Commit c9a41c68 authored by Alexey Spizhevoy's avatar Alexey Spizhevoy

added first version of public stitching API, added simple sample which uses that…

added first version of public stitching API, added simple sample which uses that API, old sample renamed to stitching_detailed
parent 1449dd1f
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_AUTOCALIB_HPP__
#define __OPENCV_STITCHING_AUTOCALIB_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_BLENDERS_HPP__
#define __OPENCV_STITCHING_BLENDERS_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_CAMERA_HPP__
#define __OPENCV_STITCHING_CAMERA_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_EXPOSURE_COMPENSATE_HPP__
#define __OPENCV_STITCHING_EXPOSURE_COMPENSATE_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_MATCHERS_HPP__
#define __OPENCV_STITCHING_MATCHERS_HPP__
......@@ -51,9 +52,9 @@ namespace detail {
struct CV_EXPORTS ImageFeatures
{
int img_idx;
cv::Size img_size;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
Size img_size;
std::vector<KeyPoint> keypoints;
Mat descriptors;
};
......@@ -61,12 +62,13 @@ class CV_EXPORTS FeaturesFinder
{
public:
virtual ~FeaturesFinder() {}
void operator ()(const cv::Mat &image, ImageFeatures &features);
void operator ()(const Mat &image, ImageFeatures &features);
virtual void releaseMemory() {}
// TODO put it into operator ()
virtual void collectGarbage() {}
protected:
virtual void find(const cv::Mat &image, ImageFeatures &features) = 0;
virtual void find(const Mat &image, ImageFeatures &features) = 0;
};
......@@ -77,12 +79,12 @@ public:
int num_octaves = 3, int num_layers = 4,
int num_octaves_descr = 4, int num_layers_descr = 2);
void releaseMemory();
void collectGarbage();
protected:
void find(const cv::Mat &image, ImageFeatures &features);
void find(const Mat &image, ImageFeatures &features);
cv::Ptr<FeaturesFinder> impl_;
Ptr<FeaturesFinder> impl_;
};
......@@ -93,10 +95,10 @@ struct CV_EXPORTS MatchesInfo
const MatchesInfo& operator =(const MatchesInfo &other);
int src_img_idx, dst_img_idx; // Images indices (optional)
std::vector<cv::DMatch> matches;
std::vector<DMatch> matches;
std::vector<uchar> inliers_mask; // Geometrically consistent matches mask
int num_inliers; // Number of geometrically consistent matches
cv::Mat H; // Estimated homography
Mat H; // Estimated homography
double confidence; // Confidence two images are from the same panorama
};
......@@ -112,7 +114,7 @@ public:
bool isThreadSafe() const { return is_thread_safe_; }
virtual void releaseMemory() {}
virtual void collectGarbage() {}
protected:
FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
......@@ -127,17 +129,17 @@ protected:
class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher
{
public:
BestOf2NearestMatcher(bool try_use_gpu = true, float match_conf = 0.55f, int num_matches_thresh1 = 6,
BestOf2NearestMatcher(bool try_use_gpu = true, float match_conf = 0.65f, int num_matches_thresh1 = 6,
int num_matches_thresh2 = 6);
void releaseMemory();
void collectGarbage();
protected:
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info);
int num_matches_thresh1_;
int num_matches_thresh2_;
cv::Ptr<FeaturesMatcher> impl_;
Ptr<FeaturesMatcher> impl_;
};
} // namespace detail
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_MOTION_ESTIMATORS_HPP__
#define __OPENCV_STITCHING_MOTION_ESTIMATORS_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_SEAM_FINDERS_HPP__
#define __OPENCV_STITCHING_SEAM_FINDERS_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_UTIL_HPP__
#define __OPENCV_STITCHING_UTIL_HPP__
......@@ -47,6 +48,7 @@
#define ENABLE_LOG 1
// TODO remove LOG macros, add logging class
#if ENABLE_LOG
#include <iostream>
#define LOG(msg) { std::cout << msg; std::cout.flush(); }
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_UTIL_INL_HPP__
#define __OPENCV_STITCHING_UTIL_INL_HPP__
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_WARPERS_HPP__
#define __OPENCV_STITCHING_WARPERS_HPP__
......@@ -55,6 +56,8 @@ class CV_EXPORTS Warper
{
public:
enum { PLANE, CYLINDRICAL, SPHERICAL };
// TODO remove this method
static Ptr<Warper> createByCameraFocal(float focal, int type, bool try_gpu = false);
virtual ~Warper() {}
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
#define __OPENCV_STITCHING_WARPERS_INL_HPP__
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_STITCHER_HPP__
#define __OPENCV_STITCHING_STITCHER_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "warpers.hpp"
#include "detail/matchers.hpp"
#include "detail/exposure_compensate.hpp"
#include "detail/seam_finders.hpp"
#include "detail/blenders.hpp"
namespace cv {
class Stitcher
{
public:
enum { ORIG_RESOL = -1 };
enum Status { OK, ERR_NEED_MORE_IMGS };
// Creates stitcher with default parameters
static Stitcher createDefault(bool try_use_gpu = false);
// Stitches the biggest found pano. Returns status code.
Status stitch(InputArray imgs, OutputArray pano);
double registrationResol() const { return registr_resol_; }
void setRegistrationResol(double resol_mpx) { registr_resol_ = resol_mpx; }
double seamEstimationResol() const { return seam_est_resol_; }
void setSeamEstimationResol(double resol_mpx) { seam_est_resol_ = resol_mpx; }
double compositingResol() const { return compose_resol_; }
void setCompositingResol(double resol_mpx) { compose_resol_ = resol_mpx; }
double panoConfidenceThresh() const { return conf_thresh_; }
void setPanoConfidenceThresh(double conf_thresh) { conf_thresh_ = conf_thresh; }
bool horizontalStrightening() const { return horiz_stright_; }
void setHorizontalStrightening(bool flag) { horiz_stright_ = flag; }
Ptr<detail::FeaturesFinder> featuresFinder() { return features_finder_; }
const Ptr<detail::FeaturesFinder> featuresFinder() const { return features_finder_; }
void setFeaturesFinder(Ptr<detail::FeaturesFinder> features_finder)
{ features_finder_ = features_finder; }
Ptr<detail::FeaturesMatcher> featuresMatcher() { return features_matcher_; }
const Ptr<detail::FeaturesMatcher> featuresMatcher() const { return features_matcher_; }
void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher)
{ features_matcher_ = features_matcher; }
Ptr<WarperCreator> warper() { return warper_; }
const Ptr<WarperCreator> warper() const { return warper_; }
void setWarper(Ptr<WarperCreator> warper) { warper_ = warper; }
Ptr<detail::ExposureCompensator> exposureCompensator() { return exposure_comp_; }
const Ptr<detail::ExposureCompensator> exposureCompensator() const { return exposure_comp_; }
void setExposureCompenstor(Ptr<detail::ExposureCompensator> exposure_comp)
{ exposure_comp_ = exposure_comp; }
Ptr<detail::SeamFinder> seamFinder() { return seam_finder_; }
const Ptr<detail::SeamFinder> seamFinder() const { return seam_finder_; }
void setSeamFinder(Ptr<detail::SeamFinder> seam_finder) { seam_finder_ = seam_finder; }
Ptr<detail::Blender> blender() { return blender_; }
const Ptr<detail::Blender> blender() const { return blender_; }
void setBlender(Ptr<detail::Blender> blender) { blender_ = blender; }
private:
Stitcher() {}
double registr_resol_;
double seam_est_resol_;
double compose_resol_;
double conf_thresh_;
bool horiz_stright_;
Ptr<detail::FeaturesFinder> features_finder_;
Ptr<detail::FeaturesMatcher> features_matcher_;
Ptr<WarperCreator> warper_;
Ptr<detail::ExposureCompensator> exposure_comp_;
Ptr<detail::SeamFinder> seam_finder_;
Ptr<detail::Blender> blender_;
};
} // namespace cv
#endif // __OPENCV_STITCHING_STITCHER_HPP__
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_WARPER_CREATORS_HPP__
#define __OPENCV_STITCHING_WARPER_CREATORS_HPP__
#include "detail/warpers.hpp"
namespace cv {
class WarperCreator
{
public:
virtual ~WarperCreator() {}
virtual Ptr<detail::Warper> createByFocalLength(double f) const = 0;
};
class PlaneWarper : public WarperCreator
{
public:
Ptr<detail::Warper> createByFocalLength(double f) const { return new detail::PlaneWarper(f); }
};
class CylindricalWarper: public WarperCreator
{
public:
Ptr<detail::Warper> createByFocalLength(double f) const { return new detail::CylindricalWarper(f); }
};
class SphericalWarper: public WarperCreator
{
public:
Ptr<detail::Warper> createByFocalLength(double f) const { return new detail::SphericalWarper(f); }
};
#ifndef ANDROID
class PlaneWarperGpu: public WarperCreator
{
public:
Ptr<detail::Warper> createByFocalLength(double f) const { return new detail::PlaneWarperGpu(f); }
};
class CylindricalWarperGpu: public WarperCreator
{
public:
Ptr<detail::Warper> createByFocalLength(double f) const { return new detail::CylindricalWarperGpu(f); }
};
class SphericalWarperGpu: public WarperCreator
{
public:
Ptr<detail::Warper> createByFocalLength(double f) const { return new detail::SphericalWarperGpu(f); }
};
#endif
} // namespace cv
#endif // __OPENCV_STITCHING_WARPER_CREATORS_HPP__
......@@ -85,7 +85,7 @@ public:
num_layers_descr_ = num_layers_descr;
}
void releaseMemory();
void collectGarbage();
protected:
void find(const Mat &image, ImageFeatures &features);
......@@ -136,7 +136,7 @@ void GpuSurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
descriptors_.download(features.descriptors);
}
void GpuSurfFeaturesFinder::releaseMemory()
void GpuSurfFeaturesFinder::collectGarbage()
{
surf_.releaseMemory();
image_.release();
......@@ -231,7 +231,7 @@ public:
GpuMatcher(float match_conf) : match_conf_(match_conf) {}
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info);
void releaseMemory();
void collectGarbage();
private:
float match_conf_;
......@@ -326,7 +326,7 @@ void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &feat
}
}
void GpuMatcher::releaseMemory()
void GpuMatcher::collectGarbage()
{
descriptors1_.release();
descriptors2_.release();
......@@ -369,9 +369,9 @@ void SurfFeaturesFinder::find(const Mat &image, ImageFeatures &features)
}
void SurfFeaturesFinder::releaseMemory()
void SurfFeaturesFinder::collectGarbage()
{
impl_->releaseMemory();
impl_->collectGarbage();
}
......@@ -511,9 +511,9 @@ void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFea
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC);
}
void BestOf2NearestMatcher::releaseMemory()
void BestOf2NearestMatcher::collectGarbage()
{
impl_->releaseMemory();
impl_->collectGarbage();
}
} // namespace detail
......
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_PRECOMP_H__
#define __OPENCV_STITCHING_PRECOMP_H__
......@@ -52,6 +53,8 @@
#include <set>
#include <functional>
#include <sstream>
#include <cmath>
#include "opencv2/stitching/stitcher.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
namespace cv {
// TODO put all #ifndef ANDROID here, avoid passing try_use_gpu
Stitcher Stitcher::createDefault(bool try_use_gpu)
{
Stitcher stitcher;
stitcher.setRegistrationResol(0.6);
stitcher.setSeamEstimationResol(0.1);
stitcher.setCompositingResol(ORIG_RESOL);
stitcher.setPanoConfidenceThresh(1);
stitcher.setHorizontalStrightening(true);
stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder(try_use_gpu));
stitcher.setFeaturesMatcher(new detail::BestOf2NearestMatcher(try_use_gpu));
#ifndef ANDROID
bool must_use_gpu = try_use_gpu && (gpu::getCudaEnabledDeviceCount() > 0);
stitcher.setWarper(must_use_gpu ? static_cast<WarperCreator*>(new SphericalWarperGpu()) :
static_cast<WarperCreator*>(new SphericalWarper()));
#else
stitcher.setWarper(new SphericalWarper());
#endif
stitcher.setExposureCompenstor(new detail::BlocksGainCompensator());
stitcher.setSeamFinder(new detail::GraphCutSeamFinder());
stitcher.setBlender(new detail::MultiBandBlender(try_use_gpu));
return stitcher;
}
Stitcher::Status Stitcher::stitch(InputArray imgs_, OutputArray pano_)
{
// TODO split this func
vector<Mat> imgs;
imgs_.getMatVector(imgs);
Mat &pano = pano_.getMatRef();
int64 app_start_time = getTickCount();
int num_imgs = static_cast<int>(imgs.size());
if (num_imgs < 2)
{
LOGLN("Need more images");
return ERR_NEED_MORE_IMGS;
}
double work_scale = 1, seam_scale = 1, compose_scale = 1;
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
LOGLN("Finding features...");
int64 t = getTickCount();
vector<detail::ImageFeatures> features(num_imgs);
Mat full_img, img;
vector<Mat> seam_est_imgs(num_imgs);
vector<Size> full_img_sizes(num_imgs);
double seam_work_aspect = 1;
for (int i = 0; i < num_imgs; ++i)
{
full_img = imgs[i];
full_img_sizes[i] = full_img.size();
if (registr_resol_ < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(registr_resol_ * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale, work_scale);
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_est_resol_ * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
}
(*features_finder_)(img, features[i]);
features[i].img_idx = i;
LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
resize(full_img, img, Size(), seam_scale, seam_scale);
seam_est_imgs[i] = img.clone();
}
features_finder_->collectGarbage();
full_img.release();
img.release();
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
LOG("Pairwise matching");
t = getTickCount();
vector<detail::MatchesInfo> pairwise_matches;
(*features_matcher_)(features, pairwise_matches);
features_matcher_->collectGarbage();
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Leave only images we are sure are from the same panorama
vector<int> indices = detail::leaveBiggestComponent(features, pairwise_matches, conf_thresh_);
vector<Mat> seam_est_imgs_subset;
vector<Mat> imgs_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
imgs_subset.push_back(imgs[indices[i]]);
seam_est_imgs_subset.push_back(seam_est_imgs[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
seam_est_imgs = seam_est_imgs_subset;
imgs = imgs_subset;
full_img_sizes = full_img_sizes_subset;
num_imgs = static_cast<int>(imgs.size());
if (num_imgs < 2)
{
LOGLN("Need more images");
return ERR_NEED_MORE_IMGS;
}
vector<detail::CameraParams> cameras;
detail::HomographyBasedEstimator estimator;
estimator(features, pairwise_matches, cameras);
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);
cameras[i].R = R;
LOGLN("Initial focal length #" << indices[i]+1 << ": " << cameras[i].focal);
}
detail::BundleAdjuster adjuster(detail::BundleAdjuster::FOCAL_RAY_SPACE, conf_thresh_);
adjuster(features, pairwise_matches, cameras);
// Find median focal length
vector<double> focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
LOGLN("Camera #" << indices[i]+1 << " focal length: " << cameras[i].focal);
focals.push_back(cameras[i].focal);
}
nth_element(focals.begin(), focals.begin() + focals.size()/2, focals.end());
float warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
if (horiz_stright_)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R);
detail::waveCorrect(rmats);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
LOGLN("Warping images (auxiliary)... ");
t = getTickCount();
vector<Point> corners(num_imgs);
vector<Mat> masks_warped(num_imgs);
vector<Mat> images_warped(num_imgs);
vector<Size> sizes(num_imgs);
vector<Mat> masks(num_imgs);
// Preapre images masks
for (int i = 0; i < num_imgs; ++i)
{
masks[i].create(seam_est_imgs[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr<detail::Warper> warper = warper_->createByFocalLength(warped_image_scale * seam_work_aspect);
for (int i = 0; i < num_imgs; ++i)
{
corners[i] = warper->warp(seam_est_imgs[i], static_cast<float>(cameras[i].focal * seam_work_aspect),
cameras[i].R, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], static_cast<float>(cameras[i].focal * seam_work_aspect),
cameras[i].R, masks_warped[i], INTER_NEAREST, BORDER_CONSTANT);
}
vector<Mat> images_warped_f(num_imgs);
for (int i = 0; i < num_imgs; ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
exposure_comp_->feed(corners, images_warped, masks_warped);
seam_finder_->find(images_warped_f, corners, masks_warped);
// Release unused memory
seam_est_imgs.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
t = getTickCount();
Mat img_warped, img_warped_s;
Mat dilated_mask, seam_mask, mask, mask_warped;
double compose_seam_aspect = 1;
double compose_work_aspect = 1;
bool is_blender_prepared = false;
for (int img_idx = 0; img_idx < num_imgs; ++img_idx)
{
LOGLN("Compositing image #" << indices[img_idx]+1);
// Read image and resize it if necessary
full_img = imgs[img_idx];
if (!is_compose_scale_set)
{
if (compose_resol_ > 0)
compose_scale = min(1.0, sqrt(compose_resol_ * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// Update warped image scale
warped_image_scale *= static_cast<float>(compose_work_aspect);
warper = warper_->createByFocalLength(warped_image_scale);
// Update corners and sizes
for (int i = 0; i < num_imgs; ++i)
{
// Update camera focal
cameras[i].focal *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Rect roi = warper->warpRoi(sz, static_cast<float>(cameras[i].focal), cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (std::abs(compose_scale - 1) > 1e-1)
resize(full_img, img, Size(), compose_scale, compose_scale);
else
img = full_img;
full_img.release();
Size img_size = img.size();
// Warp the current image
warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R,
img_warped);
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R, mask_warped,
INTER_NEAREST, BORDER_CONSTANT);
// Compensate exposure
exposure_comp_->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size());
mask_warped = seam_mask & mask_warped;
if (!is_blender_prepared)
{
blender_->prepare(corners, sizes);
is_blender_prepared = true;
}
// Blend the current image
blender_->feed(img_warped_s, mask_warped, corners[img_idx]);
}
Mat result, result_mask;
blender_->blend(result, result_mask);
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Preliminary result is in CV_16SC3 format, but all values are in [0,255] range,
// so convert it to avoid user confusing
result.convertTo(pano, CV_8U);
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
return OK;
}
} // namespace cv
......@@ -39,6 +39,7 @@
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace std;
......
......@@ -48,89 +48,29 @@
// 3) Automatic Panoramic Image Stitching using Invariant Features.
// Matthew Brown and David G. Lowe. 2007.
#include <iostream>
#include <fstream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/stitcher.hpp"
using namespace std;
using namespace cv;
using namespace cv::detail;
void printUsage()
{
cout <<
"Rotation model images stitcher.\n\n"
"stitching img1 img2 [...imgN] [flags]\n\n"
"stitching img1 img2 [...imgN]\n\n"
"Flags:\n"
" --preview\n"
" Run stitching in the preview mode. Works faster than usual mode,\n"
" but output image will have lower resolution.\n"
" --try_gpu (yes|no)\n"
" --try_use_gpu (yes|no)\n"
" Try to use GPU. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
"\nMotion Estimation Flags:\n"
" --work_megapix <float>\n"
" Resolution for image registration step. The default is 0.6 Mpx.\n"
" --match_conf <float>\n"
" Confidence for feature matching step. The default is 0.65.\n"
" --conf_thresh <float>\n"
" Threshold for two images are from the same panorama confidence.\n"
" The default is 1.0.\n"
" --ba (no|ray|focal_ray)\n"
" Bundle adjustment cost function. The default is 'focal_ray'.\n"
" --wave_correct (no|yes)\n"
" Perform wave effect correction. The default is 'yes'.\n"
" --save_graph <file_name>\n"
" Save matches graph represented in DOT language to <file_name> file.\n"
" Labels description: Nm is number of matches, Ni is number of inliers,\n"
" C is confidence.\n"
"\nCompositing Flags:\n"
" --warp (plane|cylindrical|spherical)\n"
" Warp surface type. The default is 'spherical'.\n"
" --seam_megapix <float>\n"
" Resolution for seam estimation step. The default is 0.1 Mpx.\n"
" --seam (no|voronoi|gc_color|gc_colorgrad)\n"
" Seam estimation method. The default is 'gc_color'.\n"
" --compose_megapix <float>\n"
" Resolution for compositing step. Use -1 for original resolution.\n"
" The default is -1.\n"
" --expos_comp (no|gain|gain_blocks)\n"
" Exposure compensation method. The default is 'gain_blocks'.\n"
" --blend (no|feather|multiband)\n"
" Blending method. The default is 'multiband'.\n"
" --blend_strength <float>\n"
" Blending strength from [0,100] range. The default is 5.\n"
" --output <result_img>\n"
" The default is 'result.jpg'.\n";
}
// Default command line args
vector<string> img_names;
bool preview = false;
bool try_gpu = false;
double work_megapix = 0.6;
double seam_megapix = 0.1;
double compose_megapix = -1;
int ba_space = BundleAdjuster::FOCAL_RAY_SPACE;
float conf_thresh = 1.f;
bool wave_correct = true;
bool save_graph = false;
std::string save_graph_to;
int warp_type = Warper::SPHERICAL;
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
float match_conf = 0.65f;
int seam_find_type = SeamFinder::GC_COLOR;
int blend_type = Blender::MULTI_BAND;
float blend_strength = 5;
bool try_use_gpu = false;
vector<Mat> imgs;
string result_name = "result.jpg";
int parseCmdArgs(int argc, char** argv)
......@@ -147,165 +87,34 @@ int parseCmdArgs(int argc, char** argv)
printUsage();
return -1;
}
else if (string(argv[i]) == "--preview")
{
preview = true;
}
else if (string(argv[i]) == "--try_gpu")
{
if (string(argv[i + 1]) == "no")
try_gpu = false;
try_use_gpu = false;
else if (string(argv[i + 1]) == "yes")
try_gpu = true;
try_use_gpu = true;
else
{
cout << "Bad --try_gpu flag value\n";
cout << "Bad --try_use_gpu flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--work_megapix")
{
work_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--seam_megapix")
{
seam_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--compose_megapix")
{
compose_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--result")
else if (string(argv[i]) == "--output")
{
result_name = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--match_conf")
{
match_conf = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--ba")
{
if (string(argv[i + 1]) == "no")
ba_space = BundleAdjuster::NO;
else if (string(argv[i + 1]) == "ray")
ba_space = BundleAdjuster::RAY_SPACE;
else if (string(argv[i + 1]) == "focal_ray")
ba_space = BundleAdjuster::FOCAL_RAY_SPACE;
else
{
cout << "Bad bundle adjustment space\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--conf_thresh")
Mat img = imread(argv[i]);
if (img.empty())
{
conf_thresh = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--wave_correct")
{
if (string(argv[i + 1]) == "no")
wave_correct = false;
else if (string(argv[i + 1]) == "yes")
wave_correct = true;
else
{
cout << "Bad --wave_correct flag value\n";
cout << "Can't read image '" << argv[i] << "'\n";
return -1;
}
i++;
imgs.push_back(img);
}
else if (string(argv[i]) == "--save_graph")
{
save_graph = true;
save_graph_to = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--warp")
{
if (string(argv[i + 1]) == "plane")
warp_type = Warper::PLANE;
else if (string(argv[i + 1]) == "cylindrical")
warp_type = Warper::CYLINDRICAL;
else if (string(argv[i + 1]) == "spherical")
warp_type = Warper::SPHERICAL;
else
{
cout << "Bad warping method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--expos_comp")
{
if (string(argv[i + 1]) == "no")
expos_comp_type = ExposureCompensator::NO;
else if (string(argv[i + 1]) == "gain")
expos_comp_type = ExposureCompensator::GAIN;
else if (string(argv[i + 1]) == "gain_blocks")
expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
else
{
cout << "Bad exposure compensation method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--seam")
{
if (string(argv[i + 1]) == "no")
seam_find_type = SeamFinder::NO;
else if (string(argv[i + 1]) == "voronoi")
seam_find_type = SeamFinder::VORONOI;
else if (string(argv[i + 1]) == "gc_color")
seam_find_type = SeamFinder::GC_COLOR;
else if (string(argv[i + 1]) == "gc_colorgrad")
seam_find_type = SeamFinder::GC_COLOR_GRAD;
else
{
cout << "Bad seam finding method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--blend")
{
if (string(argv[i + 1]) == "no")
blend_type = Blender::NO;
else if (string(argv[i + 1]) == "feather")
blend_type = Blender::FEATHER;
else if (string(argv[i + 1]) == "multiband")
blend_type = Blender::MULTI_BAND;
else
{
cout << "Bad blending method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--blend_strength")
{
blend_strength = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + 1];
i++;
}
else
img_names.push_back(argv[i]);
}
if (preview)
{
compose_megapix = 0.6;
}
return 0;
}
......@@ -313,314 +122,20 @@ int parseCmdArgs(int argc, char** argv)
int main(int argc, char* argv[])
{
int64 app_start_time = getTickCount();
cv::setBreakOnError(true);
int retval = parseCmdArgs(argc, argv);
if (retval)
return retval;
// Check if have enough images
int num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
double work_scale = 1, seam_scale = 1, compose_scale = 1;
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
LOGLN("Finding features...");
int64 t = getTickCount();
vector<ImageFeatures> features(num_images);
SurfFeaturesFinder finder(try_gpu);
Mat full_img, img;
vector<Mat> images(num_images);
vector<Size> full_img_sizes(num_images);
double seam_work_aspect = 1;
for (int i = 0; i < num_images; ++i)
{
full_img = imread(img_names[i]);
full_img_sizes[i] = full_img.size();
if (full_img.empty())
{
LOGLN("Can't open image " << img_names[i]);
return -1;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale, work_scale);
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
}
finder(img, features[i]);
features[i].img_idx = i;
LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
resize(full_img, img, Size(), seam_scale, seam_scale);
images[i] = img.clone();
}
if (retval) return -1;
finder.releaseMemory();
Mat pano;
Stitcher stitcher = Stitcher::createDefault(try_use_gpu);
Stitcher::Status status = stitcher.stitch(imgs, pano);
full_img.release();
img.release();
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
LOG("Pairwise matching");
t = getTickCount();
vector<MatchesInfo> pairwise_matches;
BestOf2NearestMatcher matcher(try_gpu, match_conf);
matcher(features, pairwise_matches);
matcher.releaseMemory();
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Check if we should save matches graph
if (save_graph)
if (status != Stitcher::OK)
{
LOGLN("Saving matches graph...");
ofstream f(save_graph_to.c_str());
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
}
// Leave only images we are sure are from the same panorama
vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
vector<Mat> img_subset;
vector<string> img_names_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
// Check if we still have enough images
num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
cout << "Can't stitch images, error code = " << status << endl;
return -1;
}
HomographyBasedEstimator estimator;
vector<CameraParams> cameras;
estimator(features, pairwise_matches, cameras);
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);
cameras[i].R = R;
LOGLN("Initial focal length #" << indices[i]+1 << ": " << cameras[i].focal);
}
BundleAdjuster adjuster(ba_space, conf_thresh);
adjuster(features, pairwise_matches, cameras);
// Find median focal length
vector<double> focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
LOGLN("Camera #" << indices[i]+1 << " focal length: " << cameras[i].focal);
focals.push_back(cameras[i].focal);
}
nth_element(focals.begin(), focals.begin() + focals.size()/2, focals.end());
float warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
if (wave_correct)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R);
waveCorrect(rmats);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
LOGLN("Warping images (auxiliary)... ");
t = getTickCount();
vector<Point> corners(num_images);
vector<Mat> masks_warped(num_images);
vector<Mat> images_warped(num_images);
vector<Size> sizes(num_images);
vector<Mat> masks(num_images);
// Preapre images masks
for (int i = 0; i < num_images; ++i)
{
masks[i].create(images[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr<Warper> warper = Warper::createByCameraFocal(static_cast<float>(warped_image_scale * seam_work_aspect),
warp_type, try_gpu);
for (int i = 0; i < num_images; ++i)
{
corners[i] = warper->warp(images[i], static_cast<float>(cameras[i].focal * seam_work_aspect),
cameras[i].R, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], static_cast<float>(cameras[i].focal * seam_work_aspect),
cameras[i].R, masks_warped[i], INTER_NEAREST, BORDER_CONSTANT);
}
vector<Mat> images_warped_f(num_images);
for (int i = 0; i < num_images; ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
compensator->feed(corners, images_warped, masks_warped);
Ptr<SeamFinder> seam_finder = SeamFinder::createDefault(seam_find_type);
seam_finder->find(images_warped_f, corners, masks_warped);
// Release unused memory
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
t = getTickCount();
Mat img_warped, img_warped_s;
Mat dilated_mask, seam_mask, mask, mask_warped;
Ptr<Blender> blender;
double compose_seam_aspect = 1;
double compose_work_aspect = 1;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
LOGLN("Compositing image #" << indices[img_idx]+1);
// Read image and resize it if necessary
full_img = imread(img_names[img_idx]);
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// Update warped image scale
warped_image_scale *= static_cast<float>(compose_work_aspect);
warper = Warper::createByCameraFocal(warped_image_scale, warp_type, try_gpu);
// Update corners and sizes
for (int i = 0; i < num_images; ++i)
{
// Update camera focal
cameras[i].focal *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Rect roi = warper->warpRoi(sz, static_cast<float>(cameras[i].focal), cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (abs(compose_scale - 1) > 1e-1)
resize(full_img, img, Size(), compose_scale, compose_scale);
else
img = full_img;
full_img.release();
Size img_size = img.size();
// Warp the current image
warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R,
img_warped);
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R, mask_warped,
INTER_NEAREST, BORDER_CONSTANT);
// Compensate exposure
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size());
mask_warped = seam_mask & mask_warped;
if (blender.empty())
{
blender = Blender::createDefault(blend_type, try_gpu);
Size dst_sz = resultRoi(corners, sizes).size();
float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_gpu);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.));
LOGLN("Multi-band blender, number of bands: " << mb->numBands());
}
else if (blend_type == Blender::FEATHER)
{
FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
fb->setSharpness(1.f/blend_width);
LOGLN("Feather blender, sharpness: " << fb->sharpness());
}
blender->prepare(corners, sizes);
}
// Blend the current image
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
Mat result, result_mask;
blender->blend(result, result_mask);
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
imwrite(result_name, result);
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
imwrite(result_name, pano);
return 0;
}
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// We follow to these papers:
// 1) Construction of panoramic mosaics with global and local alignment.
// Heung-Yeung Shum and Richard Szeliski. 2000.
// 2) Eliminating Ghosting and Exposure Artifacts in Image Mosaics.
// Matthew Uyttendaele, Ashley Eden and Richard Szeliski. 2001.
// 3) Automatic Panoramic Image Stitching using Invariant Features.
// Matthew Brown and David G. Lowe. 2007.
#include <fstream>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/util.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
using namespace std;
using namespace cv;
using namespace cv::detail;
void printUsage()
{
cout <<
"Rotation model images stitcher.\n\n"
"stitching_detailed img1 img2 [...imgN] [flags]\n\n"
"Flags:\n"
" --preview\n"
" Run stitching in the preview mode. Works faster than usual mode,\n"
" but output image will have lower resolution.\n"
" --try_gpu (yes|no)\n"
" Try to use GPU. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
"\nMotion Estimation Flags:\n"
" --work_megapix <float>\n"
" Resolution for image registration step. The default is 0.6 Mpx.\n"
" --match_conf <float>\n"
" Confidence for feature matching step. The default is 0.65.\n"
" --conf_thresh <float>\n"
" Threshold for two images are from the same panorama confidence.\n"
" The default is 1.0.\n"
" --ba (no|ray|focal_ray)\n"
" Bundle adjustment cost function. The default is 'focal_ray'.\n"
" --wave_correct (no|yes)\n"
" Perform wave effect correction. The default is 'yes'.\n"
" --save_graph <file_name>\n"
" Save matches graph represented in DOT language to <file_name> file.\n"
" Labels description: Nm is number of matches, Ni is number of inliers,\n"
" C is confidence.\n"
"\nCompositing Flags:\n"
" --warp (plane|cylindrical|spherical)\n"
" Warp surface type. The default is 'spherical'.\n"
" --seam_megapix <float>\n"
" Resolution for seam estimation step. The default is 0.1 Mpx.\n"
" --seam (no|voronoi|gc_color|gc_colorgrad)\n"
" Seam estimation method. The default is 'gc_color'.\n"
" --compose_megapix <float>\n"
" Resolution for compositing step. Use -1 for original resolution.\n"
" The default is -1.\n"
" --expos_comp (no|gain|gain_blocks)\n"
" Exposure compensation method. The default is 'gain_blocks'.\n"
" --blend (no|feather|multiband)\n"
" Blending method. The default is 'multiband'.\n"
" --blend_strength <float>\n"
" Blending strength from [0,100] range. The default is 5.\n"
" --output <result_img>\n"
" The default is 'result.jpg'.\n";
}
// Default command line args
vector<string> img_names;
bool preview = false;
bool try_gpu = false;
double work_megapix = 0.6;
double seam_megapix = 0.1;
double compose_megapix = -1;
int ba_space = BundleAdjuster::FOCAL_RAY_SPACE;
float conf_thresh = 1.f;
bool wave_correct = true;
bool save_graph = false;
std::string save_graph_to;
int warp_type = Warper::SPHERICAL;
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
float match_conf = 0.65f;
int seam_find_type = SeamFinder::GC_COLOR;
int blend_type = Blender::MULTI_BAND;
float blend_strength = 5;
string result_name = "result.jpg";
int parseCmdArgs(int argc, char** argv)
{
if (argc == 1)
{
printUsage();
return -1;
}
for (int i = 1; i < argc; ++i)
{
if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
{
printUsage();
return -1;
}
else if (string(argv[i]) == "--preview")
{
preview = true;
}
else if (string(argv[i]) == "--try_gpu")
{
if (string(argv[i + 1]) == "no")
try_gpu = false;
else if (string(argv[i + 1]) == "yes")
try_gpu = true;
else
{
cout << "Bad --try_gpu flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--work_megapix")
{
work_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--seam_megapix")
{
seam_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--compose_megapix")
{
compose_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--result")
{
result_name = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--match_conf")
{
match_conf = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--ba")
{
if (string(argv[i + 1]) == "no")
ba_space = BundleAdjuster::NO;
else if (string(argv[i + 1]) == "ray")
ba_space = BundleAdjuster::RAY_SPACE;
else if (string(argv[i + 1]) == "focal_ray")
ba_space = BundleAdjuster::FOCAL_RAY_SPACE;
else
{
cout << "Bad bundle adjustment space\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--conf_thresh")
{
conf_thresh = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--wave_correct")
{
if (string(argv[i + 1]) == "no")
wave_correct = false;
else if (string(argv[i + 1]) == "yes")
wave_correct = true;
else
{
cout << "Bad --wave_correct flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--save_graph")
{
save_graph = true;
save_graph_to = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--warp")
{
if (string(argv[i + 1]) == "plane")
warp_type = Warper::PLANE;
else if (string(argv[i + 1]) == "cylindrical")
warp_type = Warper::CYLINDRICAL;
else if (string(argv[i + 1]) == "spherical")
warp_type = Warper::SPHERICAL;
else
{
cout << "Bad warping method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--expos_comp")
{
if (string(argv[i + 1]) == "no")
expos_comp_type = ExposureCompensator::NO;
else if (string(argv[i + 1]) == "gain")
expos_comp_type = ExposureCompensator::GAIN;
else if (string(argv[i + 1]) == "gain_blocks")
expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
else
{
cout << "Bad exposure compensation method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--seam")
{
if (string(argv[i + 1]) == "no")
seam_find_type = SeamFinder::NO;
else if (string(argv[i + 1]) == "voronoi")
seam_find_type = SeamFinder::VORONOI;
else if (string(argv[i + 1]) == "gc_color")
seam_find_type = SeamFinder::GC_COLOR;
else if (string(argv[i + 1]) == "gc_colorgrad")
seam_find_type = SeamFinder::GC_COLOR_GRAD;
else
{
cout << "Bad seam finding method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--blend")
{
if (string(argv[i + 1]) == "no")
blend_type = Blender::NO;
else if (string(argv[i + 1]) == "feather")
blend_type = Blender::FEATHER;
else if (string(argv[i + 1]) == "multiband")
blend_type = Blender::MULTI_BAND;
else
{
cout << "Bad blending method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--blend_strength")
{
blend_strength = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + 1];
i++;
}
else
img_names.push_back(argv[i]);
}
if (preview)
{
compose_megapix = 0.6;
}
return 0;
}
int main(int argc, char* argv[])
{
int64 app_start_time = getTickCount();
cv::setBreakOnError(true);
int retval = parseCmdArgs(argc, argv);
if (retval)
return retval;
// Check if have enough images
int num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
double work_scale = 1, seam_scale = 1, compose_scale = 1;
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
LOGLN("Finding features...");
int64 t = getTickCount();
vector<ImageFeatures> features(num_images);
SurfFeaturesFinder finder(try_gpu);
Mat full_img, img;
vector<Mat> images(num_images);
vector<Size> full_img_sizes(num_images);
double seam_work_aspect = 1;
for (int i = 0; i < num_images; ++i)
{
full_img = imread(img_names[i]);
full_img_sizes[i] = full_img.size();
if (full_img.empty())
{
LOGLN("Can't open image " << img_names[i]);
return -1;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale, work_scale);
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;
is_seam_scale_set = true;
}
finder(img, features[i]);
features[i].img_idx = i;
LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
resize(full_img, img, Size(), seam_scale, seam_scale);
images[i] = img.clone();
}
finder.collectGarbage();
full_img.release();
img.release();
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
LOG("Pairwise matching");
t = getTickCount();
vector<MatchesInfo> pairwise_matches;
BestOf2NearestMatcher matcher(try_gpu, match_conf);
matcher(features, pairwise_matches);
matcher.collectGarbage();
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Check if we should save matches graph
if (save_graph)
{
LOGLN("Saving matches graph...");
ofstream f(save_graph_to.c_str());
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
}
// Leave only images we are sure are from the same panorama
vector<int> indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
vector<Mat> img_subset;
vector<string> img_names_subset;
vector<Size> full_img_sizes_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
// Check if we still have enough images
num_images = static_cast<int>(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
HomographyBasedEstimator estimator;
vector<CameraParams> cameras;
estimator(features, pairwise_matches, cameras);
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);
cameras[i].R = R;
LOGLN("Initial focal length #" << indices[i]+1 << ": " << cameras[i].focal);
}
BundleAdjuster adjuster(ba_space, conf_thresh);
adjuster(features, pairwise_matches, cameras);
// Find median focal length
vector<double> focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
LOGLN("Camera #" << indices[i]+1 << " focal length: " << cameras[i].focal);
focals.push_back(cameras[i].focal);
}
nth_element(focals.begin(), focals.begin() + focals.size()/2, focals.end());
float warped_image_scale = static_cast<float>(focals[focals.size() / 2]);
if (wave_correct)
{
vector<Mat> rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R);
waveCorrect(rmats);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
LOGLN("Warping images (auxiliary)... ");
t = getTickCount();
vector<Point> corners(num_images);
vector<Mat> masks_warped(num_images);
vector<Mat> images_warped(num_images);
vector<Size> sizes(num_images);
vector<Mat> masks(num_images);
// Preapre images masks
for (int i = 0; i < num_images; ++i)
{
masks[i].create(images[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));
}
// Warp images and their masks
Ptr<Warper> warper = Warper::createByCameraFocal(static_cast<float>(warped_image_scale * seam_work_aspect),
warp_type, try_gpu);
for (int i = 0; i < num_images; ++i)
{
corners[i] = warper->warp(images[i], static_cast<float>(cameras[i].focal * seam_work_aspect),
cameras[i].R, images_warped[i]);
sizes[i] = images_warped[i].size();
warper->warp(masks[i], static_cast<float>(cameras[i].focal * seam_work_aspect),
cameras[i].R, masks_warped[i], INTER_NEAREST, BORDER_CONSTANT);
}
vector<Mat> images_warped_f(num_images);
for (int i = 0; i < num_images; ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
Ptr<ExposureCompensator> compensator = ExposureCompensator::createDefault(expos_comp_type);
compensator->feed(corners, images_warped, masks_warped);
Ptr<SeamFinder> seam_finder = SeamFinder::createDefault(seam_find_type);
seam_finder->find(images_warped_f, corners, masks_warped);
// Release unused memory
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
t = getTickCount();
Mat img_warped, img_warped_s;
Mat dilated_mask, seam_mask, mask, mask_warped;
Ptr<Blender> blender;
double compose_seam_aspect = 1;
double compose_work_aspect = 1;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
LOGLN("Compositing image #" << indices[img_idx]+1);
// Read image and resize it if necessary
full_img = imread(img_names[img_idx]);
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// Update warped image scale
warped_image_scale *= static_cast<float>(compose_work_aspect);
warper = Warper::createByCameraFocal(warped_image_scale, warp_type, try_gpu);
// Update corners and sizes
for (int i = 0; i < num_images; ++i)
{
// Update camera focal
cameras[i].focal *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Rect roi = warper->warpRoi(sz, static_cast<float>(cameras[i].focal), cameras[i].R);
corners[i] = roi.tl();
sizes[i] = roi.size();
}
}
if (abs(compose_scale - 1) > 1e-1)
resize(full_img, img, Size(), compose_scale, compose_scale);
else
img = full_img;
full_img.release();
Size img_size = img.size();
// Warp the current image
warper->warp(img, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R,
img_warped);
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, static_cast<float>(cameras[img_idx].focal), cameras[img_idx].R, mask_warped,
INTER_NEAREST, BORDER_CONSTANT);
// Compensate exposure
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size());
mask_warped = seam_mask & mask_warped;
if (blender.empty())
{
blender = Blender::createDefault(blend_type, try_gpu);
Size dst_sz = resultRoi(corners, sizes).size();
float blend_width = sqrt(static_cast<float>(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_gpu);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast<MultiBandBlender*>(static_cast<Blender*>(blender));
mb->setNumBands(static_cast<int>(ceil(log(blend_width)/log(2.)) - 1.));
LOGLN("Multi-band blender, number of bands: " << mb->numBands());
}
else if (blend_type == Blender::FEATHER)
{
FeatherBlender* fb = dynamic_cast<FeatherBlender*>(static_cast<Blender*>(blender));
fb->setSharpness(1.f/blend_width);
LOGLN("Feather blender, sharpness: " << fb->sharpness());
}
blender->prepare(corners, sizes);
}
// Blend the current image
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
Mat result, result_mask;
blender->blend(result, result_mask);
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
imwrite(result_name, result);
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
return 0;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment