy
)
{
{
public
:
const
Size
sz
(
200
,
500
);
Core_PCATest
()
{}
protected
:
double
diffPrjEps
,
diffBackPrjEps
,
void
run
(
int
)
prjEps
,
backPrjEps
,
{
evalEps
,
evecEps
;
const
Size
sz
(
200
,
500
);
int
maxComponents
=
100
;
double
retainedVariance
=
0.95
;
double
diffPrjEps
,
diffBackPrjEps
,
Mat
rPoints
(
sz
,
CV_32FC1
),
rTestPoints
(
sz
,
CV_32FC1
);
prjEps
,
backPrjEps
,
RNG
rng
(
12345
);
evalEps
,
evecEps
;
int
maxComponents
=
100
;
rng
.
fill
(
rPoints
,
RNG
::
UNIFORM
,
Scalar
::
all
(
0.0
),
Scalar
::
all
(
1.0
)
);
double
retainedVariance
=
0.95
;
rng
.
fill
(
rTestPoints
,
RNG
::
UNIFORM
,
Scalar
::
all
(
0.0
),
Scalar
::
all
(
1.0
)
);
Mat
rPoints
(
sz
,
CV_32FC1
),
rTestPoints
(
sz
,
CV_32FC1
);
RNG
&
rng
=
ts
->
get_rng
();
PCA
rPCA
(
rPoints
,
Mat
(),
CV_PCA_DATA_AS_ROW
,
maxComponents
),
cPCA
;
rng
.
fill
(
rPoints
,
RNG
::
UNIFORM
,
Scalar
::
all
(
0.0
),
Scalar
::
all
(
1.0
)
);
// 1. check C++ PCA & ROW
rng
.
fill
(
rTestPoints
,
RNG
::
UNIFORM
,
Scalar
::
all
(
0.0
),
Scalar
::
all
(
1.0
)
);
Mat
rPrjTestPoints
=
rPCA
.
project
(
rTestPoints
);
Mat
rBackPrjTestPoints
=
rPCA
.
backProject
(
rPrjTestPoints
);
PCA
rPCA
(
rPoints
,
Mat
(),
CV_PCA_DATA_AS_ROW
,
maxComponents
),
cPCA
;
Mat
avg
(
1
,
sz
.
width
,
CV_32FC1
);
// 1. check C++ PCA & ROW
cv
::
reduce
(
rPoints
,
avg
,
0
,
CV_REDUCE_AVG
);
Mat
rPrjTestPoints
=
rPCA
.
project
(
rTestPoints
);
Mat
Q
=
rPoints
-
repeat
(
avg
,
rPoints
.
rows
,
1
),
Qt
=
Q
.
t
(),
eval
,
evec
;
Mat
rBackPrjTestPoints
=
rPCA
.
backProject
(
rPrjTestPoints
);
Q
=
Qt
*
Q
;
Q
=
Q
/
(
float
)
rPoints
.
rows
;
Mat
avg
(
1
,
sz
.
width
,
CV_32FC1
);
cv
::
reduce
(
rPoints
,
avg
,
0
,
CV_REDUCE_AVG
);
eigen
(
Q
,
eval
,
evec
);
Mat
Q
=
rPoints
-
repeat
(
avg
,
rPoints
.
rows
,
1
),
Qt
=
Q
.
t
(),
eval
,
evec
;
/*SVD svd(Q);
Q
=
Qt
*
Q
;
evec = svd.vt;
Q
=
Q
/
(
float
)
rPoints
.
rows
;
eval = svd.w;*/
eigen
(
Q
,
eval
,
evec
);
Mat
subEval
(
maxComponents
,
1
,
eval
.
type
(),
eval
.
ptr
()
),
/*SVD svd(Q);
subEvec
(
maxComponents
,
evec
.
cols
,
evec
.
type
(),
evec
.
ptr
()
);
evec = svd.vt;
eval = svd.w;*/
#ifdef CHECK_C
Mat
prjTestPoints
,
backPrjTestPoints
,
cPoints
=
rPoints
.
t
(),
cTestPoints
=
rTestPoints
.
t
();
Mat
subEval
(
maxComponents
,
1
,
eval
.
type
(),
eval
.
ptr
()
),
CvMat
_points
,
_testPoints
,
_avg
,
_eval
,
_evec
,
_prjTestPoints
,
_backPrjTestPoints
;
subEvec
(
maxComponents
,
evec
.
cols
,
evec
.
type
(),
evec
.
ptr
()
);
#endif
#ifdef CHECK_C
Mat
prjTestPoints
,
backPrjTestPoints
,
cPoints
=
rPoints
.
t
(),
cTestPoints
=
rTestPoints
.
t
();
CvMat
_points
,
_testPoints
,
_avg
,
_eval
,
_evec
,
_prjTestPoints
,
_backPrjTestPoints
;
#endif
// check eigen()
double
eigenEps
=
1e-6
;
double
err
;
for
(
int
i
=
0
;
i
<
Q
.
rows
;
i
++
)
{
Mat
v
=
evec
.
row
(
i
).
t
();
Mat
Qv
=
Q
*
v
;
Mat
lv
=
eval
.
at
<
float
>
(
i
,
0
)
*
v
;
err
=
cvtest
::
norm
(
Qv
,
lv
,
NORM_L2
);
if
(
err
>
eigenEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of eigen(); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
}
// check pca eigenvalues
evalEps
=
1e-6
,
evecEps
=
1e-3
;
err
=
cvtest
::
norm
(
rPCA
.
eigenvalues
,
subEval
,
NORM_L2
);
if
(
err
>
evalEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
// check pca eigenvectors
for
(
int
i
=
0
;
i
<
subEvec
.
rows
;
i
++
)
{
Mat
r0
=
rPCA
.
eigenvectors
.
row
(
i
);
Mat
r1
=
subEvec
.
row
(
i
);
err
=
cvtest
::
norm
(
r0
,
r1
,
CV_L2
);
if
(
err
>
evecEps
)
{
r1
*=
-
1
;
double
err2
=
cvtest
::
norm
(
r0
,
r1
,
CV_L2
);
if
(
err2
>
evecEps
)
{
Mat
tmp
;
absdiff
(
rPCA
.
eigenvectors
,
subEvec
,
tmp
);
double
mval
=
0
;
Point
mloc
;
minMaxLoc
(
tmp
,
0
,
&
mval
,
0
,
&
mloc
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW); err = %f
\n
"
,
err
);
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"max diff is %g at (i=%d, j=%d) (%g vs %g)
\n
"
,
mval
,
mloc
.
y
,
mloc
.
x
,
rPCA
.
eigenvectors
.
at
<
float
>
(
mloc
.
y
,
mloc
.
x
),
subEvec
.
at
<
float
>
(
mloc
.
y
,
mloc
.
x
));
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
}
}
prjEps
=
1.265
,
backPrjEps
=
1.265
;
for
(
int
i
=
0
;
i
<
rTestPoints
.
rows
;
i
++
)
{
// check pca project
Mat
subEvec_t
=
subEvec
.
t
();
Mat
prj
=
rTestPoints
.
row
(
i
)
-
avg
;
prj
*=
subEvec_t
;
err
=
cvtest
::
norm
(
rPrjTestPoints
.
row
(
i
),
prj
,
CV_RELATIVE_L2
);
if
(
err
>
prjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
// check pca backProject
Mat
backPrj
=
rPrjTestPoints
.
row
(
i
)
*
subEvec
+
avg
;
err
=
cvtest
::
norm
(
rBackPrjTestPoints
.
row
(
i
),
backPrj
,
CV_RELATIVE_L2
);
if
(
err
>
backPrjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
}
// 2. check C++ PCA & COL
cPCA
(
rPoints
.
t
(),
Mat
(),
CV_PCA_DATA_AS_COL
,
maxComponents
);
diffPrjEps
=
1
,
diffBackPrjEps
=
1
;
Mat
ocvPrjTestPoints
=
cPCA
.
project
(
rTestPoints
.
t
());
err
=
cvtest
::
norm
(
cv
::
abs
(
ocvPrjTestPoints
),
cv
::
abs
(
rPrjTestPoints
.
t
()),
CV_RELATIVE_L2
);
if
(
err
>
diffPrjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
err
=
cvtest
::
norm
(
cPCA
.
backProject
(
ocvPrjTestPoints
),
rBackPrjTestPoints
.
t
(),
CV_RELATIVE_L2
);
if
(
err
>
diffBackPrjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
// 3. check C++ PCA w/retainedVariance
cPCA
(
rPoints
.
t
(),
Mat
(),
CV_PCA_DATA_AS_COL
,
retainedVariance
);
diffPrjEps
=
1
,
diffBackPrjEps
=
1
;
Mat
rvPrjTestPoints
=
cPCA
.
project
(
rTestPoints
.
t
());
if
(
cPCA
.
eigenvectors
.
rows
>
maxComponents
)
err
=
cvtest
::
norm
(
cv
::
abs
(
rvPrjTestPoints
.
rowRange
(
0
,
maxComponents
)),
cv
::
abs
(
rPrjTestPoints
.
t
()),
CV_RELATIVE_L2
);
else
err
=
cvtest
::
norm
(
cv
::
abs
(
rvPrjTestPoints
),
cv
::
abs
(
rPrjTestPoints
.
colRange
(
0
,
cPCA
.
eigenvectors
.
rows
).
t
()),
CV_RELATIVE_L2
);
if
(
err
>
diffPrjEps
)
// check eigen()
{
double
eigenEps
=
1e-4
;
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f
\n
"
,
err
);
double
err
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
for
(
int
i
=
0
;
i
<
Q
.
rows
;
i
++
)
return
;
{
}
Mat
v
=
evec
.
row
(
i
).
t
();
err
=
cvtest
::
norm
(
cPCA
.
backProject
(
rvPrjTestPoints
),
rBackPrjTestPoints
.
t
(),
CV_RELATIVE_L2
);
Mat
Qv
=
Q
*
v
;
if
(
err
>
diffBackPrjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
#ifdef CHECK_C
Mat
lv
=
eval
.
at
<
float
>
(
i
,
0
)
*
v
;
// 4. check C PCA & ROW
err
=
cvtest
::
norm
(
Qv
,
lv
,
NORM_L2
|
NORM_RELATIVE
);
_points
=
rPoints
;
EXPECT_LE
(
err
,
eigenEps
)
<<
"bad accuracy of eigen(); i = "
<<
i
;
_testPoints
=
rTestPoints
;
}
_avg
=
avg
;
// check pca eigenvalues
_eval
=
eval
;
evalEps
=
1e-5
,
evecEps
=
5e-3
;
_evec
=
evec
;
err
=
cvtest
::
norm
(
rPCA
.
eigenvalues
,
subEval
,
NORM_L2
|
NORM_RELATIVE
);
prjTestPoints
.
create
(
rTestPoints
.
rows
,
maxComponents
,
rTestPoints
.
type
()
);
EXPECT_LE
(
err
,
evalEps
)
<<
"pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW)"
;
backPrjTestPoints
.
create
(
rPoints
.
size
(),
rPoints
.
type
()
);
// check pca eigenvectors
_prjTestPoints
=
prjTestPoints
;
for
(
int
i
=
0
;
i
<
subEvec
.
rows
;
i
++
)
_backPrjTestPoints
=
backPrjTestPoints
;
{
Mat
r0
=
rPCA
.
eigenvectors
.
row
(
i
);
cvCalcPCA
(
&
_points
,
&
_avg
,
&
_eval
,
&
_evec
,
CV_PCA_DATA_AS_ROW
);
Mat
r1
=
subEvec
.
row
(
i
);
cvProjectPCA
(
&
_testPoints
,
&
_avg
,
&
_evec
,
&
_prjTestPoints
);
// eigenvectors have normalized length, but both directions v and -v are valid
cvBackProjectPCA
(
&
_prjTestPoints
,
&
_avg
,
&
_evec
,
&
_backPrjTestPoints
);
double
err1
=
cvtest
::
norm
(
r0
,
r1
,
NORM_L2
|
NORM_RELATIVE
);
double
err2
=
cvtest
::
norm
(
r0
,
-
r1
,
NORM_L2
|
NORM_RELATIVE
);
err
=
cvtest
::
norm
(
prjTestPoints
,
rPrjTestPoints
,
CV_RELATIVE_L2
);
err
=
std
::
min
(
err1
,
err2
);
if
(
err
>
diffPrjEps
)
if
(
err
>
evecEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
err
=
cvtest
::
norm
(
backPrjTestPoints
,
rBackPrjTestPoints
,
CV_RELATIVE_L2
);
if
(
err
>
diffBackPrjEps
)
{
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f
\n
"
,
err
);
Mat
tmp
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
absdiff
(
rPCA
.
eigenvectors
,
subEvec
,
tmp
);
return
;
double
mval
=
0
;
Point
mloc
;
minMaxLoc
(
tmp
,
0
,
&
mval
,
0
,
&
mloc
);
EXPECT_LE
(
err
,
evecEps
)
<<
"pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW) at "
<<
i
<<
" "
<<
cv
::
format
(
"max diff is %g at (i=%d, j=%d) (%g vs %g)
\n
"
,
mval
,
mloc
.
y
,
mloc
.
x
,
rPCA
.
eigenvectors
.
at
<
float
>
(
mloc
.
y
,
mloc
.
x
),
subEvec
.
at
<
float
>
(
mloc
.
y
,
mloc
.
x
))
<<
"r0="
<<
r0
<<
std
::
endl
<<
"r1="
<<
r1
<<
std
::
endl
<<
"err1="
<<
err1
<<
" err2="
<<
err2
;
}
}
}
// 5. check C PCA & COL
prjEps
=
1.265
,
backPrjEps
=
1.265
;
_points
=
cPoints
;
for
(
int
i
=
0
;
i
<
rTestPoints
.
rows
;
i
++
)
_testPoints
=
cTestPoints
;
{
avg
=
avg
.
t
();
_avg
=
avg
;
// check pca project
eval
=
eval
.
t
();
_eval
=
eval
;
Mat
subEvec_t
=
subEvec
.
t
();
evec
=
evec
.
t
();
_evec
=
evec
;
Mat
prj
=
rTestPoints
.
row
(
i
)
-
avg
;
prj
*=
subEvec_t
;
prjTestPoints
=
prjTestPoints
.
t
();
_prjTestPoints
=
prjTestPoints
;
err
=
cvtest
::
norm
(
rPrjTestPoints
.
row
(
i
),
prj
,
NORM_L2
|
NORM_RELATIVE
);
backPrjTestPoints
=
backPrjTestPoints
.
t
();
_backPrjTestPoints
=
backPrjTestPoints
;
if
(
err
<
prjEps
)
cvCalcPCA
(
&
_points
,
&
_avg
,
&
_eval
,
&
_evec
,
CV_PCA_DATA_AS_COL
);
cvProjectPCA
(
&
_testPoints
,
&
_avg
,
&
_evec
,
&
_prjTestPoints
);
cvBackProjectPCA
(
&
_prjTestPoints
,
&
_avg
,
&
_evec
,
&
_backPrjTestPoints
);
err
=
cvtest
::
norm
(
cv
::
abs
(
prjTestPoints
),
cv
::
abs
(
rPrjTestPoints
.
t
()),
CV_RELATIVE_L2
);
if
(
err
>
diffPrjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
err
=
cvtest
::
norm
(
backPrjTestPoints
,
rBackPrjTestPoints
.
t
(),
CV_RELATIVE_L2
);
if
(
err
>
diffBackPrjEps
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
return
;
}
#endif
// Test read and write
FileStorage
fs
(
"PCA_store.yml"
,
FileStorage
::
WRITE
);
rPCA
.
write
(
fs
);
fs
.
release
();
PCA
lPCA
;
fs
.
open
(
"PCA_store.yml"
,
FileStorage
::
READ
);
lPCA
.
read
(
fs
.
root
()
);
err
=
cvtest
::
norm
(
rPCA
.
eigenvectors
,
lPCA
.
eigenvectors
,
CV_RELATIVE_L2
);
if
(
err
>
0
)
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of write/load functions (YML); err = %f
\n
"
,
err
);
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
);
}
err
=
cvtest
::
norm
(
rPCA
.
eigenvalues
,
lPCA
.
eigenvalues
,
CV_RELATIVE_L2
);
if
(
err
>
0
)
{
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of write/load functions (YML); err = %f
\n
"
,
err
)
;
EXPECT_LE
(
err
,
prjEps
)
<<
"bad accuracy of project() (CV_PCA_DATA_AS_ROW)"
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
)
;
continue
;
}
}
err
=
cvtest
::
norm
(
rPCA
.
mean
,
lPCA
.
mean
,
CV_RELATIVE_L2
);
// check pca backProject
if
(
err
>
0
)
Mat
backPrj
=
rPrjTestPoints
.
row
(
i
)
*
subEvec
+
avg
;
err
=
cvtest
::
norm
(
rBackPrjTestPoints
.
row
(
i
),
backPrj
,
NORM_L2
|
NORM_RELATIVE
);
if
(
err
>
backPrjEps
)
{
{
ts
->
printf
(
cvtest
::
TS
::
LOG
,
"bad accuracy of write/load functions (YML); err = %f
\n
"
,
err
)
;
EXPECT_LE
(
err
,
backPrjEps
)
<<
"bad accuracy of backProject() (CV_PCA_DATA_AS_ROW)"
;
ts
->
set_failed_test_info
(
cvtest
::
TS
::
FAIL_BAD_ACCURACY
)
;
continue
;
}
}
}
}
};
// 2. check C++ PCA & COL
cPCA
(
rPoints
.
t
(),
Mat
(),
CV_PCA_DATA_AS_COL
,
maxComponents
);
diffPrjEps
=
1
,
diffBackPrjEps
=
1
;
Mat
ocvPrjTestPoints
=
cPCA
.
project
(
rTestPoints
.
t
());
err
=
cvtest
::
norm
(
cv
::
abs
(
ocvPrjTestPoints
),
cv
::
abs
(
rPrjTestPoints
.
t
()),
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffPrjEps
)
<<
"bad accuracy of project() (CV_PCA_DATA_AS_COL)"
;
err
=
cvtest
::
norm
(
cPCA
.
backProject
(
ocvPrjTestPoints
),
rBackPrjTestPoints
.
t
(),
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffBackPrjEps
)
<<
"bad accuracy of backProject() (CV_PCA_DATA_AS_COL)"
;
// 3. check C++ PCA w/retainedVariance
cPCA
(
rPoints
.
t
(),
Mat
(),
CV_PCA_DATA_AS_COL
,
retainedVariance
);
diffPrjEps
=
1
,
diffBackPrjEps
=
1
;
Mat
rvPrjTestPoints
=
cPCA
.
project
(
rTestPoints
.
t
());
if
(
cPCA
.
eigenvectors
.
rows
>
maxComponents
)
err
=
cvtest
::
norm
(
cv
::
abs
(
rvPrjTestPoints
.
rowRange
(
0
,
maxComponents
)),
cv
::
abs
(
rPrjTestPoints
.
t
()),
NORM_L2
|
NORM_RELATIVE
);
else
err
=
cvtest
::
norm
(
cv
::
abs
(
rvPrjTestPoints
),
cv
::
abs
(
rPrjTestPoints
.
colRange
(
0
,
cPCA
.
eigenvectors
.
rows
).
t
()),
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffPrjEps
)
<<
"bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance="
<<
retainedVariance
;
err
=
cvtest
::
norm
(
cPCA
.
backProject
(
rvPrjTestPoints
),
rBackPrjTestPoints
.
t
(),
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffBackPrjEps
)
<<
"bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance="
<<
retainedVariance
;
#ifdef CHECK_C
// 4. check C PCA & ROW
_points
=
rPoints
;
_testPoints
=
rTestPoints
;
_avg
=
avg
;
_eval
=
eval
;
_evec
=
evec
;
prjTestPoints
.
create
(
rTestPoints
.
rows
,
maxComponents
,
rTestPoints
.
type
()
);
backPrjTestPoints
.
create
(
rPoints
.
size
(),
rPoints
.
type
()
);
_prjTestPoints
=
prjTestPoints
;
_backPrjTestPoints
=
backPrjTestPoints
;
cvCalcPCA
(
&
_points
,
&
_avg
,
&
_eval
,
&
_evec
,
CV_PCA_DATA_AS_ROW
);
cvProjectPCA
(
&
_testPoints
,
&
_avg
,
&
_evec
,
&
_prjTestPoints
);
cvBackProjectPCA
(
&
_prjTestPoints
,
&
_avg
,
&
_evec
,
&
_backPrjTestPoints
);
err
=
cvtest
::
norm
(
prjTestPoints
,
rPrjTestPoints
,
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffPrjEps
)
<<
"bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW)"
;
err
=
cvtest
::
norm
(
backPrjTestPoints
,
rBackPrjTestPoints
,
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffBackPrjEps
)
<<
"bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW)"
;
// 5. check C PCA & COL
_points
=
cPoints
;
_testPoints
=
cTestPoints
;
avg
=
avg
.
t
();
_avg
=
avg
;
eval
=
eval
.
t
();
_eval
=
eval
;
evec
=
evec
.
t
();
_evec
=
evec
;
prjTestPoints
=
prjTestPoints
.
t
();
_prjTestPoints
=
prjTestPoints
;
backPrjTestPoints
=
backPrjTestPoints
.
t
();
_backPrjTestPoints
=
backPrjTestPoints
;
cvCalcPCA
(
&
_points
,
&
_avg
,
&
_eval
,
&
_evec
,
CV_PCA_DATA_AS_COL
);
cvProjectPCA
(
&
_testPoints
,
&
_avg
,
&
_evec
,
&
_prjTestPoints
);
cvBackProjectPCA
(
&
_prjTestPoints
,
&
_avg
,
&
_evec
,
&
_backPrjTestPoints
);
err
=
cvtest
::
norm
(
cv
::
abs
(
prjTestPoints
),
cv
::
abs
(
rPrjTestPoints
.
t
()),
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffPrjEps
)
<<
"bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL)"
;
err
=
cvtest
::
norm
(
backPrjTestPoints
,
rBackPrjTestPoints
.
t
(),
NORM_L2
|
NORM_RELATIVE
);
ASSERT_LE
(
err
,
diffBackPrjEps
)
<<
"bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL)"
;
#endif
// Test read and write
FileStorage
fs
(
"PCA_store.yml"
,
FileStorage
::
WRITE
);
rPCA
.
write
(
fs
);
fs
.
release
();
PCA
lPCA
;
fs
.
open
(
"PCA_store.yml"
,
FileStorage
::
READ
);
lPCA
.
read
(
fs
.
root
()
);
err
=
cvtest
::
norm
(
rPCA
.
eigenvectors
,
lPCA
.
eigenvectors
,
NORM_L2
|
NORM_RELATIVE
);
EXPECT_LE
(
err
,
0
)
<<
"bad accuracy of write/load functions (YML)"
;
err
=
cvtest
::
norm
(
rPCA
.
eigenvalues
,
lPCA
.
eigenvalues
,
NORM_L2
|
NORM_RELATIVE
);
EXPECT_LE
(
err
,
0
)
<<
"bad accuracy of write/load functions (YML)"
;
err
=
cvtest
::
norm
(
rPCA
.
mean
,
lPCA
.
mean
,
NORM_L2
|
NORM_RELATIVE
);
EXPECT_LE
(
err
,
0
)
<<
"bad accuracy of write/load functions (YML)"
;
}
class
Core_ArrayOpTest
:
public
cvtest
::
BaseTest
class
Core_ArrayOpTest
:
public
cvtest
::
BaseTest
{
{
...
@@ -1227,7 +1157,6 @@ protected:
...
@@ -1227,7 +1157,6 @@ protected:
}
}
};
};
TEST
(
Core_PCA
,
accuracy
)
{
Core_PCATest
test
;
test
.
safe_run
();
}
TEST
(
Core_Reduce
,
accuracy
)
{
Core_ReduceTest
test
;
test
.
safe_run
();
}
TEST
(
Core_Reduce
,
accuracy
)
{
Core_ReduceTest
test
;
test
.
safe_run
();
}
TEST
(
Core_Array
,
basic_operations
)
{
Core_ArrayOpTest
test
;
test
.
safe_run
();
}
TEST
(
Core_Array
,
basic_operations
)
{
Core_ArrayOpTest
test
;
test
.
safe_run
();
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment