Commit cc6f1eb8 authored by Yury Zemlyanskiy's avatar Yury Zemlyanskiy

"SimpleFlow" optical flow estimation algorithm (GSoC project)

declaration in includes, implementation, usage example, test
parent bbbe77e0
......@@ -597,6 +597,48 @@ Returns background image
See :ocv:func:`BackgroundSubtractor::getBackgroundImage`.
calcOpticalFlowSF
-----------
Calculate an optical flow using "SimpleFlow" algorithm.
.. ocv:function:: void calcOpticalFlowSF( Mat& prev, Mat& next, Mat& flowX, Mat& flowY, int layers, int averaging_block_size, int max_flow, double sigma_dist, double sigma_color, int postprocess_window, double sigma_dist_fix, double sigma_color_fix, double occ_thr, int upscale_averaging_radiud, double upscale_sigma_dist, double upscale_sigma_color, double speed_up_thr)
:param prev: First 8-bit 3-channel image.
:param next: Second 8-bit 3-channel image
:param flowX: X-coordinate of estimated flow
:param flowY: Y-coordinate of estimated flow
:param layers: Number of layers
:param averaging_block_size: Size of block through which we sum up when calculate cost function for pixel
:param max_flow: maximal flow that we search at each level
:param sigma_dist: vector smooth spatial sigma parameter
:param sigma_color: vector smooth color sigma parameter
:param postprocess_window: window size for postprocess cross bilateral filter
:param sigma_dist_fix: spatial sigma for postprocess cross bilateralf filter
:param sigma_color_fix: color sigma for postprocess cross bilateral filter
:param occ_thr: threshold for detecting occlusions
:param upscale_averaging_radiud: window size for bilateral upscale operation
:param upscale_sigma_dist: spatial sigma for bilateral upscale operation
:param upscale_sigma_color: color sigma for bilateral upscale operation
:param speed_up_thr: threshold to detect point with irregular flow - where flow should be recalculated after upscale
See [Tao2012]_. And site of project - http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/.
.. [Bouguet00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker.
.. [Bradski98] Bradski, G.R. "Computer Vision Face Tracking for Use in a Perceptual User Interface", Intel, 1998
......@@ -612,3 +654,5 @@ See :ocv:func:`BackgroundSubtractor::getBackgroundImage`.
.. [Lucas81] Lucas, B., and Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision, Proc. of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674-679.
.. [Welch95] Greg Welch and Gary Bishop “An Introduction to the Kalman Filter”, 1995
.. [Tao2012] Michael Tao, Jiamin Bai, Pushmeet Kohli and Sylvain Paris. SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. Computer Graphics Forum (Eurographics 2012)
......@@ -326,7 +326,26 @@ CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next,
// that maps one 2D point set to another or one image to another.
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst,
bool fullAffine);
//! computes dense optical flow using Simple Flow algorithm
CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
Mat& to,
Mat& flowX,
Mat& flowY,
int layers,
int averaging_block_size,
int max_flow,
double sigma_dist,
double sigma_color,
int postprocess_window,
double sigma_dist_fix,
double sigma_color_fix,
double occ_thr,
int upscale_averaging_radius,
double upscale_sigma_dist,
double upscale_sigma_color,
double speed_up_thr);
}
#endif
......
This diff is collapsed.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_SIMPLEFLOW_H__
#define __OPENCV_SIMPLEFLOW_H__
#include <vector>
using namespace std;
#define MASK_TRUE_VALUE 255
#define UNKNOWN_FLOW_THRESH 1e9
namespace cv {
struct Flow {
Mat u, v;
Flow() {;}
Flow(Mat& _u, Mat& _v)
: u(_u), v(_v) {;}
Flow(int rows, int cols) {
u = Mat::zeros(rows, cols, CV_64F);
v = Mat::zeros(rows, cols, CV_64F);
}
};
inline static double dist(const Vec3b& p1, const Vec3b& p2) {
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
(p1[2] - p2[2]) * (p1[2] - p2[2]);
}
inline static double dist(const Point2f& p1, const Point2f& p2) {
return (p1.x - p2.x) * (p1.x - p2.x) +
(p1.y - p2.y) * (p1.y - p2.y);
}
inline static double dist(double x1, double y1, double x2, double y2) {
return (x1 - x2) * (x1 - x2) +
(y1 - y2) * (y1 - y2);
}
inline static int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) +
(y1 - y2) * (y1 - y2);
}
template<class T>
inline static T min(T t1, T t2, T t3) {
return (t1 <= t2 && t1 <= t3) ? t1 : min(t2, t3);
}
template<class T>
vector<vector<T> > build(int n, int m) {
vector<vector<T> > res(n);
for (int i = 0; i < n; ++i) {
res[i].resize(m, 0);
}
return res;
}
class WeightedCrossBilateralFilter {
public:
WeightedCrossBilateralFilter(const Mat& _image,
int _windowSize,
double _sigmaDist,
double _sigmaColor);
Mat apply(Mat& matrix, Mat& weights);
private:
double convolution(Mat& matrix, int row, int col, Mat& weights);
Mat image;
int windowSize;
double sigmaDist, sigmaColor;
vector<double> expDist;
vector<vector<vector<vector<double> > > > wc;
};
}
#endif
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include <string>
using namespace std;
/* ///////////////////// simpleflow_test ///////////////////////// */
class CV_SimpleFlowTest : public cvtest::BaseTest
{
public:
CV_SimpleFlowTest();
protected:
void run(int);
};
CV_SimpleFlowTest::CV_SimpleFlowTest() {}
static void readOpticalFlowFromFile(FILE* file, cv::Mat& flowX, cv::Mat& flowY) {
char header[5];
if (fread(header, 1, 4, file) < 4 && (string)header != "PIEH") {
return;
}
int cols, rows;
if (fread(&cols, sizeof(int), 1, file) != 1||
fread(&rows, sizeof(int), 1, file) != 1) {
return;
}
flowX = cv::Mat::zeros(rows, cols, CV_64F);
flowY = cv::Mat::zeros(rows, cols, CV_64F);
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
float uPoint, vPoint;
if (fread(&uPoint, sizeof(float), 1, file) != 1 ||
fread(&vPoint, sizeof(float), 1, file) != 1) {
flowX.release();
flowY.release();
return;
}
flowX.at<double>(i, j) = uPoint;
flowY.at<double>(i, j) = vPoint;
}
}
}
static bool isFlowCorrect(double u) {
return !isnan(u) && (fabs(u) < 1e9);
}
static double calc_rmse(cv::Mat flow1X, cv::Mat flow1Y, cv::Mat flow2X, cv::Mat flow2Y) {
long double sum;
int counter = 0;
const int rows = flow1X.rows;
const int cols = flow1X.cols;
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
double u1 = flow1X.at<double>(y, x);
double v1 = flow1Y.at<double>(y, x);
double u2 = flow2X.at<double>(y, x);
double v2 = flow2Y.at<double>(y, x);
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) {
sum += (u1-u2)*(u1-u2) + (v1-v2)*(v1-v2);
counter++;
}
}
}
return sqrt((double)sum / (1e-9 + counter));
}
void CV_SimpleFlowTest::run(int) {
int code = cvtest::TS::OK;
const double MAX_RMSE = 0.6;
const string frame1_path = ts->get_data_path() + "optflow/RubberWhale1.png";
const string frame2_path = ts->get_data_path() + "optflow/RubberWhale2.png";
const string gt_flow_path = ts->get_data_path() + "optflow/RubberWhale.flo";
cv::Mat frame1 = cv::imread(frame1_path);
cv::Mat frame2 = cv::imread(frame2_path);
if (frame1.empty()) {
ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if (frame2.empty()) {
ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if (frame1.rows != frame2.rows && frame1.cols != frame2.cols) {
ts->printf(cvtest::TS::LOG, "images should be of equal sizes (%s and %s)",
frame1_path.c_str(), frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
if (frame1.type() != 16 || frame2.type() != 16) {
ts->printf(cvtest::TS::LOG, "images should be of equal type CV_8UC3 (%s and %s)",
frame1_path.c_str(), frame2_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
cv::Mat flowX_gt, flowY_gt;
FILE* gt_flow_file = fopen(gt_flow_path.c_str(), "rb");
if (gt_flow_file == NULL) {
ts->printf(cvtest::TS::LOG, "could not read ground-thuth flow from file %s",
gt_flow_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
readOpticalFlowFromFile(gt_flow_file, flowX_gt, flowY_gt);
if (flowX_gt.empty() || flowY_gt.empty()) {
ts->printf(cvtest::TS::LOG, "error while reading flow data from file %s",
gt_flow_path.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
fclose(gt_flow_file);
cv::Mat flowX, flowY;
cv::calcOpticalFlowSF(frame1, frame2,
flowX, flowY,
3, 4, 2, 4.1, 25.5, 18, 55.0, 25.5, 0.35, 18, 55.0, 25.5, 10);
double rmse = calc_rmse(flowX_gt, flowY_gt, flowX, flowY);
ts->printf(cvtest::TS::LOG, "Optical flow estimation RMSE for SimpleFlow algorithm : %lf\n",
rmse);
if (rmse > MAX_RMSE) {
ts->printf( cvtest::TS::LOG,
"Too big rmse error : %lf ( >= %lf )\n", rmse, MAX_RMSE);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
TEST(Video_OpticalFlowSimpleFlow, accuracy) { CV_SimpleFlowTest test; test.safe_run(); }
/* End of file. */
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <cstdio>
#include <iostream>
using namespace cv;
using namespace std;
static void help()
{
// print a welcome message, and the OpenCV version
printf("This is a demo of SimpleFlow optical flow algorithm,\n"
"Using OpenCV version %s\n\n", CV_VERSION);
printf("Usage: simpleflow_demo frame1 frame2 output_flow"
"\nApplication will write estimated flow "
"\nbetween 'frame1' and 'frame2' in binary format"
"\ninto file 'output_flow'"
"\nThen one can use code from http://vision.middlebury.edu/flow/data/"
"\nto convert flow in binary file to image\n");
}
// binary file format for flow data specified here:
// http://vision.middlebury.edu/flow/data/
static void writeOpticalFlowToFile(const Mat& u, const Mat& v, FILE* file) {
int cols = u.cols;
int rows = u.rows;
fprintf(file, "PIEH");
if (fwrite(&cols, sizeof(int), 1, file) != 1 ||
fwrite(&rows, sizeof(int), 1, file) != 1) {
fprintf(stderr, "writeOpticalFlowToFile : problem writing header\n");
exit(1);
}
for (int i= 0; i < u.rows; ++i) {
for (int j = 0; j < u.cols; ++j) {
float uPoint = u.at<double>(i, j);
float vPoint = v.at<double>(i, j);
if (fwrite(&uPoint, sizeof(float), 1, file) != 1 ||
fwrite(&vPoint, sizeof(float), 1, file) != 1) {
fprintf(stderr, "writeOpticalFlowToFile : problem writing data\n");
exit(1);
}
}
}
}
int main(int argc, char** argv) {
help();
if (argc < 4) {
fprintf(stderr, "Wrong number of command line arguments : %d (expected %d)\n", argc, 4);
exit(1);
}
Mat frame1 = imread(argv[1]);
Mat frame2 = imread(argv[2]);
if (frame1.empty() || frame2.empty()) {
fprintf(stderr, "simpleflow_demo : Images cannot be read\n");
exit(1);
}
if (frame1.rows != frame2.rows && frame1.cols != frame2.cols) {
fprintf(stderr, "simpleflow_demo : Images should be of equal sizes\n");
exit(1);
}
if (frame1.type() != 16 || frame2.type() != 16) {
fprintf(stderr, "simpleflow_demo : Images should be of equal type CV_8UC3\n");
exit(1);
}
printf("simpleflow_demo : Read two images of size [rows = %d, cols = %d]\n",
frame1.rows, frame1.cols);
Mat flowX, flowY;
calcOpticalFlowSF(frame1, frame2,
flowX, flowY,
3, 2, 4, 4.1, 25.5, 18, 55.0, 25.5, 0.35, 18, 55.0, 25.5, 10);
FILE* file = fopen(argv[3], "wb");
if (file == NULL) {
fprintf(stderr, "simpleflow_demo : Unable to open file '%s' for writing\n", argv[3]);
exit(1);
}
printf("simpleflow_demo : Writing to file\n");
writeOpticalFlowToFile(flowX, flowY, file);
fclose(file);
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment