Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ca5689e0
Commit
ca5689e0
authored
Dec 27, 2013
by
Konstantin Matskevich
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
BFMatcher
match radiusMatch
parent
ee331001
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
1945 additions
and
61 deletions
+1945
-61
mat.hpp
modules/core/include/opencv2/core/mat.hpp
+2
-1
mat.inl.hpp
modules/core/include/opencv2/core/mat.inl.hpp
+1
-1
matrix.cpp
modules/core/src/matrix.cpp
+36
-0
features2d.hpp
modules/features2d/include/opencv2/features2d.hpp
+29
-22
matchers.cpp
modules/features2d/src/matchers.cpp
+874
-37
brute_force_match.cl
modules/features2d/src/opencl/brute_force_match.cl
+789
-0
precomp.hpp
modules/features2d/src/precomp.hpp
+1
-0
test_brute_force_matcher.cpp
modules/features2d/test/ocl/test_brute_force_matcher.cpp
+213
-0
No files found.
modules/core/include/opencv2/core/mat.hpp
View file @
ca5689e0
...
@@ -113,6 +113,7 @@ public:
...
@@ -113,6 +113,7 @@ public:
virtual
Mat
getMat
(
int
idx
=-
1
)
const
;
virtual
Mat
getMat
(
int
idx
=-
1
)
const
;
virtual
UMat
getUMat
(
int
idx
=-
1
)
const
;
virtual
UMat
getUMat
(
int
idx
=-
1
)
const
;
virtual
void
getMatVector
(
std
::
vector
<
Mat
>&
mv
)
const
;
virtual
void
getMatVector
(
std
::
vector
<
Mat
>&
mv
)
const
;
virtual
void
getUMatVector
(
std
::
vector
<
UMat
>&
umv
)
const
;
virtual
cuda
::
GpuMat
getGpuMat
()
const
;
virtual
cuda
::
GpuMat
getGpuMat
()
const
;
virtual
ogl
::
Buffer
getOGlBuffer
()
const
;
virtual
ogl
::
Buffer
getOGlBuffer
()
const
;
void
*
getObj
()
const
;
void
*
getObj
()
const
;
...
@@ -134,7 +135,7 @@ public:
...
@@ -134,7 +135,7 @@ public:
virtual
size_t
step
(
int
i
=-
1
)
const
;
virtual
size_t
step
(
int
i
=-
1
)
const
;
bool
isMat
()
const
;
bool
isMat
()
const
;
bool
isUMat
()
const
;
bool
isUMat
()
const
;
bool
isMatVecto
t
()
const
;
bool
isMatVecto
r
()
const
;
bool
isUMatVector
()
const
;
bool
isUMatVector
()
const
;
bool
isMatx
();
bool
isMatx
();
...
...
modules/core/include/opencv2/core/mat.inl.hpp
View file @
ca5689e0
...
@@ -110,7 +110,7 @@ inline _InputArray::~_InputArray() {}
...
@@ -110,7 +110,7 @@ inline _InputArray::~_InputArray() {}
inline
bool
_InputArray
::
isMat
()
const
{
return
kind
()
==
_InputArray
::
MAT
;
}
inline
bool
_InputArray
::
isMat
()
const
{
return
kind
()
==
_InputArray
::
MAT
;
}
inline
bool
_InputArray
::
isUMat
()
const
{
return
kind
()
==
_InputArray
::
UMAT
;
}
inline
bool
_InputArray
::
isUMat
()
const
{
return
kind
()
==
_InputArray
::
UMAT
;
}
inline
bool
_InputArray
::
isMatVecto
t
()
const
{
return
kind
()
==
_InputArray
::
STD_VECTOR_MAT
;
}
inline
bool
_InputArray
::
isMatVecto
r
()
const
{
return
kind
()
==
_InputArray
::
STD_VECTOR_MAT
;
}
inline
bool
_InputArray
::
isUMatVector
()
const
{
return
kind
()
==
_InputArray
::
STD_VECTOR_UMAT
;
}
inline
bool
_InputArray
::
isUMatVector
()
const
{
return
kind
()
==
_InputArray
::
STD_VECTOR_UMAT
;
}
inline
bool
_InputArray
::
isMatx
()
{
return
kind
()
==
_InputArray
::
MATX
;
}
inline
bool
_InputArray
::
isMatx
()
{
return
kind
()
==
_InputArray
::
MATX
;
}
...
...
modules/core/src/matrix.cpp
View file @
ca5689e0
...
@@ -1324,6 +1324,42 @@ void _InputArray::getMatVector(std::vector<Mat>& mv) const
...
@@ -1324,6 +1324,42 @@ void _InputArray::getMatVector(std::vector<Mat>& mv) const
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown/unsupported array type"
);
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown/unsupported array type"
);
}
}
void
_InputArray
::
getUMatVector
(
std
::
vector
<
UMat
>&
umv
)
const
{
int
k
=
kind
();
int
accessFlags
=
flags
&
ACCESS_MASK
;
if
(
k
==
NONE
)
{
umv
.
clear
();
return
;
}
if
(
k
==
STD_VECTOR_MAT
)
{
const
std
::
vector
<
Mat
>&
v
=
*
(
const
std
::
vector
<
Mat
>*
)
obj
;
size_t
i
,
n
=
v
.
size
();
umv
.
resize
(
n
);
for
(
i
=
0
;
i
<
n
;
i
++
)
umv
[
i
]
=
v
[
i
].
getUMat
(
accessFlags
);
return
;
}
if
(
k
==
STD_VECTOR_UMAT
)
{
const
std
::
vector
<
UMat
>&
v
=
*
(
const
std
::
vector
<
UMat
>*
)
obj
;
size_t
i
,
n
=
v
.
size
();
umv
.
resize
(
n
);
for
(
i
=
0
;
i
<
n
;
i
++
)
umv
[
i
]
=
v
[
i
];
return
;
}
CV_Error
(
Error
::
StsNotImplemented
,
"Unknown/unsupported array type"
);
}
cuda
::
GpuMat
_InputArray
::
getGpuMat
()
const
cuda
::
GpuMat
_InputArray
::
getGpuMat
()
const
{
{
int
k
=
kind
();
int
k
=
kind
();
...
...
modules/features2d/include/opencv2/features2d.hpp
View file @
ca5689e0
...
@@ -998,7 +998,7 @@ public:
...
@@ -998,7 +998,7 @@ public:
* Add descriptors to train descriptor collection.
* Add descriptors to train descriptor collection.
* descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
* descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
*/
*/
CV_WRAP
virtual
void
add
(
const
std
::
vector
<
Mat
>&
descriptors
);
CV_WRAP
virtual
void
add
(
InputArray
descriptors
);
/*
/*
* Get train descriptors collection.
* Get train descriptors collection.
*/
*/
...
@@ -1034,29 +1034,29 @@ public:
...
@@ -1034,29 +1034,29 @@ public:
* Method train() is run in this methods.
* Method train() is run in this methods.
*/
*/
// Find one best match for each query descriptor (if mask is empty).
// Find one best match for each query descriptor (if mask is empty).
CV_WRAP
void
match
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
CV_WRAP
void
match
(
InputArray
queryDescriptors
,
InputArray
trainDescriptors
,
CV_OUT
std
::
vector
<
DMatch
>&
matches
,
const
Mat
&
mask
=
Mat
()
)
const
;
CV_OUT
std
::
vector
<
DMatch
>&
matches
,
InputArray
mask
=
Mat
()
)
const
;
// Find k best matches for each query descriptor (in increasing order of distances).
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
// matches vector will not contain matches for fully masked out query descriptors.
CV_WRAP
void
knnMatch
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
CV_WRAP
void
knnMatch
(
InputArray
queryDescriptors
,
InputArray
trainDescriptors
,
CV_OUT
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
CV_OUT
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
Mat
&
mask
=
Mat
(),
bool
compactResult
=
false
)
const
;
InputArray
mask
=
Mat
(),
bool
compactResult
=
false
)
const
;
// Find best matches for each query descriptor which have distance less than
// Find best matches for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
// maxDistance (in increasing order of distances).
void
radiusMatch
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
void
radiusMatch
(
InputArray
queryDescriptors
,
InputArray
trainDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
Mat
&
mask
=
Mat
(),
bool
compactResult
=
false
)
const
;
InputArray
mask
=
Mat
(),
bool
compactResult
=
false
)
const
;
/*
/*
* Group of methods to match descriptors from one image to image set.
* Group of methods to match descriptors from one image to image set.
* See description of similar methods for matching image pair above.
* See description of similar methods for matching image pair above.
*/
*/
CV_WRAP
void
match
(
const
Mat
&
queryDescriptors
,
CV_OUT
std
::
vector
<
DMatch
>&
matches
,
CV_WRAP
void
match
(
InputArray
queryDescriptors
,
CV_OUT
std
::
vector
<
DMatch
>&
matches
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
()
);
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
()
);
CV_WRAP
void
knnMatch
(
const
Mat
&
queryDescriptors
,
CV_OUT
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
CV_WRAP
void
knnMatch
(
InputArray
queryDescriptors
,
CV_OUT
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
void
radiusMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
void
radiusMatch
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
// Reads matcher object from a file node
// Reads matcher object from a file node
...
@@ -1101,10 +1101,10 @@ protected:
...
@@ -1101,10 +1101,10 @@ protected:
// In fact the matching is implemented only by the following two methods. These methods suppose
// In fact the matching is implemented only by the following two methods. These methods suppose
// that the class object has been trained already. Public match methods call these methods
// that the class object has been trained already. Public match methods call these methods
// after calling train().
// after calling train().
virtual
void
knnMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
virtual
void
knnMatchImpl
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
)
=
0
;
InputArrayOfArrays
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
)
=
0
;
virtual
void
radiusMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
virtual
void
radiusMatchImpl
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
)
=
0
;
InputArrayOfArrays
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
)
=
0
;
static
bool
isPossibleMatch
(
const
Mat
&
mask
,
int
queryIdx
,
int
trainIdx
);
static
bool
isPossibleMatch
(
const
Mat
&
mask
,
int
queryIdx
,
int
trainIdx
);
static
bool
isMaskedOut
(
const
std
::
vector
<
Mat
>&
masks
,
int
queryIdx
);
static
bool
isMaskedOut
(
const
std
::
vector
<
Mat
>&
masks
,
int
queryIdx
);
...
@@ -1114,6 +1114,7 @@ protected:
...
@@ -1114,6 +1114,7 @@ protected:
// Collection of descriptors from train images.
// Collection of descriptors from train images.
std
::
vector
<
Mat
>
trainDescCollection
;
std
::
vector
<
Mat
>
trainDescCollection
;
std
::
vector
<
UMat
>
utrainDescCollection
;
};
};
/*
/*
...
@@ -1137,10 +1138,16 @@ public:
...
@@ -1137,10 +1138,16 @@ public:
AlgorithmInfo
*
info
()
const
;
AlgorithmInfo
*
info
()
const
;
protected
:
protected
:
virtual
void
knnMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
virtual
void
knnMatchImpl
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
InputArrayOfArrays
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
virtual
void
radiusMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
virtual
void
radiusMatchImpl
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
InputArrayOfArrays
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
bool
ocl_knnMatch
(
InputArray
query
,
InputArray
train
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
int
k
,
int
dstType
,
bool
compactResult
=
false
);
bool
ocl_radiusMatch
(
InputArray
query
,
InputArray
train
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
float
maxDistance
,
int
dstType
,
bool
compactResult
=
false
);
bool
ocl_match
(
InputArray
query
,
InputArray
train
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
int
dstType
);
int
normType
;
int
normType
;
bool
crossCheck
;
bool
crossCheck
;
...
@@ -1175,10 +1182,10 @@ protected:
...
@@ -1175,10 +1182,10 @@ protected:
const
Mat
&
indices
,
const
Mat
&
distances
,
const
Mat
&
indices
,
const
Mat
&
distances
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
);
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
);
virtual
void
knnMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
virtual
void
knnMatchImpl
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
k
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
InputArrayOfArrays
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
virtual
void
radiusMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
virtual
void
radiusMatchImpl
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
InputArrayOfArrays
masks
=
std
::
vector
<
Mat
>
(),
bool
compactResult
=
false
);
Ptr
<
flann
::
IndexParams
>
indexParams
;
Ptr
<
flann
::
IndexParams
>
indexParams
;
Ptr
<
flann
::
SearchParams
>
searchParams
;
Ptr
<
flann
::
SearchParams
>
searchParams
;
...
...
modules/features2d/src/matchers.cpp
View file @
ca5689e0
...
@@ -41,6 +41,7 @@
...
@@ -41,6 +41,7 @@
#include "precomp.hpp"
#include "precomp.hpp"
#include <limits>
#include <limits>
#include "opencl_kernels.hpp"
#if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 2
#if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 2
#include <Eigen/Array>
#include <Eigen/Array>
...
@@ -68,6 +69,680 @@ Mat windowedMatchingMask( const std::vector<KeyPoint>& keypoints1, const std::ve
...
@@ -68,6 +69,680 @@ Mat windowedMatchingMask( const std::vector<KeyPoint>& keypoints1, const std::ve
return
mask
;
return
mask
;
}
}
//////////////////////////////////////////////////////////////////ocl functions for BFMatcher ///////////////////////////////////////////////////////////////
static
void
ensureSizeIsEnough
(
int
rows
,
int
cols
,
int
type
,
UMat
&
m
)
{
if
(
m
.
type
()
==
type
&&
m
.
rows
>=
rows
&&
m
.
cols
>=
cols
)
m
=
m
(
Rect
(
0
,
0
,
cols
,
rows
));
else
m
.
create
(
rows
,
cols
,
type
);
}
template
<
int
BLOCK_SIZE
,
int
MAX_DESC_LEN
/*, typename Mask*/
>
static
bool
ocl_matchUnrolledCached
(
InputArray
_query
,
InputArray
_train
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
cv
::
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
,
(
int
)
MAX_DESC_LEN
);
ocl
::
Kernel
k
(
"BruteForceMatch_UnrollMatch"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_query
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
BLOCK_SIZE
*
(
MAX_DESC_LEN
>=
BLOCK_SIZE
?
MAX_DESC_LEN
:
BLOCK_SIZE
)
+
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
return
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
true
;
}
template
<
int
BLOCK_SIZE
/*, typename Mask*/
>
static
bool
ocl_match
(
InputArray
_query
,
InputArray
_train
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
cv
::
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
);
ocl
::
Kernel
k
(
"BruteForceMatch_Match"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_query
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
2
*
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
return
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
true
;
}
static
bool
ocl_matchDispatcher
(
InputArray
query
,
InputArray
train
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
int
distType
)
{
int
query_cols
=
query
.
size
().
width
;
bool
is_cpu
=
ocl
::
Device
::
getDefault
().
type
()
==
ocl
::
Device
::
TYPE_CPU
;
if
(
query_cols
<=
64
)
{
if
(
!
ocl_matchUnrolledCached
<
16
,
64
>
(
query
,
train
,
trainIdx
,
distance
,
distType
))
return
false
;
}
else
if
(
query_cols
<=
128
&&
!
is_cpu
)
{
if
(
!
ocl_matchUnrolledCached
<
16
,
128
>
(
query
,
train
,
trainIdx
,
distance
,
distType
))
return
false
;
}
else
{
if
(
!
ocl_match
<
16
>
(
query
,
train
,
trainIdx
,
distance
,
distType
))
return
false
;
}
return
true
;
}
static
bool
ocl_matchSingle
(
InputArray
query
,
InputArray
train
,
UMat
&
trainIdx
,
UMat
&
distance
,
int
dstType
)
{
if
(
query
.
empty
()
||
train
.
empty
())
return
false
;
int
query_rows
=
query
.
size
().
height
;
ensureSizeIsEnough
(
1
,
query_rows
,
CV_32S
,
trainIdx
);
ensureSizeIsEnough
(
1
,
query_rows
,
CV_32F
,
distance
);
return
ocl_matchDispatcher
(
query
,
train
,
trainIdx
,
distance
,
dstType
);
}
static
bool
ocl_matchConvert
(
const
Mat
&
trainIdx
,
const
Mat
&
distance
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
)
{
if
(
trainIdx
.
empty
()
||
distance
.
empty
())
return
false
;
if
(
(
trainIdx
.
type
()
!=
CV_32SC1
)
||
(
distance
.
type
()
!=
CV_32FC1
||
distance
.
cols
!=
trainIdx
.
cols
)
)
return
false
;
const
int
nQuery
=
trainIdx
.
cols
;
matches
.
clear
();
matches
.
reserve
(
nQuery
);
const
int
*
trainIdx_ptr
=
trainIdx
.
ptr
<
int
>
();
const
float
*
distance_ptr
=
distance
.
ptr
<
float
>
();
for
(
int
queryIdx
=
0
;
queryIdx
<
nQuery
;
++
queryIdx
,
++
trainIdx_ptr
,
++
distance_ptr
)
{
int
trainIndex
=
*
trainIdx_ptr
;
if
(
trainIndex
==
-
1
)
continue
;
float
dst
=
*
distance_ptr
;
DMatch
m
(
queryIdx
,
trainIndex
,
0
,
dst
);
std
::
vector
<
DMatch
>
temp
;
temp
.
push_back
(
m
);
matches
.
push_back
(
temp
);
}
return
true
;
}
static
bool
ocl_matchDownload
(
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
)
{
if
(
trainIdx
.
empty
()
||
distance
.
empty
())
return
false
;
Mat
trainIdxCPU
=
trainIdx
.
getMat
(
ACCESS_READ
);
Mat
distanceCPU
=
distance
.
getMat
(
ACCESS_READ
);
return
ocl_matchConvert
(
trainIdxCPU
,
distanceCPU
,
matches
);
}
template
<
int
BLOCK_SIZE
,
int
MAX_DESC_LEN
/*, typename Mask*/
>
static
bool
ocl_knn_matchUnrolledCached
(
InputArray
_query
,
InputArray
_train
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
cv
::
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
,
(
int
)
MAX_DESC_LEN
);
ocl
::
Kernel
k
(
"BruteForceMatch_knnUnrollMatch"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_query
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
BLOCK_SIZE
*
(
MAX_DESC_LEN
>=
BLOCK_SIZE
?
MAX_DESC_LEN
:
BLOCK_SIZE
)
+
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
return
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
true
;
}
template
<
int
BLOCK_SIZE
/*, typename Mask*/
>
static
bool
ocl_knn_match
(
InputArray
_query
,
InputArray
_train
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
);
ocl
::
Kernel
k
(
"BruteForceMatch_knnMatch"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_query
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
2
*
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
return
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
true
;
}
static
bool
ocl_match2Dispatcher
(
InputArray
query
,
InputArray
train
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
int
distType
)
{
bool
is_cpu
=
ocl
::
Device
::
getDefault
().
type
()
==
ocl
::
Device
::
TYPE_CPU
;
if
(
query
.
size
().
width
<=
64
)
{
if
(
!
ocl_knn_matchUnrolledCached
<
16
,
64
>
(
query
,
train
,
trainIdx
,
distance
,
distType
))
return
false
;
}
else
if
(
query
.
size
().
width
<=
128
&&
!
is_cpu
)
{
if
(
!
ocl_knn_matchUnrolledCached
<
16
,
128
>
(
query
,
train
,
trainIdx
,
distance
,
distType
))
return
false
;
}
else
{
if
(
!
ocl_knn_match
<
16
>
(
query
,
train
,
trainIdx
,
distance
,
distType
))
return
false
;
}
return
true
;
}
template
<
int
BLOCK_SIZE
,
int
MAX_DESC_LEN
/*, typename Mask*/
>
static
bool
ocl_calcDistanceUnrolled
(
InputArray
_query
,
InputArray
_train
,
const
UMat
&
allDist
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
,
(
int
)
MAX_DESC_LEN
);
ocl
::
Kernel
k
(
"BruteForceMatch_calcDistanceUnrolled"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_query
.
size
().
width
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
2
*
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
allDist
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
false
;
// TODO in KERNEL
}
template
<
int
BLOCK_SIZE
/*, typename Mask*/
>
static
bool
ocl_calcDistance
(
InputArray
_query
,
InputArray
_train
,
const
UMat
&
allDist
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
);
ocl
::
Kernel
k
(
"BruteForceMatch_calcDistance"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_query
.
size
().
width
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
2
*
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
allDist
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
false
;
// TODO in KERNEL
}
static
bool
ocl_calcDistanceDispatcher
(
InputArray
query
,
InputArray
train
,
const
UMat
&
allDist
,
int
distType
)
{
if
(
query
.
size
().
width
<=
64
)
{
if
(
!
ocl_calcDistanceUnrolled
<
16
,
64
>
(
query
,
train
,
allDist
,
distType
))
return
false
;
}
else
if
(
query
.
size
().
width
<=
128
)
{
if
(
!
ocl_calcDistanceUnrolled
<
16
,
128
>
(
query
,
train
,
allDist
,
distType
))
return
false
;
}
else
{
if
(
!
ocl_calcDistance
<
16
>
(
query
,
train
,
allDist
,
distType
))
return
false
;
}
return
true
;
}
template
<
int
BLOCK_SIZE
>
static
bool
ocl_findKnnMatch
(
int
k
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
const
UMat
&
allDist
,
int
/*distType*/
)
{
return
false
;
// TODO in KERNEL
std
::
vector
<
ocl
::
Kernel
>
kernels
;
for
(
int
i
=
0
;
i
<
k
;
++
i
)
{
ocl
::
Kernel
kernel
(
"BruteForceMatch_findBestMatch"
,
ocl
::
features2d
::
brute_force_match_oclsrc
);
if
(
kernel
.
empty
())
return
false
;
kernels
.
push_back
(
kernel
);
}
size_t
globalSize
[]
=
{
trainIdx
.
rows
*
BLOCK_SIZE
,
1
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
1
,
1
};
int
block_size
=
BLOCK_SIZE
;
for
(
int
i
=
0
;
i
<
k
;
++
i
)
{
int
idx
=
0
;
idx
=
kernels
[
i
].
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
allDist
));
idx
=
kernels
[
i
].
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
kernels
[
i
].
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
kernels
[
i
].
set
(
idx
,
i
);
idx
=
kernels
[
i
].
set
(
idx
,
block_size
);
// idx = kernels[i].set(idx, train.rows);
// idx = kernels[i].set(idx, train.cols);
// idx = kernels[i].set(idx, query.step);
if
(
!
kernels
[
i
].
run
(
2
,
globalSize
,
localSize
,
false
))
return
false
;
}
return
true
;
}
static
bool
ocl_findKnnMatchDispatcher
(
int
k
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
const
UMat
&
allDist
,
int
distType
)
{
return
ocl_findKnnMatch
<
256
>
(
k
,
trainIdx
,
distance
,
allDist
,
distType
);
}
static
bool
ocl_kmatchDispatcher
(
InputArray
query
,
InputArray
train
,
int
k
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
const
UMat
&
allDist
,
int
distType
)
{
if
(
k
==
2
)
{
if
(
!
ocl_match2Dispatcher
(
query
,
train
,
trainIdx
,
distance
,
distType
)
)
return
false
;
}
else
{
if
(
!
ocl_calcDistanceDispatcher
(
query
,
train
,
allDist
,
distType
)
)
return
false
;
if
(
!
ocl_findKnnMatchDispatcher
(
k
,
trainIdx
,
distance
,
allDist
,
distType
)
)
return
false
;
}
return
true
;
}
static
bool
ocl_knnMatchSingle
(
InputArray
query
,
InputArray
train
,
UMat
&
trainIdx
,
UMat
&
distance
,
UMat
&
allDist
,
int
k
,
int
dstType
)
{
if
(
query
.
empty
()
||
train
.
empty
())
return
false
;
const
int
nQuery
=
query
.
size
().
height
;
const
int
nTrain
=
train
.
size
().
height
;
if
(
k
==
2
)
{
ensureSizeIsEnough
(
1
,
nQuery
,
CV_32SC2
,
trainIdx
);
ensureSizeIsEnough
(
1
,
nQuery
,
CV_32FC2
,
distance
);
}
else
{
ensureSizeIsEnough
(
nQuery
,
k
,
CV_32S
,
trainIdx
);
ensureSizeIsEnough
(
nQuery
,
k
,
CV_32F
,
distance
);
ensureSizeIsEnough
(
nQuery
,
nTrain
,
CV_32FC1
,
allDist
);
}
trainIdx
.
setTo
(
Scalar
::
all
(
-
1
));
return
ocl_kmatchDispatcher
(
query
,
train
,
k
,
trainIdx
,
distance
,
allDist
,
dstType
);
}
static
bool
ocl_knnMatchConvert
(
const
Mat
&
trainIdx
,
const
Mat
&
distance
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
bool
compactResult
)
{
if
(
trainIdx
.
empty
()
||
distance
.
empty
())
return
false
;
if
(
trainIdx
.
type
()
!=
CV_32SC2
&&
trainIdx
.
type
()
!=
CV_32SC1
)
return
false
;
if
(
distance
.
type
()
!=
CV_32FC2
&&
distance
.
type
()
!=
CV_32FC1
)
return
false
;
if
(
distance
.
size
()
!=
trainIdx
.
size
())
return
false
;
if
(
!
trainIdx
.
isContinuous
()
||
!
distance
.
isContinuous
())
return
false
;
const
int
nQuery
=
trainIdx
.
type
()
==
CV_32SC2
?
trainIdx
.
cols
:
trainIdx
.
rows
;
const
int
k
=
trainIdx
.
type
()
==
CV_32SC2
?
2
:
trainIdx
.
cols
;
matches
.
clear
();
matches
.
reserve
(
nQuery
);
const
int
*
trainIdx_ptr
=
trainIdx
.
ptr
<
int
>
();
const
float
*
distance_ptr
=
distance
.
ptr
<
float
>
();
for
(
int
queryIdx
=
0
;
queryIdx
<
nQuery
;
++
queryIdx
)
{
matches
.
push_back
(
std
::
vector
<
DMatch
>
());
std
::
vector
<
DMatch
>
&
curMatches
=
matches
.
back
();
curMatches
.
reserve
(
k
);
for
(
int
i
=
0
;
i
<
k
;
++
i
,
++
trainIdx_ptr
,
++
distance_ptr
)
{
int
trainIndex
=
*
trainIdx_ptr
;
if
(
trainIndex
!=
-
1
)
{
float
dst
=
*
distance_ptr
;
DMatch
m
(
queryIdx
,
trainIndex
,
0
,
dst
);
curMatches
.
push_back
(
m
);
}
}
if
(
compactResult
&&
curMatches
.
empty
())
matches
.
pop_back
();
}
return
true
;
}
static
bool
ocl_knnMatchDownload
(
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
bool
compactResult
)
{
if
(
trainIdx
.
empty
()
||
distance
.
empty
())
return
false
;
Mat
trainIdxCPU
=
trainIdx
.
getMat
(
ACCESS_READ
);
Mat
distanceCPU
=
distance
.
getMat
(
ACCESS_READ
);
if
(
ocl_knnMatchConvert
(
trainIdxCPU
,
distanceCPU
,
matches
,
compactResult
)
)
return
true
;
return
false
;
}
template
<
int
BLOCK_SIZE
,
int
MAX_DESC_LEN
/*, typename Mask*/
>
static
bool
ocl_matchUnrolledCached
(
InputArray
_query
,
InputArray
_train
,
float
maxDistance
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
const
UMat
&
nMatches
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
,
(
int
)
MAX_DESC_LEN
);
ocl
::
Kernel
k
(
"BruteForceMatch_RadiusUnrollMatch"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_train
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
(
_query
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
2
*
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
maxDistance
);
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
nMatches
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
trainIdx
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
idx
=
k
.
set
(
idx
,
(
int
)
trainIdx
.
step
);
return
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
true
;
}
//radius_match
template
<
int
BLOCK_SIZE
/*, typename Mask*/
>
static
bool
ocl_radius_match
(
InputArray
_query
,
InputArray
_train
,
float
maxDistance
,
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
const
UMat
&
nMatches
,
int
distType
)
{
int
depth
=
_query
.
depth
();
cv
::
String
opts
;
opts
=
format
(
"-D T=%s %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d"
,
ocl
::
typeToStr
(
depth
),
depth
==
CV_32F
?
"-D T_FLOAT"
:
""
,
distType
,
(
int
)
BLOCK_SIZE
);
ocl
::
Kernel
k
(
"BruteForceMatch_RadiusMatch"
,
ocl
::
features2d
::
brute_force_match_oclsrc
,
opts
);
if
(
k
.
empty
())
return
false
;
size_t
globalSize
[]
=
{(
_train
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
(
_query
.
size
().
height
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE
,
1
};
size_t
localSize
[]
=
{
BLOCK_SIZE
,
BLOCK_SIZE
,
1
};
const
size_t
smemSize
=
(
2
*
BLOCK_SIZE
*
BLOCK_SIZE
)
*
sizeof
(
int
);
if
(
globalSize
[
0
]
!=
0
)
{
UMat
query
=
_query
.
getUMat
(),
train
=
_train
.
getUMat
();
int
idx
=
0
;
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
query
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrReadOnly
(
train
));
idx
=
k
.
set
(
idx
,
maxDistance
);
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
trainIdx
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
distance
));
idx
=
k
.
set
(
idx
,
ocl
::
KernelArg
::
PtrWriteOnly
(
nMatches
));
idx
=
k
.
set
(
idx
,
(
void
*
)
NULL
,
smemSize
);
idx
=
k
.
set
(
idx
,
query
.
rows
);
idx
=
k
.
set
(
idx
,
query
.
cols
);
idx
=
k
.
set
(
idx
,
train
.
rows
);
idx
=
k
.
set
(
idx
,
train
.
cols
);
idx
=
k
.
set
(
idx
,
trainIdx
.
cols
);
idx
=
k
.
set
(
idx
,
(
int
)
query
.
step
);
idx
=
k
.
set
(
idx
,
(
int
)
trainIdx
.
step
);
return
k
.
run
(
2
,
globalSize
,
localSize
,
false
);
}
return
true
;
}
static
bool
ocl_rmatchDispatcher
(
InputArray
query
,
InputArray
train
,
UMat
&
trainIdx
,
UMat
&
distance
,
UMat
&
nMatches
,
float
maxDistance
,
int
distType
)
{
bool
is_cpu
=
ocl
::
Device
::
getDefault
().
type
()
==
ocl
::
Device
::
TYPE_CPU
;
int
query_cols
=
query
.
size
().
width
;
if
(
query_cols
<=
64
)
{
if
(
!
ocl_matchUnrolledCached
<
16
,
64
>
(
query
,
train
,
maxDistance
,
trainIdx
,
distance
,
nMatches
,
distType
))
return
false
;
}
else
if
(
query_cols
<=
128
&&
!
is_cpu
)
{
if
(
!
ocl_matchUnrolledCached
<
16
,
128
>
(
query
,
train
,
maxDistance
,
trainIdx
,
distance
,
nMatches
,
distType
))
return
false
;
}
else
{
if
(
!
ocl_radius_match
<
16
>
(
query
,
train
,
maxDistance
,
trainIdx
,
distance
,
nMatches
,
distType
))
return
false
;
}
return
true
;
}
static
bool
ocl_radiusMatchSingle
(
InputArray
query
,
InputArray
train
,
UMat
&
trainIdx
,
UMat
&
distance
,
UMat
&
nMatches
,
float
maxDistance
,
int
distType
)
{
if
(
query
.
empty
()
||
train
.
empty
())
return
false
;
const
int
nQuery
=
query
.
size
().
height
;
const
int
nTrain
=
train
.
size
().
height
;
ensureSizeIsEnough
(
1
,
nQuery
,
CV_32SC1
,
nMatches
);
if
(
trainIdx
.
empty
())
{
ensureSizeIsEnough
(
nQuery
,
std
::
max
((
nTrain
/
100
),
10
),
CV_32SC1
,
trainIdx
);
ensureSizeIsEnough
(
nQuery
,
std
::
max
((
nTrain
/
100
),
10
),
CV_32FC1
,
distance
);
}
nMatches
.
setTo
(
Scalar
::
all
(
0
));
return
ocl_rmatchDispatcher
(
query
,
train
,
trainIdx
,
distance
,
nMatches
,
maxDistance
,
distType
);
}
static
bool
ocl_radiusMatchConvert
(
const
Mat
&
trainIdx
,
const
Mat
&
distance
,
const
Mat
&
_nMatches
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
bool
compactResult
)
{
if
(
trainIdx
.
empty
()
||
distance
.
empty
()
||
_nMatches
.
empty
())
return
false
;
if
(
(
trainIdx
.
type
()
!=
CV_32SC1
)
||
(
distance
.
type
()
!=
CV_32FC1
||
distance
.
size
()
!=
trainIdx
.
size
())
||
(
_nMatches
.
type
()
!=
CV_32SC1
||
_nMatches
.
cols
!=
trainIdx
.
rows
)
)
return
false
;
const
int
nQuery
=
trainIdx
.
rows
;
matches
.
clear
();
matches
.
reserve
(
nQuery
);
const
int
*
nMatches_ptr
=
_nMatches
.
ptr
<
int
>
();
for
(
int
queryIdx
=
0
;
queryIdx
<
nQuery
;
++
queryIdx
)
{
const
int
*
trainIdx_ptr
=
trainIdx
.
ptr
<
int
>
(
queryIdx
);
const
float
*
distance_ptr
=
distance
.
ptr
<
float
>
(
queryIdx
);
const
int
nMatches
=
std
::
min
(
nMatches_ptr
[
queryIdx
],
trainIdx
.
cols
);
if
(
nMatches
==
0
)
{
if
(
!
compactResult
)
matches
.
push_back
(
std
::
vector
<
DMatch
>
());
continue
;
}
matches
.
push_back
(
std
::
vector
<
DMatch
>
(
nMatches
));
std
::
vector
<
DMatch
>
&
curMatches
=
matches
.
back
();
for
(
int
i
=
0
;
i
<
nMatches
;
++
i
,
++
trainIdx_ptr
,
++
distance_ptr
)
{
int
trainIndex
=
*
trainIdx_ptr
;
float
dst
=
*
distance_ptr
;
DMatch
m
(
queryIdx
,
trainIndex
,
0
,
dst
);
curMatches
[
i
]
=
m
;
}
std
::
sort
(
curMatches
.
begin
(),
curMatches
.
end
());
}
return
true
;
}
static
bool
ocl_radiusMatchDownload
(
const
UMat
&
trainIdx
,
const
UMat
&
distance
,
const
UMat
&
nMatches
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
bool
compactResult
)
{
if
(
trainIdx
.
empty
()
||
distance
.
empty
()
||
nMatches
.
empty
())
return
false
;
Mat
trainIdxCPU
=
trainIdx
.
getMat
(
ACCESS_READ
);
Mat
distanceCPU
=
distance
.
getMat
(
ACCESS_READ
);
Mat
nMatchesCPU
=
nMatches
.
getMat
(
ACCESS_READ
);
return
ocl_radiusMatchConvert
(
trainIdxCPU
,
distanceCPU
,
nMatchesCPU
,
matches
,
compactResult
);
}
/****************************************************************************************\
/****************************************************************************************\
* DescriptorMatcher *
* DescriptorMatcher *
\****************************************************************************************/
\****************************************************************************************/
...
@@ -190,9 +865,32 @@ static void convertMatches( const std::vector<std::vector<DMatch> >& knnMatches,
...
@@ -190,9 +865,32 @@ static void convertMatches( const std::vector<std::vector<DMatch> >& knnMatches,
DescriptorMatcher
::~
DescriptorMatcher
()
DescriptorMatcher
::~
DescriptorMatcher
()
{}
{}
void
DescriptorMatcher
::
add
(
const
std
::
vector
<
Mat
>&
descriptors
)
void
DescriptorMatcher
::
add
(
InputArrayOfArrays
_
descriptors
)
{
{
trainDescCollection
.
insert
(
trainDescCollection
.
end
(),
descriptors
.
begin
(),
descriptors
.
end
()
);
if
(
_descriptors
.
isUMatVector
())
{
std
::
vector
<
UMat
>
descriptors
;
_descriptors
.
getUMatVector
(
descriptors
);
utrainDescCollection
.
insert
(
utrainDescCollection
.
end
(),
descriptors
.
begin
(),
descriptors
.
end
()
);
}
else
if
(
_descriptors
.
isUMat
())
{
std
::
vector
<
UMat
>
descriptors
=
std
::
vector
<
UMat
>
(
1
,
_descriptors
.
getUMat
());
utrainDescCollection
.
insert
(
utrainDescCollection
.
end
(),
descriptors
.
begin
(),
descriptors
.
end
()
);
}
else
if
(
_descriptors
.
isMatVector
())
{
std
::
vector
<
Mat
>
descriptors
;
_descriptors
.
getMatVector
(
descriptors
);
trainDescCollection
.
insert
(
trainDescCollection
.
end
(),
descriptors
.
begin
(),
descriptors
.
end
()
);
}
else
if
(
_descriptors
.
isMat
())
{
std
::
vector
<
Mat
>
descriptors
=
std
::
vector
<
Mat
>
(
1
,
_descriptors
.
getMat
());
trainDescCollection
.
insert
(
trainDescCollection
.
end
(),
descriptors
.
begin
(),
descriptors
.
end
()
);
}
else
CV_Assert
(
_descriptors
.
isUMat
()
||
_descriptors
.
isUMatVector
()
||
_descriptors
.
isMat
()
||
_descriptors
.
isMatVector
()
);
}
}
const
std
::
vector
<
Mat
>&
DescriptorMatcher
::
getTrainDescriptors
()
const
const
std
::
vector
<
Mat
>&
DescriptorMatcher
::
getTrainDescriptors
()
const
...
@@ -202,41 +900,45 @@ const std::vector<Mat>& DescriptorMatcher::getTrainDescriptors() const
...
@@ -202,41 +900,45 @@ const std::vector<Mat>& DescriptorMatcher::getTrainDescriptors() const
void
DescriptorMatcher
::
clear
()
void
DescriptorMatcher
::
clear
()
{
{
utrainDescCollection
.
clear
();
trainDescCollection
.
clear
();
trainDescCollection
.
clear
();
}
}
bool
DescriptorMatcher
::
empty
()
const
bool
DescriptorMatcher
::
empty
()
const
{
{
return
trainDescCollection
.
empty
();
return
trainDescCollection
.
empty
()
&&
utrainDescCollection
.
empty
()
;
}
}
void
DescriptorMatcher
::
train
()
void
DescriptorMatcher
::
train
()
{}
{}
void
DescriptorMatcher
::
match
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
const
Mat
&
mask
)
const
void
DescriptorMatcher
::
match
(
InputArray
queryDescriptors
,
InputArray
trainDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
InputArray
mask
)
const
{
{
Ptr
<
DescriptorMatcher
>
tempMatcher
=
clone
(
true
);
Ptr
<
DescriptorMatcher
>
tempMatcher
=
clone
(
true
);
tempMatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
trainDescriptors
)
);
tempMatcher
->
add
(
trainDescriptors
);
tempMatcher
->
match
(
queryDescriptors
,
matches
,
std
::
vector
<
Mat
>
(
1
,
mask
)
);
tempMatcher
->
match
(
queryDescriptors
,
matches
,
std
::
vector
<
Mat
>
(
1
,
mask
.
getMat
()
)
);
}
}
void
DescriptorMatcher
::
knnMatch
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
void
DescriptorMatcher
::
knnMatch
(
InputArray
queryDescriptors
,
InputArray
trainDescriptors
,
const
Mat
&
mask
,
bool
compactResult
)
const
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
InputArray
mask
,
bool
compactResult
)
const
{
{
Ptr
<
DescriptorMatcher
>
tempMatcher
=
clone
(
true
);
Ptr
<
DescriptorMatcher
>
tempMatcher
=
clone
(
true
);
tempMatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
trainDescriptors
)
);
tempMatcher
->
add
(
trainDescriptors
);
tempMatcher
->
knnMatch
(
queryDescriptors
,
matches
,
knn
,
std
::
vector
<
Mat
>
(
1
,
mask
),
compactResult
);
tempMatcher
->
knnMatch
(
queryDescriptors
,
matches
,
knn
,
std
::
vector
<
Mat
>
(
1
,
mask
.
getMat
()
),
compactResult
);
}
}
void
DescriptorMatcher
::
radiusMatch
(
const
Mat
&
queryDescriptors
,
const
Mat
&
trainDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
void
DescriptorMatcher
::
radiusMatch
(
InputArray
queryDescriptors
,
InputArray
trainDescriptors
,
const
Mat
&
mask
,
bool
compactResult
)
const
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
InputArray
mask
,
bool
compactResult
)
const
{
{
Ptr
<
DescriptorMatcher
>
tempMatcher
=
clone
(
true
);
Ptr
<
DescriptorMatcher
>
tempMatcher
=
clone
(
true
);
tempMatcher
->
add
(
std
::
vector
<
Mat
>
(
1
,
trainDescriptors
)
);
tempMatcher
->
add
(
trainDescriptors
);
tempMatcher
->
radiusMatch
(
queryDescriptors
,
matches
,
maxDistance
,
std
::
vector
<
Mat
>
(
1
,
mask
),
compactResult
);
tempMatcher
->
radiusMatch
(
queryDescriptors
,
matches
,
maxDistance
,
std
::
vector
<
Mat
>
(
1
,
mask
.
getMat
()
),
compactResult
);
}
}
void
DescriptorMatcher
::
match
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
const
std
::
vector
<
Mat
>&
masks
)
void
DescriptorMatcher
::
match
(
InputArray
queryDescriptors
,
std
::
vector
<
DMatch
>&
matches
,
const
std
::
vector
<
Mat
>&
masks
)
{
{
std
::
vector
<
std
::
vector
<
DMatch
>
>
knnMatches
;
std
::
vector
<
std
::
vector
<
DMatch
>
>
knnMatches
;
knnMatch
(
queryDescriptors
,
knnMatches
,
1
,
masks
,
true
/*compactResult*/
);
knnMatch
(
queryDescriptors
,
knnMatches
,
1
,
masks
,
true
/*compactResult*/
);
...
@@ -248,36 +950,36 @@ void DescriptorMatcher::checkMasks( const std::vector<Mat>& masks, int queryDesc
...
@@ -248,36 +950,36 @@ void DescriptorMatcher::checkMasks( const std::vector<Mat>& masks, int queryDesc
if
(
isMaskSupported
()
&&
!
masks
.
empty
()
)
if
(
isMaskSupported
()
&&
!
masks
.
empty
()
)
{
{
// Check masks
// Check masks
size_t
imageCount
=
trainDescCollection
.
size
(
);
size_t
imageCount
=
std
::
max
(
trainDescCollection
.
size
(),
utrainDescCollection
.
size
()
);
CV_Assert
(
masks
.
size
()
==
imageCount
);
CV_Assert
(
masks
.
size
()
==
imageCount
);
for
(
size_t
i
=
0
;
i
<
imageCount
;
i
++
)
for
(
size_t
i
=
0
;
i
<
imageCount
;
i
++
)
{
{
if
(
!
masks
[
i
].
empty
()
&&
!
trainDescCollection
[
i
].
empty
(
)
)
if
(
!
masks
[
i
].
empty
()
&&
(
!
trainDescCollection
[
i
].
empty
()
||
!
utrainDescCollection
[
i
].
empty
()
)
)
{
{
int
rows
=
trainDescCollection
[
i
].
empty
()
?
utrainDescCollection
[
i
].
rows
:
trainDescCollection
[
i
].
rows
;
CV_Assert
(
masks
[
i
].
rows
==
queryDescriptorsCount
&&
CV_Assert
(
masks
[
i
].
rows
==
queryDescriptorsCount
&&
masks
[
i
].
cols
==
trainDescCollection
[
i
].
rows
&&
(
masks
[
i
].
cols
==
rows
||
masks
[
i
].
cols
==
rows
)
&&
masks
[
i
].
type
()
==
CV_8UC1
);
masks
[
i
].
type
()
==
CV_8UC1
);
}
}
}
}
}
}
}
}
void
DescriptorMatcher
::
knnMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
void
DescriptorMatcher
::
knnMatch
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
{
{
matches
.
clear
();
if
(
empty
()
||
queryDescriptors
.
empty
()
)
if
(
empty
()
||
queryDescriptors
.
empty
()
)
return
;
return
;
CV_Assert
(
knn
>
0
);
CV_Assert
(
knn
>
0
);
checkMasks
(
masks
,
queryDescriptors
.
rows
);
checkMasks
(
masks
,
queryDescriptors
.
size
().
height
);
train
();
train
();
knnMatchImpl
(
queryDescriptors
,
matches
,
knn
,
masks
,
compactResult
);
knnMatchImpl
(
queryDescriptors
,
matches
,
knn
,
masks
,
compactResult
);
}
}
void
DescriptorMatcher
::
radiusMatch
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
void
DescriptorMatcher
::
radiusMatch
(
InputArray
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
{
{
matches
.
clear
();
matches
.
clear
();
...
@@ -286,7 +988,7 @@ void DescriptorMatcher::radiusMatch( const Mat& queryDescriptors, std::vector<st
...
@@ -286,7 +988,7 @@ void DescriptorMatcher::radiusMatch( const Mat& queryDescriptors, std::vector<st
CV_Assert
(
maxDistance
>
std
::
numeric_limits
<
float
>::
epsilon
()
);
CV_Assert
(
maxDistance
>
std
::
numeric_limits
<
float
>::
epsilon
()
);
checkMasks
(
masks
,
queryDescriptors
.
rows
);
checkMasks
(
masks
,
queryDescriptors
.
size
().
height
);
train
();
train
();
radiusMatchImpl
(
queryDescriptors
,
matches
,
maxDistance
,
masks
,
compactResult
);
radiusMatchImpl
(
queryDescriptors
,
matches
,
maxDistance
,
masks
,
compactResult
);
...
@@ -316,7 +1018,7 @@ bool DescriptorMatcher::isMaskedOut( const std::vector<Mat>& masks, int queryIdx
...
@@ -316,7 +1018,7 @@ bool DescriptorMatcher::isMaskedOut( const std::vector<Mat>& masks, int queryIdx
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////
BruteForceMatcher
/////////////////////////////////////////////////
BFMatcher
::
BFMatcher
(
int
_normType
,
bool
_crossCheck
)
BFMatcher
::
BFMatcher
(
int
_normType
,
bool
_crossCheck
)
{
{
...
@@ -336,19 +1038,97 @@ Ptr<DescriptorMatcher> BFMatcher::clone( bool emptyTrainData ) const
...
@@ -336,19 +1038,97 @@ Ptr<DescriptorMatcher> BFMatcher::clone( bool emptyTrainData ) const
return
matcher
;
return
matcher
;
}
}
bool
BFMatcher
::
ocl_match
(
InputArray
query
,
InputArray
_train
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
int
dstType
)
{
UMat
trainIdx
,
distance
;
if
(
!
ocl_matchSingle
(
query
,
_train
,
trainIdx
,
distance
,
dstType
))
return
false
;
if
(
!
ocl_matchDownload
(
trainIdx
,
distance
,
matches
))
return
false
;
return
true
;
}
bool
BFMatcher
::
ocl_knnMatch
(
InputArray
query
,
InputArray
_train
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
int
k
,
int
dstType
,
bool
compactResult
)
{
UMat
trainIdx
,
distance
,
allDist
;
if
(
!
ocl_knnMatchSingle
(
query
,
_train
,
trainIdx
,
distance
,
allDist
,
k
,
dstType
))
return
false
;
if
(
!
ocl_knnMatchDownload
(
trainIdx
,
distance
,
matches
,
compactResult
)
)
return
false
;
return
true
;
}
void
BFMatcher
::
knnMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
void
BFMatcher
::
knnMatchImpl
(
InputArray
_
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
InputArrayOfArrays
_
masks
,
bool
compactResult
)
{
{
int
trainDescType
=
trainDescCollection
.
empty
()
?
utrainDescCollection
[
0
].
type
()
:
trainDescCollection
[
0
].
type
();
CV_Assert
(
_queryDescriptors
.
type
()
==
trainDescType
);
const
int
IMGIDX_SHIFT
=
18
;
const
int
IMGIDX_SHIFT
=
18
;
const
int
IMGIDX_ONE
=
(
1
<<
IMGIDX_SHIFT
);
const
int
IMGIDX_ONE
=
(
1
<<
IMGIDX_SHIFT
);
if
(
queryDescriptors
.
empty
()
||
trainDescCollection
.
empty
()
)
if
(
_queryDescriptors
.
empty
()
||
(
trainDescCollection
.
empty
()
&&
utrainDescCollection
.
empty
())
)
{
{
matches
.
clear
();
matches
.
clear
();
return
;
return
;
}
}
CV_Assert
(
queryDescriptors
.
type
()
==
trainDescCollection
[
0
].
type
()
);
std
::
vector
<
Mat
>
masks
;
_masks
.
getMatVector
(
masks
);
if
(
!
trainDescCollection
.
empty
()
&&
!
utrainDescCollection
.
empty
())
{
for
(
int
i
=
0
;
i
<
(
int
)
utrainDescCollection
.
size
();
i
++
)
{
Mat
tempMat
;
utrainDescCollection
[
i
].
copyTo
(
tempMat
);
trainDescCollection
.
push_back
(
tempMat
);
}
utrainDescCollection
.
clear
();
}
int
trainDescVectorSize
=
trainDescCollection
.
empty
()
?
(
int
)
utrainDescCollection
.
size
()
:
(
int
)
trainDescCollection
.
size
();
Size
trainDescSize
=
trainDescCollection
.
empty
()
?
utrainDescCollection
[
0
].
size
()
:
trainDescCollection
[
0
].
size
();
if
(
ocl
::
useOpenCL
()
&&
_queryDescriptors
.
isUMat
()
&&
_queryDescriptors
.
dims
()
<=
2
&&
trainDescVectorSize
==
1
&&
_queryDescriptors
.
type
()
==
CV_32FC1
&&
trainDescSize
.
width
==
_queryDescriptors
.
size
().
width
&&
masks
.
size
()
==
1
&&
masks
[
0
].
total
()
==
0
)
{
if
(
knn
==
1
)
{
if
(
trainDescCollection
.
empty
())
{
if
(
ocl_match
(
_queryDescriptors
,
utrainDescCollection
[
0
],
matches
,
normType
))
return
;
}
else
{
if
(
ocl_match
(
_queryDescriptors
,
trainDescCollection
[
0
],
matches
,
normType
))
return
;
}
}
else
{
if
(
trainDescCollection
.
empty
())
{
if
(
ocl_knnMatch
(
_queryDescriptors
,
utrainDescCollection
[
0
],
matches
,
knn
,
normType
,
compactResult
)
)
return
;
}
else
{
if
(
ocl_knnMatch
(
_queryDescriptors
,
trainDescCollection
[
0
],
matches
,
knn
,
normType
,
compactResult
)
)
return
;
}
}
}
Mat
queryDescriptors
=
_queryDescriptors
.
getMat
();
if
(
trainDescCollection
.
empty
()
&&
!
utrainDescCollection
.
empty
())
{
for
(
int
i
=
0
;
i
<
(
int
)
utrainDescCollection
.
size
();
i
++
)
{
Mat
tempMat
;
utrainDescCollection
[
i
].
copyTo
(
tempMat
);
trainDescCollection
.
push_back
(
tempMat
);
}
utrainDescCollection
.
clear
();
}
matches
.
reserve
(
queryDescriptors
.
rows
);
matches
.
reserve
(
queryDescriptors
.
rows
);
...
@@ -397,16 +1177,71 @@ void BFMatcher::knnMatchImpl( const Mat& queryDescriptors, std::vector<std::vect
...
@@ -397,16 +1177,71 @@ void BFMatcher::knnMatchImpl( const Mat& queryDescriptors, std::vector<std::vect
}
}
}
}
bool
BFMatcher
::
ocl_radiusMatch
(
InputArray
query
,
InputArray
_train
,
std
::
vector
<
std
::
vector
<
DMatch
>
>
&
matches
,
float
maxDistance
,
int
dstType
,
bool
compactResult
)
{
UMat
trainIdx
,
distance
,
nMatches
;
if
(
!
ocl_radiusMatchSingle
(
query
,
_train
,
trainIdx
,
distance
,
nMatches
,
maxDistance
,
dstType
))
return
false
;
if
(
!
ocl_radiusMatchDownload
(
trainIdx
,
distance
,
nMatches
,
matches
,
compactResult
))
return
false
;
return
true
;
}
void
BFMatcher
::
radiusMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
void
BFMatcher
::
radiusMatchImpl
(
InputArray
_
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
masks
,
bool
compactResult
)
float
maxDistance
,
InputArrayOfArrays
_
masks
,
bool
compactResult
)
{
{
if
(
queryDescriptors
.
empty
()
||
trainDescCollection
.
empty
()
)
int
trainDescType
=
trainDescCollection
.
empty
()
?
utrainDescCollection
[
0
].
type
()
:
trainDescCollection
[
0
].
type
();
CV_Assert
(
_queryDescriptors
.
type
()
==
trainDescType
);
if
(
_queryDescriptors
.
empty
()
||
(
trainDescCollection
.
empty
()
&&
utrainDescCollection
.
empty
()))
{
{
matches
.
clear
();
matches
.
clear
();
return
;
return
;
}
}
CV_Assert
(
queryDescriptors
.
type
()
==
trainDescCollection
[
0
].
type
()
);
std
::
vector
<
Mat
>
masks
;
_masks
.
getMatVector
(
masks
);
if
(
!
trainDescCollection
.
empty
()
&&
!
utrainDescCollection
.
empty
())
{
for
(
int
i
=
0
;
i
<
(
int
)
utrainDescCollection
.
size
();
i
++
)
{
Mat
tempMat
;
utrainDescCollection
[
i
].
copyTo
(
tempMat
);
trainDescCollection
.
push_back
(
tempMat
);
}
utrainDescCollection
.
clear
();
}
int
trainDescVectorSize
=
trainDescCollection
.
empty
()
?
(
int
)
utrainDescCollection
.
size
()
:
(
int
)
trainDescCollection
.
size
();
Size
trainDescSize
=
trainDescCollection
.
empty
()
?
utrainDescCollection
[
0
].
size
()
:
trainDescCollection
[
0
].
size
();
if
(
ocl
::
useOpenCL
()
&&
_queryDescriptors
.
isUMat
()
&&
_queryDescriptors
.
dims
()
<=
2
&&
trainDescVectorSize
==
1
&&
_queryDescriptors
.
type
()
==
CV_32FC1
&&
trainDescSize
.
width
==
_queryDescriptors
.
size
().
width
&&
masks
.
size
()
==
1
&&
masks
[
0
].
total
()
==
0
)
{
if
(
trainDescCollection
.
empty
())
{
if
(
ocl_radiusMatch
(
_queryDescriptors
,
utrainDescCollection
[
0
],
matches
,
maxDistance
,
normType
,
compactResult
)
)
return
;
}
else
{
if
(
ocl_radiusMatch
(
_queryDescriptors
,
trainDescCollection
[
0
],
matches
,
maxDistance
,
normType
,
compactResult
)
)
return
;
}
}
Mat
queryDescriptors
=
_queryDescriptors
.
getMat
();
if
(
trainDescCollection
.
empty
()
&&
!
utrainDescCollection
.
empty
())
{
for
(
int
i
=
0
;
i
<
(
int
)
utrainDescCollection
.
size
();
i
++
)
{
Mat
tempMat
;
utrainDescCollection
[
i
].
copyTo
(
tempMat
);
trainDescCollection
.
push_back
(
tempMat
);
}
utrainDescCollection
.
clear
();
}
matches
.
resize
(
queryDescriptors
.
rows
);
matches
.
resize
(
queryDescriptors
.
rows
);
Mat
dist
,
distf
;
Mat
dist
,
distf
;
...
@@ -763,9 +1598,10 @@ void FlannBasedMatcher::convertToDMatches( const DescriptorCollection& collectio
...
@@ -763,9 +1598,10 @@ void FlannBasedMatcher::convertToDMatches( const DescriptorCollection& collectio
}
}
}
}
void
FlannBasedMatcher
::
knnMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
void
FlannBasedMatcher
::
knnMatchImpl
(
InputArray
_
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
int
knn
,
const
std
::
vector
<
Mat
>&
/*masks*/
,
bool
/*compactResult*/
)
InputArrayOfArrays
/*masks*/
,
bool
/*compactResult*/
)
{
{
Mat
queryDescriptors
=
_queryDescriptors
.
getMat
();
Mat
indices
(
queryDescriptors
.
rows
,
knn
,
CV_32SC1
);
Mat
indices
(
queryDescriptors
.
rows
,
knn
,
CV_32SC1
);
Mat
dists
(
queryDescriptors
.
rows
,
knn
,
CV_32FC1
);
Mat
dists
(
queryDescriptors
.
rows
,
knn
,
CV_32FC1
);
flannIndex
->
knnSearch
(
queryDescriptors
,
indices
,
dists
,
knn
,
*
searchParams
);
flannIndex
->
knnSearch
(
queryDescriptors
,
indices
,
dists
,
knn
,
*
searchParams
);
...
@@ -773,9 +1609,10 @@ void FlannBasedMatcher::knnMatchImpl( const Mat& queryDescriptors, std::vector<s
...
@@ -773,9 +1609,10 @@ void FlannBasedMatcher::knnMatchImpl( const Mat& queryDescriptors, std::vector<s
convertToDMatches
(
mergedDescriptors
,
indices
,
dists
,
matches
);
convertToDMatches
(
mergedDescriptors
,
indices
,
dists
,
matches
);
}
}
void
FlannBasedMatcher
::
radiusMatchImpl
(
const
Mat
&
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
void
FlannBasedMatcher
::
radiusMatchImpl
(
InputArray
_
queryDescriptors
,
std
::
vector
<
std
::
vector
<
DMatch
>
>&
matches
,
float
maxDistance
,
const
std
::
vector
<
Mat
>&
/*masks*/
,
bool
/*compactResult*/
)
InputArrayOfArrays
/*masks*/
,
bool
/*compactResult*/
)
{
{
Mat
queryDescriptors
=
_queryDescriptors
.
getMat
();
const
int
count
=
mergedDescriptors
.
size
();
// TODO do count as param?
const
int
count
=
mergedDescriptors
.
size
();
// TODO do count as param?
Mat
indices
(
queryDescriptors
.
rows
,
count
,
CV_32SC1
,
Scalar
::
all
(
-
1
)
);
Mat
indices
(
queryDescriptors
.
rows
,
count
,
CV_32SC1
,
Scalar
::
all
(
-
1
)
);
Mat
dists
(
queryDescriptors
.
rows
,
count
,
CV_32FC1
,
Scalar
::
all
(
-
1
)
);
Mat
dists
(
queryDescriptors
.
rows
,
count
,
CV_32FC1
,
Scalar
::
all
(
-
1
)
);
...
...
modules/features2d/src/opencl/brute_force_match.cl
0 → 100644
View file @
ca5689e0
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Multicoreware,
Inc.,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Nathan,
liujun@multicorewareinc.com
//
Peng
Xiao,
pengxiao@outlook.com
//
Baichuan
Su,
baichuan@multicorewareinc.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
"as is"
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
pragma
OPENCL
EXTENSION
cl_khr_global_int32_base_atomics:enable
#
define
MAX_FLOAT
3.40282e+038f
#
ifndef
T
#
define
T
float
#
endif
#
ifndef
BLOCK_SIZE
#
define
BLOCK_SIZE
16
#
endif
#
ifndef
MAX_DESC_LEN
#
define
MAX_DESC_LEN
64
#
endif
#
ifndef
DIST_TYPE
#
define
DIST_TYPE
2
#
endif
//
dirty
fix
for
non-template
support
#
if
(
DIST_TYPE
==
2
)
//
L1Dist
#
ifdef
T_FLOAT
#
define
DIST
(
x,
y
)
fabs
((
x
)
-
(
y
))
typedef
float
value_type
;
typedef
float
result_type
;
#
else
#
define
DIST
(
x,
y
)
abs
((
x
)
-
(
y
))
typedef
int
value_type
;
typedef
int
result_type
;
#
endif
#
define
DIST_RES
(
x
)
(
x
)
#
elif
(
DIST_TYPE
==
4
)
//
L2Dist
#
define
DIST
(
x,
y
)
(((
x
)
-
(
y
))
*
((
x
)
-
(
y
)))
typedef
float
value_type
;
typedef
float
result_type
;
#
define
DIST_RES
(
x
)
sqrt
(
x
)
#
elif
(
DIST_TYPE
==
6
)
//
Hamming
//http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
inline
int
bit1Count
(
int
v
)
{
v
=
v
-
((
v
>>
1
)
&
0x55555555
)
; // reuse input as temporary
v
=
(
v
&
0x33333333
)
+
((
v
>>
2
)
&
0x33333333
)
; // temp
return
((
v
+
(
v
>>
4
)
&
0xF0F0F0F
)
*
0x1010101
)
>>
24
; // count
}
#
define
DIST
(
x,
y
)
bit1Count
(
(
x
)
^
(
y
)
)
typedef
int
value_type
;
typedef
int
result_type
;
#
define
DIST_RES
(
x
)
(
x
)
#
endif
inline
result_type
reduce_block
(
__local
value_type
*s_query,
__local
value_type
*s_train,
int
lidx,
int
lidy
)
{
result_type
result
=
0
;
#
pragma
unroll
for
(
int
j
=
0
; j < BLOCK_SIZE ; j++)
{
result
+=
DIST
(
s_query[lidy
*
BLOCK_SIZE
+
j],
s_train[j
*
BLOCK_SIZE
+
lidx]
)
;
}
return
DIST_RES
(
result
)
;
}
inline
result_type
reduce_block_match
(
__local
value_type
*s_query,
__local
value_type
*s_train,
int
lidx,
int
lidy
)
{
result_type
result
=
0
;
#
pragma
unroll
for
(
int
j
=
0
; j < BLOCK_SIZE ; j++)
{
result
+=
DIST
(
s_query[lidy
*
BLOCK_SIZE
+
j],
s_train[j
*
BLOCK_SIZE
+
lidx]
)
;
}
return
(
result
)
;
}
inline
result_type
reduce_multi_block
(
__local
value_type
*s_query,
__local
value_type
*s_train,
int
block_index,
int
lidx,
int
lidy
)
{
result_type
result
=
0
;
#
pragma
unroll
for
(
int
j
=
0
; j < BLOCK_SIZE ; j++)
{
result
+=
DIST
(
s_query[lidy
*
MAX_DESC_LEN
+
block_index
*
BLOCK_SIZE
+
j],
s_train[j
*
BLOCK_SIZE
+
lidx]
)
;
}
return
result
;
}
/*
2dim
launch,
global
size:
dim0
is
(
query
rows
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
*
BLOCK_SIZE,
dim1
is
BLOCK_SIZE
local
size:
dim0
is
BLOCK_SIZE,
dim1
is
BLOCK_SIZE.
*/
__kernel
void
BruteForceMatch_UnrollMatch
(
__global
T
*query,
__global
T
*train,
//__global
float
*mask,
__global
int
*bestTrainIdx,
__global
float
*bestDistance,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
step
)
{
const
int
lidx
=
get_local_id
(
0
)
;
const
int
lidy
=
get_local_id
(
1
)
;
const
int
groupidx
=
get_group_id
(
0
)
;
__local
value_type
*s_query
=
(
__local
value_type
*
)
sharebuffer
;
__local
value_type
*s_train
=
(
__local
value_type
*
)
sharebuffer
+
BLOCK_SIZE
*
MAX_DESC_LEN
;
int
queryIdx
=
groupidx
*
BLOCK_SIZE
+
lidy
;
//
load
the
query
into
local
memory.
#
pragma
unroll
for
(
int
i
=
0
; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
{
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
s_query[lidy
*
MAX_DESC_LEN
+
loadx]
=
loadx
<
query_cols
?
query[min
(
queryIdx,
query_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
}
float
myBestDistance
=
MAX_FLOAT
;
int
myBestTrainIdx
=
-1
;
//
loopUnrolledCached
to
find
the
best
trainIdx
and
best
distance.
for
(
int
t
=
0
,
endt
=
(
train_rows
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
; t < endt; t++)
{
result_type
result
=
0
;
#
pragma
unroll
for
(
int
i
=
0
; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
{
//load
a
BLOCK_SIZE
*
BLOCK_SIZE
block
into
local
train.
const
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
loadx
<
train_cols
?
train[min
(
t
*
BLOCK_SIZE
+
lidy,
train_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
//synchronize
to
make
sure
each
elem
for
reduceIteration
in
share
memory
is
written
already.
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
result
+=
reduce_multi_block
(
s_query,
s_train,
i,
lidx,
lidy
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
result
=
DIST_RES
(
result
)
;
int
trainIdx
=
t
*
BLOCK_SIZE
+
lidx
;
if
(
queryIdx
<
query_rows
&&
trainIdx
<
train_rows
&&
result
<
myBestDistance/*
&&
mask
(
queryIdx,
trainIdx
)
*/
)
{
myBestDistance
=
result
;
myBestTrainIdx
=
trainIdx
;
}
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
__local
float
*s_distance
=
(
__local
float*
)(
sharebuffer
)
;
__local
int*
s_trainIdx
=
(
__local
int
*
)(
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
)
;
//find
BestMatch
s_distance
+=
lidy
*
BLOCK_SIZE
;
s_trainIdx
+=
lidy
*
BLOCK_SIZE
;
s_distance[lidx]
=
myBestDistance
;
s_trainIdx[lidx]
=
myBestTrainIdx
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//reduce
--
now
all
reduce
implement
in
each
threads.
#
pragma
unroll
for
(
int
k
=
0
; k < BLOCK_SIZE; k++)
{
if
(
myBestDistance
>
s_distance[k]
)
{
myBestDistance
=
s_distance[k]
;
myBestTrainIdx
=
s_trainIdx[k]
;
}
}
if
(
queryIdx
<
query_rows
&&
lidx
==
0
)
{
bestTrainIdx[queryIdx]
=
myBestTrainIdx
;
bestDistance[queryIdx]
=
myBestDistance
;
}
}
__kernel
void
BruteForceMatch_Match
(
__global
T
*query,
__global
T
*train,
//__global
float
*mask,
__global
int
*bestTrainIdx,
__global
float
*bestDistance,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
step
)
{
const
int
lidx
=
get_local_id
(
0
)
;
const
int
lidy
=
get_local_id
(
1
)
;
const
int
groupidx
=
get_group_id
(
0
)
;
const
int
queryIdx
=
groupidx
*
BLOCK_SIZE
+
lidy
;
float
myBestDistance
=
MAX_FLOAT
;
int
myBestTrainIdx
=
-1
;
__local
value_type
*s_query
=
(
__local
value_type
*
)
sharebuffer
;
__local
value_type
*s_train
=
(
__local
value_type
*
)
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
;
//
loop
for
(
int
t
=
0
; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
{
result_type
result
=
0
;
for
(
int
i
=
0
; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; i++)
{
const
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
//load
query
and
train
into
local
memory
s_query[lidy
*
BLOCK_SIZE
+
lidx]
=
0
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
0
;
if
(
loadx
<
query_cols
)
{
s_query[lidy
*
BLOCK_SIZE
+
lidx]
=
query[min
(
queryIdx,
query_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
train[min
(
t
*
BLOCK_SIZE
+
lidy,
train_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
result
+=
reduce_block_match
(
s_query,
s_train,
lidx,
lidy
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
result
=
DIST_RES
(
result
)
;
const
int
trainIdx
=
t
*
BLOCK_SIZE
+
lidx
;
if
(
queryIdx
<
query_rows
&&
trainIdx
<
train_rows
&&
result
<
myBestDistance
/*&&
mask
(
queryIdx,
trainIdx
)
*/
)
{
myBestDistance
=
result
;
myBestTrainIdx
=
trainIdx
;
}
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
__local
float
*s_distance
=
(
__local
float
*
)
sharebuffer
;
__local
int
*s_trainIdx
=
(
__local
int
*
)(
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
)
;
//findBestMatch
s_distance
+=
lidy
*
BLOCK_SIZE
;
s_trainIdx
+=
lidy
*
BLOCK_SIZE
;
s_distance[lidx]
=
myBestDistance
;
s_trainIdx[lidx]
=
myBestTrainIdx
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
//reduce
--
now
all
reduce
implement
in
each
threads.
for
(
int
k
=
0
; k < BLOCK_SIZE; k++)
{
if
(
myBestDistance
>
s_distance[k]
)
{
myBestDistance
=
s_distance[k]
;
myBestTrainIdx
=
s_trainIdx[k]
;
}
}
if
(
queryIdx
<
query_rows
&&
lidx
==
0
)
{
bestTrainIdx[queryIdx]
=
myBestTrainIdx
;
bestDistance[queryIdx]
=
myBestDistance
;
}
}
//radius_unrollmatch
__kernel
void
BruteForceMatch_RadiusUnrollMatch
(
__global
T
*query,
__global
T
*train,
float
maxDistance,
//__global
float
*mask,
__global
int
*bestTrainIdx,
__global
float
*bestDistance,
__global
int
*nMatches,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
bestTrainIdx_cols,
int
step,
int
ostep
)
{
const
int
lidx
=
get_local_id
(
0
)
;
const
int
lidy
=
get_local_id
(
1
)
;
const
int
groupidx
=
get_group_id
(
0
)
;
const
int
groupidy
=
get_group_id
(
1
)
;
const
int
queryIdx
=
groupidy
*
BLOCK_SIZE
+
lidy
;
const
int
trainIdx
=
groupidx
*
BLOCK_SIZE
+
lidx
;
__local
value_type
*s_query
=
(
__local
value_type
*
)
sharebuffer
;
__local
value_type
*s_train
=
(
__local
value_type
*
)
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
;
result_type
result
=
0
;
for
(
int
i
=
0
; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i)
{
//load
a
BLOCK_SIZE
*
BLOCK_SIZE
block
into
local
train.
const
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
s_query[lidy
*
BLOCK_SIZE
+
lidx]
=
loadx
<
query_cols
?
query[min
(
queryIdx,
query_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
loadx
<
query_cols
?
train[min
(
groupidx
*
BLOCK_SIZE
+
lidy,
train_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
//synchronize
to
make
sure
each
elem
for
reduceIteration
in
share
memory
is
written
already.
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
result
+=
reduce_block
(
s_query,
s_train,
lidx,
lidy
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
if
(
queryIdx
<
query_rows
&&
trainIdx
<
train_rows
&&
convert_float
(
result
)
<
maxDistance/*
&&
mask
(
queryIdx,
trainIdx
)
*/
)
{
int
ind
=
atom_inc
(
nMatches
+
queryIdx/*,
(
unsigned
int
)
-1*/
)
;
if
(
ind
<
bestTrainIdx_cols
)
{
bestTrainIdx[queryIdx
*
(
ostep
/
sizeof
(
int
))
+
ind]
=
trainIdx
;
bestDistance[queryIdx
*
(
ostep
/
sizeof
(
float
))
+
ind]
=
result
;
}
}
}
//radius_match
__kernel
void
BruteForceMatch_RadiusMatch
(
__global
T
*query,
__global
T
*train,
float
maxDistance,
//__global
float
*mask,
__global
int
*bestTrainIdx,
__global
float
*bestDistance,
__global
int
*nMatches,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
bestTrainIdx_cols,
int
step,
int
ostep
)
{
const
int
lidx
=
get_local_id
(
0
)
;
const
int
lidy
=
get_local_id
(
1
)
;
const
int
groupidx
=
get_group_id
(
0
)
;
const
int
groupidy
=
get_group_id
(
1
)
;
const
int
queryIdx
=
groupidy
*
BLOCK_SIZE
+
lidy
;
const
int
trainIdx
=
groupidx
*
BLOCK_SIZE
+
lidx
;
__local
value_type
*s_query
=
(
__local
value_type
*
)
sharebuffer
;
__local
value_type
*s_train
=
(
__local
value_type
*
)
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
;
result_type
result
=
0
;
for
(
int
i
=
0
; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
{
//load
a
BLOCK_SIZE
*
BLOCK_SIZE
block
into
local
train.
const
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
s_query[lidy
*
BLOCK_SIZE
+
lidx]
=
loadx
<
query_cols
?
query[min
(
queryIdx,
query_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
loadx
<
query_cols
?
train[min
(
groupidx
*
BLOCK_SIZE
+
lidy,
train_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
//synchronize
to
make
sure
each
elem
for
reduceIteration
in
share
memory
is
written
already.
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
result
+=
reduce_block
(
s_query,
s_train,
lidx,
lidy
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
if
(
queryIdx
<
query_rows
&&
trainIdx
<
train_rows
&&
convert_float
(
result
)
<
maxDistance/*
&&
mask
(
queryIdx,
trainIdx
)
*/
)
{
int
ind
=
atom_inc
(
nMatches
+
queryIdx
)
;
if
(
ind
<
bestTrainIdx_cols
)
{
bestTrainIdx[queryIdx
*
(
ostep
/
sizeof
(
int
))
+
ind]
=
trainIdx
;
bestDistance[queryIdx
*
(
ostep
/
sizeof
(
float
))
+
ind]
=
result
;
}
}
}
__kernel
void
BruteForceMatch_knnUnrollMatch
(
__global
T
*query,
__global
T
*train,
//__global
float
*mask,
__global
int2
*bestTrainIdx,
__global
float2
*bestDistance,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
step
)
{
const
int
lidx
=
get_local_id
(
0
)
;
const
int
lidy
=
get_local_id
(
1
)
;
const
int
groupidx
=
get_group_id
(
0
)
;
const
int
queryIdx
=
groupidx
*
BLOCK_SIZE
+
lidy
;
__local
value_type
*s_query
=
(
__local
value_type
*
)
sharebuffer
;
__local
value_type
*s_train
=
(
__local
value_type
*
)
sharebuffer
+
BLOCK_SIZE
*
MAX_DESC_LEN
;
//
load
the
query
into
local
memory.
for
(
int
i
=
0
; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
{
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
s_query[lidy
*
MAX_DESC_LEN
+
loadx]
=
loadx
<
query_cols
?
query[min
(
queryIdx,
query_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
}
float
myBestDistance1
=
MAX_FLOAT
;
float
myBestDistance2
=
MAX_FLOAT
;
int
myBestTrainIdx1
=
-1
;
int
myBestTrainIdx2
=
-1
;
//loopUnrolledCached
for
(
int
t
=
0
; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
{
result_type
result
=
0
;
for
(
int
i
=
0
; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
{
//load
a
BLOCK_SIZE
*
BLOCK_SIZE
block
into
local
train.
const
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
loadx
<
train_cols
?
train[min
(
t
*
BLOCK_SIZE
+
lidy,
train_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
:
0
;
//synchronize
to
make
sure
each
elem
for
reduceIteration
in
share
memory
is
written
already.
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
result
+=
reduce_multi_block
(
s_query,
s_train,
i,
lidx,
lidy
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
result
=
DIST_RES
(
result
)
;
const
int
trainIdx
=
t
*
BLOCK_SIZE
+
lidx
;
if
(
queryIdx
<
query_rows
&&
trainIdx
<
train_rows
)
{
if
(
result
<
myBestDistance1
)
{
myBestDistance2
=
myBestDistance1
;
myBestTrainIdx2
=
myBestTrainIdx1
;
myBestDistance1
=
result
;
myBestTrainIdx1
=
trainIdx
;
}
else
if
(
result
<
myBestDistance2
)
{
myBestDistance2
=
result
;
myBestTrainIdx2
=
trainIdx
;
}
}
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
__local
float
*s_distance
=
(
local
float
*
)
sharebuffer
;
__local
int
*s_trainIdx
=
(
local
int
*
)(
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
)
;
//
find
BestMatch
s_distance
+=
lidy
*
BLOCK_SIZE
;
s_trainIdx
+=
lidy
*
BLOCK_SIZE
;
s_distance[lidx]
=
myBestDistance1
;
s_trainIdx[lidx]
=
myBestTrainIdx1
;
float
bestDistance1
=
MAX_FLOAT
;
float
bestDistance2
=
MAX_FLOAT
;
int
bestTrainIdx1
=
-1
;
int
bestTrainIdx2
=
-1
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lidx
==
0
)
{
for
(
int
i
=
0
; i < BLOCK_SIZE ; i++)
{
float
val
=
s_distance[i]
;
if
(
val
<
bestDistance1
)
{
bestDistance2
=
bestDistance1
;
bestTrainIdx2
=
bestTrainIdx1
;
bestDistance1
=
val
;
bestTrainIdx1
=
s_trainIdx[i]
;
}
else
if
(
val
<
bestDistance2
)
{
bestDistance2
=
val
;
bestTrainIdx2
=
s_trainIdx[i]
;
}
}
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
s_distance[lidx]
=
myBestDistance2
;
s_trainIdx[lidx]
=
myBestTrainIdx2
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lidx
==
0
)
{
for
(
int
i
=
0
; i < BLOCK_SIZE ; i++)
{
float
val
=
s_distance[i]
;
if
(
val
<
bestDistance2
)
{
bestDistance2
=
val
;
bestTrainIdx2
=
s_trainIdx[i]
;
}
}
}
myBestDistance1
=
bestDistance1
;
myBestDistance2
=
bestDistance2
;
myBestTrainIdx1
=
bestTrainIdx1
;
myBestTrainIdx2
=
bestTrainIdx2
;
if
(
queryIdx
<
query_rows
&&
lidx
==
0
)
{
bestTrainIdx[queryIdx]
=
(
int2
)(
myBestTrainIdx1,
myBestTrainIdx2
)
;
bestDistance[queryIdx]
=
(
float2
)(
myBestDistance1,
myBestDistance2
)
;
}
}
__kernel
void
BruteForceMatch_knnMatch
(
__global
T
*query,
__global
T
*train,
//__global
float
*mask,
__global
int2
*bestTrainIdx,
__global
float2
*bestDistance,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
step
)
{
const
int
lidx
=
get_local_id
(
0
)
;
const
int
lidy
=
get_local_id
(
1
)
;
const
int
groupidx
=
get_group_id
(
0
)
;
const
int
queryIdx
=
groupidx
*
BLOCK_SIZE
+
lidy
;
__local
value_type
*s_query
=
(
__local
value_type
*
)
sharebuffer
;
__local
value_type
*s_train
=
(
__local
value_type
*
)
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
;
float
myBestDistance1
=
MAX_FLOAT
;
float
myBestDistance2
=
MAX_FLOAT
;
int
myBestTrainIdx1
=
-1
;
int
myBestTrainIdx2
=
-1
;
//loop
for
(
int
t
=
0
; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
{
result_type
result
=
0.0f
;
for
(
int
i
=
0
; i < (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE ; i++)
{
const
int
loadx
=
lidx
+
i
*
BLOCK_SIZE
;
//load
query
and
train
into
local
memory
s_query[lidy
*
BLOCK_SIZE
+
lidx]
=
0
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
0
;
if
(
loadx
<
query_cols
)
{
s_query[lidy
*
BLOCK_SIZE
+
lidx]
=
query[min
(
queryIdx,
query_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
;
s_train[lidx
*
BLOCK_SIZE
+
lidy]
=
train[min
(
t
*
BLOCK_SIZE
+
lidy,
train_rows
-
1
)
*
(
step
/
sizeof
(
float
))
+
loadx]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
result
+=
reduce_block_match
(
s_query,
s_train,
lidx,
lidy
)
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
result
=
DIST_RES
(
result
)
;
const
int
trainIdx
=
t
*
BLOCK_SIZE
+
lidx
;
if
(
queryIdx
<
query_rows
&&
trainIdx
<
train_rows
/*&&
mask
(
queryIdx,
trainIdx
)
*/
)
{
if
(
result
<
myBestDistance1
)
{
myBestDistance2
=
myBestDistance1
;
myBestTrainIdx2
=
myBestTrainIdx1
;
myBestDistance1
=
result
;
myBestTrainIdx1
=
trainIdx
;
}
else
if
(
result
<
myBestDistance2
)
{
myBestDistance2
=
result
;
myBestTrainIdx2
=
trainIdx
;
}
}
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
__local
float
*s_distance
=
(
__local
float
*
)
sharebuffer
;
__local
int
*s_trainIdx
=
(
__local
int
*
)(
sharebuffer
+
BLOCK_SIZE
*
BLOCK_SIZE
)
;
//findBestMatch
s_distance
+=
lidy
*
BLOCK_SIZE
;
s_trainIdx
+=
lidy
*
BLOCK_SIZE
;
s_distance[lidx]
=
myBestDistance1
;
s_trainIdx[lidx]
=
myBestTrainIdx1
;
float
bestDistance1
=
MAX_FLOAT
;
float
bestDistance2
=
MAX_FLOAT
;
int
bestTrainIdx1
=
-1
;
int
bestTrainIdx2
=
-1
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lidx
==
0
)
{
for
(
int
i
=
0
; i < BLOCK_SIZE ; i++)
{
float
val
=
s_distance[i]
;
if
(
val
<
bestDistance1
)
{
bestDistance2
=
bestDistance1
;
bestTrainIdx2
=
bestTrainIdx1
;
bestDistance1
=
val
;
bestTrainIdx1
=
s_trainIdx[i]
;
}
else
if
(
val
<
bestDistance2
)
{
bestDistance2
=
val
;
bestTrainIdx2
=
s_trainIdx[i]
;
}
}
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
s_distance[lidx]
=
myBestDistance2
;
s_trainIdx[lidx]
=
myBestTrainIdx2
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
lidx
==
0
)
{
for
(
int
i
=
0
; i < BLOCK_SIZE ; i++)
{
float
val
=
s_distance[i]
;
if
(
val
<
bestDistance2
)
{
bestDistance2
=
val
;
bestTrainIdx2
=
s_trainIdx[i]
;
}
}
}
myBestDistance1
=
bestDistance1
;
myBestDistance2
=
bestDistance2
;
myBestTrainIdx1
=
bestTrainIdx1
;
myBestTrainIdx2
=
bestTrainIdx2
;
if
(
queryIdx
<
query_rows
&&
lidx
==
0
)
{
bestTrainIdx[queryIdx]
=
(
int2
)(
myBestTrainIdx1,
myBestTrainIdx2
)
;
bestDistance[queryIdx]
=
(
float2
)(
myBestDistance1,
myBestDistance2
)
;
}
}
kernel
void
BruteForceMatch_calcDistanceUnrolled
(
__global
T
*query,
__global
T
*train,
//__global
float
*mask,
__global
float
*allDist,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
step
)
{
/*
Todo
*/
}
kernel
void
BruteForceMatch_calcDistance
(
__global
T
*query,
__global
T
*train,
//__global
float
*mask,
__global
float
*allDist,
__local
float
*sharebuffer,
int
query_rows,
int
query_cols,
int
train_rows,
int
train_cols,
int
step
)
{
/*
Todo
*/
}
kernel
void
BruteForceMatch_findBestMatch
(
__global
float
*allDist,
__global
int
*bestTrainIdx,
__global
float
*bestDistance,
int
k
)
{
/*
Todo
*/
}
modules/features2d/src/precomp.hpp
View file @
ca5689e0
...
@@ -48,6 +48,7 @@
...
@@ -48,6 +48,7 @@
#include "opencv2/core/utility.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/ocl.hpp"
#include <algorithm>
#include <algorithm>
...
...
modules/features2d/test/ocl/test_brute_force_matcher.cpp
0 → 100644
View file @
ca5689e0
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Zero Lin, Zero.Lin@amd.com
// Zhang Ying, zhangying913@gmail.com
// Yao Wang, bitwangyaoyao@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "cvconfig.h"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace
cvtest
{
namespace
ocl
{
PARAM_TEST_CASE
(
BruteForceMatcher
,
int
,
int
)
{
int
distType
;
int
dim
;
int
queryDescCount
;
int
countFactor
;
Mat
query
,
train
;
UMat
uquery
,
utrain
;
virtual
void
SetUp
()
{
distType
=
GET_PARAM
(
0
);
dim
=
GET_PARAM
(
1
);
queryDescCount
=
300
;
// must be even number because we split train data in some cases in two
countFactor
=
4
;
// do not change it
cv
::
Mat
queryBuf
,
trainBuf
;
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
queryBuf
.
create
(
queryDescCount
,
dim
,
CV_32SC1
);
rng
.
fill
(
queryBuf
,
cv
::
RNG
::
UNIFORM
,
cv
::
Scalar
::
all
(
0
),
cv
::
Scalar
::
all
(
3
));
queryBuf
.
convertTo
(
queryBuf
,
CV_32FC1
);
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
trainBuf
.
create
(
queryDescCount
*
countFactor
,
dim
,
CV_32FC1
);
float
step
=
1.
f
/
countFactor
;
for
(
int
qIdx
=
0
;
qIdx
<
queryDescCount
;
qIdx
++
)
{
cv
::
Mat
queryDescriptor
=
queryBuf
.
row
(
qIdx
);
for
(
int
c
=
0
;
c
<
countFactor
;
c
++
)
{
int
tIdx
=
qIdx
*
countFactor
+
c
;
cv
::
Mat
trainDescriptor
=
trainBuf
.
row
(
tIdx
);
queryDescriptor
.
copyTo
(
trainDescriptor
);
int
elem
=
rng
(
dim
);
float
diff
=
rng
.
uniform
(
step
*
c
,
step
*
(
c
+
1
));
trainDescriptor
.
at
<
float
>
(
0
,
elem
)
+=
diff
;
}
}
queryBuf
.
convertTo
(
query
,
CV_32F
);
trainBuf
.
convertTo
(
train
,
CV_32F
);
query
.
copyTo
(
uquery
);
train
.
copyTo
(
utrain
);
}
};
#ifdef ANDROID
OCL_TEST_P
(
BruteForceMatcher
,
DISABLED_Match_Single
)
#else
OCL_TEST_P
(
BruteForceMatcher
,
Match_Single
)
#endif
{
BFMatcher
matcher
(
distType
);
std
::
vector
<
cv
::
DMatch
>
matches
;
matcher
.
match
(
uquery
,
utrain
,
matches
);
ASSERT_EQ
(
static_cast
<
size_t
>
(
queryDescCount
),
matches
.
size
());
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
cv
::
DMatch
match
=
matches
[
i
];
if
((
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
)
||
(
match
.
imgIdx
!=
0
))
badCount
++
;
}
ASSERT_EQ
(
0
,
badCount
);
}
#ifdef ANDROID
OCL_TEST_P
(
BruteForceMatcher
,
DISABLED_KnnMatch_2_Single
)
#else
OCL_TEST_P
(
BruteForceMatcher
,
KnnMatch_2_Single
)
#endif
{
const
int
knn
=
2
;
BFMatcher
matcher
(
distType
);
std
::
vector
<
std
::
vector
<
cv
::
DMatch
>
>
matches
;
matcher
.
knnMatch
(
uquery
,
utrain
,
matches
,
knn
);
ASSERT_EQ
(
static_cast
<
size_t
>
(
queryDescCount
),
matches
.
size
());
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
if
((
int
)
matches
[
i
].
size
()
!=
knn
)
badCount
++
;
else
{
int
localBadCount
=
0
;
for
(
int
k
=
0
;
k
<
knn
;
k
++
)
{
cv
::
DMatch
match
=
matches
[
i
][
k
];
if
((
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
+
k
)
||
(
match
.
imgIdx
!=
0
))
localBadCount
++
;
}
badCount
+=
localBadCount
>
0
?
1
:
0
;
}
}
ASSERT_EQ
(
0
,
badCount
);
}
#ifdef ANDROID
OCL_TEST_P
(
BruteForceMatcher
,
DISABLED_RadiusMatch_Single
)
#else
OCL_TEST_P
(
BruteForceMatcher
,
RadiusMatch_Single
)
#endif
{
float
radius
=
1.
f
/
countFactor
;
BFMatcher
matcher
(
distType
);
std
::
vector
<
std
::
vector
<
cv
::
DMatch
>
>
matches
;
matcher
.
radiusMatch
(
uquery
,
utrain
,
matches
,
radius
);
ASSERT_EQ
(
static_cast
<
size_t
>
(
queryDescCount
),
matches
.
size
());
int
badCount
=
0
;
for
(
size_t
i
=
0
;
i
<
matches
.
size
();
i
++
)
{
if
((
int
)
matches
[
i
].
size
()
!=
1
)
{
badCount
++
;
}
else
{
cv
::
DMatch
match
=
matches
[
i
][
0
];
if
((
match
.
queryIdx
!=
(
int
)
i
)
||
(
match
.
trainIdx
!=
(
int
)
i
*
countFactor
)
||
(
match
.
imgIdx
!=
0
))
badCount
++
;
}
}
ASSERT_EQ
(
0
,
badCount
);
}
OCL_INSTANTIATE_TEST_CASE_P
(
Matcher
,
BruteForceMatcher
,
Combine
(
Values
((
int
)
NORM_L1
,
(
int
)
NORM_L2
),
Values
(
57
,
64
,
83
,
128
,
179
,
256
,
304
)
)
);
}
//ocl
}
//cvtest
#endif //HAVE_OPENCL
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment