Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
c8e206c2
Commit
c8e206c2
authored
Mar 18, 2012
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added LogPolar Blind Spot Model (thanks to Fabio Solari for the contribution)
parent
d1061677
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
944 additions
and
4 deletions
+944
-4
contrib.hpp
modules/contrib/include/opencv2/contrib/contrib.hpp
+210
-4
logpolar_bsm.cpp
modules/contrib/src/logpolar_bsm.cpp
+652
-0
logpolar_bsm.cpp
samples/cpp/logpolar_bsm.cpp
+82
-0
No files found.
modules/contrib/include/opencv2/contrib/contrib.hpp
View file @
c8e206c2
...
...
@@ -44,6 +44,7 @@
#define __OPENCV_CONTRIB_HPP__
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"
...
...
@@ -633,14 +634,219 @@ namespace cv
TRANSLATION
=
2
,
RIGID_BODY_MOTION
=
4
};
CV_EXPORTS
bool
RGBDOdometry
(
cv
::
Mat
&
Rt
,
const
Mat
&
initRt
,
const
cv
::
Mat
&
image0
,
const
cv
::
Mat
&
depth0
,
const
cv
::
Mat
&
mask0
,
const
cv
::
Mat
&
image1
,
const
cv
::
Mat
&
depth1
,
const
cv
::
Mat
&
mask1
,
const
cv
::
Mat
&
cameraMatrix
,
float
minDepth
,
float
maxDepth
,
float
maxDepthDiff
,
CV_EXPORTS
bool
RGBDOdometry
(
Mat
&
Rt
,
const
Mat
&
initRt
,
const
Mat
&
image0
,
const
Mat
&
depth0
,
const
Mat
&
mask0
,
const
Mat
&
image1
,
const
Mat
&
depth1
,
const
Mat
&
mask1
,
const
Mat
&
cameraMatrix
,
float
minDepth
,
float
maxDepth
,
float
maxDepthDiff
,
const
std
::
vector
<
int
>&
iterCounts
,
const
std
::
vector
<
float
>&
minGradientMagnitudes
,
int
transformType
=
RIGID_BODY_MOTION
);
/**
*Bilinear interpolation technique.
*
*The value of a desired cortical pixel is obtained through a bilinear interpolation of the values
*of the four nearest neighbouring Cartesian pixels to the center of the RF.
*The same principle is applied to the inverse transformation.
*
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
*/
class
CV_EXPORTS
LogPolar_Interp
{
public
:
LogPolar_Interp
()
{}
/**
*Constructor
*\param w the width of the input image
*\param h the height of the input image
*\param center the transformation center: where the output precision is maximal
*\param R the number of rings of the cortical image (default value 70 pixel)
*\param ro0 the radius of the blind spot (default value 3 pixel)
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
* \a 0 means that the retinal image is computed within the inscribed circle.
*\param S the number of sectors of the cortical image (default value 70 pixel).
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
* \a 0 means that the parameter \a S is provided by the user.
*/
LogPolar_Interp
(
int
w
,
int
h
,
Point2i
center
,
int
R
=
70
,
double
ro0
=
3.0
,
int
interp
=
INTER_LINEAR
,
int
full
=
1
,
int
S
=
117
,
int
sp
=
1
);
/**
*Transformation from Cartesian image to cortical (log-polar) image.
*\param source the Cartesian image
*\return the transformed image (cortical image)
*/
const
Mat
to_cortical
(
const
Mat
&
source
);
/**
*Transformation from cortical image to retinal (inverse log-polar) image.
*\param source the cortical image
*\return the transformed image (retinal image)
*/
const
Mat
to_cartesian
(
const
Mat
&
source
);
/**
*Destructor
*/
~
LogPolar_Interp
();
protected
:
Mat
Rsri
;
Mat
Csri
;
int
S
,
R
,
M
,
N
;
int
top
,
bottom
,
left
,
right
;
double
ro0
,
romax
,
a
,
q
;
int
interp
;
Mat
ETAyx
;
Mat
CSIyx
;
void
create_map
(
int
M
,
int
N
,
int
R
,
int
S
,
double
ro0
);
};
/**
*Overlapping circular receptive fields technique
*
*The Cartesian plane is divided in two regions: the fovea and the periphery.
*The fovea (oversampling) is handled by using the bilinear interpolation technique described above, whereas in
*the periphery we use the overlapping Gaussian circular RFs.
*
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
*/
class
CV_EXPORTS
LogPolar_Overlapping
{
public
:
LogPolar_Overlapping
()
{}
/**
*Constructor
*\param w the width of the input image
*\param h the height of the input image
*\param center the transformation center: where the output precision is maximal
*\param R the number of rings of the cortical image (default value 70 pixel)
*\param ro0 the radius of the blind spot (default value 3 pixel)
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
* \a 0 means that the retinal image is computed within the inscribed circle.
*\param S the number of sectors of the cortical image (default value 70 pixel).
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
* \a 0 means that the parameter \a S is provided by the user.
*/
LogPolar_Overlapping
(
int
w
,
int
h
,
Point2i
center
,
int
R
=
70
,
double
ro0
=
3.0
,
int
full
=
1
,
int
S
=
117
,
int
sp
=
1
);
/**
*Transformation from Cartesian image to cortical (log-polar) image.
*\param source the Cartesian image
*\return the transformed image (cortical image)
*/
const
Mat
to_cortical
(
const
Mat
&
source
);
/**
*Transformation from cortical image to retinal (inverse log-polar) image.
*\param source the cortical image
*\return the transformed image (retinal image)
*/
const
Mat
to_cartesian
(
const
Mat
&
source
);
/**
*Destructor
*/
~
LogPolar_Overlapping
();
protected
:
Mat
Rsri
;
Mat
Csri
;
vector
<
int
>
Rsr
;
vector
<
int
>
Csr
;
vector
<
double
>
Wsr
;
int
S
,
R
,
M
,
N
,
ind1
;
int
top
,
bottom
,
left
,
right
;
double
ro0
,
romax
,
a
,
q
;
struct
kernel
{
kernel
()
{
w
=
0
;
}
vector
<
double
>
weights
;
int
w
;
};
Mat
ETAyx
;
Mat
CSIyx
;
vector
<
kernel
>
w_ker_2D
;
void
create_map
(
int
M
,
int
N
,
int
R
,
int
S
,
double
ro0
);
};
/**
* Adjacent receptive fields technique
*
*All the Cartesian pixels, whose coordinates in the cortical domain share the same integer part, are assigned to the same RF.
*The precision of the boundaries of the RF can be improved by breaking each pixel into subpixels and assigning each of them to the correct RF.
*This technique is implemented from: Traver, V., Pla, F.: Log-polar mapping template design: From task-level requirements
*to geometry parameters. Image Vision Comput. 26(10) (2008) 1354-1370
*
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
*/
class
CV_EXPORTS
LogPolar_Adjacent
{
public
:
LogPolar_Adjacent
()
{}
/**
*Constructor
*\param w the width of the input image
*\param h the height of the input image
*\param center the transformation center: where the output precision is maximal
*\param R the number of rings of the cortical image (default value 70 pixel)
*\param ro0 the radius of the blind spot (default value 3 pixel)
*\param smin the size of the subpixel (default value 0.25 pixel)
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
* \a 0 means that the retinal image is computed within the inscribed circle.
*\param S the number of sectors of the cortical image (default value 70 pixel).
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
* \a 0 means that the parameter \a S is provided by the user.
*/
LogPolar_Adjacent
(
int
w
,
int
h
,
Point2i
center
,
int
R
=
70
,
double
ro0
=
3.0
,
double
smin
=
0.25
,
int
full
=
1
,
int
S
=
117
,
int
sp
=
1
);
/**
*Transformation from Cartesian image to cortical (log-polar) image.
*\param source the Cartesian image
*\return the transformed image (cortical image)
*/
const
Mat
to_cortical
(
const
Mat
&
source
);
/**
*Transformation from cortical image to retinal (inverse log-polar) image.
*\param source the cortical image
*\return the transformed image (retinal image)
*/
const
Mat
to_cartesian
(
const
Mat
&
source
);
/**
*Destructor
*/
~
LogPolar_Adjacent
();
protected
:
struct
pixel
{
pixel
()
{
u
=
v
=
0
;
a
=
0.
;
}
int
u
;
int
v
;
double
a
;
};
int
S
,
R
,
M
,
N
;
int
top
,
bottom
,
left
,
right
;
double
ro0
,
romax
,
a
,
q
;
vector
<
vector
<
pixel
>
>
L
;
vector
<
double
>
A
;
void
subdivide_recursively
(
double
x
,
double
y
,
int
i
,
int
j
,
double
length
,
double
smin
);
bool
get_uv
(
double
x
,
double
y
,
int
&
u
,
int
&
v
);
void
create_map
(
int
M
,
int
N
,
int
R
,
int
S
,
double
ro0
,
double
smin
);
};
}
#include "opencv2/contrib/retina.hpp"
#endif
...
...
modules/contrib/src/logpolar_bsm.cpp
0 → 100644
View file @
c8e206c2
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The names of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*************************************************************************************
The LogPolar Blind Spot Model code has been contributed by Fabio Solari.
More details can be found in:
M. Chessa, S. P. Sabatini, F. Solari and F. Tatti (2011)
A Quantitative Comparison of Speed and Reliability for Log-Polar Mapping Techniques,
Computer Vision Systems - 8th International Conference,
ICVS 2011, Sophia Antipolis, France, September 20-22, 2011
(http://dx.doi.org/10.1007/978-3-642-23968-7_5)
***************************************************************************************/
#include "precomp.hpp"
#include <cmath>
#include <vector>
namespace
cv
{
//------------------------------------interp-------------------------------------------
LogPolar_Interp
::
LogPolar_Interp
(
int
w
,
int
h
,
Point2i
center
,
int
R
,
double
ro0
,
int
interp
,
int
full
,
int
S
,
int
sp
)
{
if
(
(
center
.
x
!=
w
/
2
||
center
.
y
!=
h
/
2
)
&&
full
==
0
)
full
=
1
;
if
(
center
.
x
<
0
)
center
.
x
=
0
;
if
(
center
.
y
<
0
)
center
.
y
=
0
;
if
(
center
.
x
>=
w
)
center
.
x
=
w
-
1
;
if
(
center
.
y
>=
h
)
center
.
y
=
h
-
1
;
if
(
full
){
int
rtmp
;
if
(
center
.
x
<=
w
/
2
&&
center
.
y
>=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)
center
.
y
*
center
.
y
+
(
float
)(
w
-
center
.
x
)
*
(
w
-
center
.
x
));
if
(
center
.
x
>=
w
/
2
&&
center
.
y
>=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)
center
.
y
*
center
.
y
+
(
float
)
center
.
x
*
center
.
x
);
if
(
center
.
x
>=
w
/
2
&&
center
.
y
<=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)(
h
-
center
.
y
)
*
(
h
-
center
.
y
)
+
(
float
)
center
.
x
*
center
.
x
);
if
(
center
.
x
<=
w
/
2
&&
center
.
y
<=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)(
h
-
center
.
y
)
*
(
h
-
center
.
y
)
+
(
float
)(
w
-
center
.
x
)
*
(
w
-
center
.
x
));
M
=
2
*
rtmp
;
N
=
2
*
rtmp
;
top
=
M
/
2
-
center
.
y
;
bottom
=
M
/
2
-
(
h
-
center
.
y
);
left
=
M
/
2
-
center
.
x
;
right
=
M
/
2
-
(
w
-
center
.
x
);
}
else
{
top
=
bottom
=
left
=
right
=
0
;
M
=
w
;
N
=
h
;
}
if
(
sp
){
int
jc
=
M
/
2
-
1
,
ic
=
N
/
2
-
1
;
int
romax
=
min
(
ic
,
jc
);
double
a
=
exp
(
log
((
double
)(
romax
/
2
-
1
)
/
(
double
)
ro0
)
/
(
double
)
R
);
S
=
(
int
)
floor
(
2
*
M_PI
/
(
a
-
1
)
+
0.5
);
}
this
->
interp
=
interp
;
create_map
(
M
,
N
,
R
,
S
,
ro0
);
}
void
LogPolar_Interp
::
create_map
(
int
M
,
int
N
,
int
R
,
int
S
,
double
ro0
)
{
this
->
M
=
M
;
this
->
N
=
N
;
this
->
R
=
R
;
this
->
S
=
S
;
this
->
ro0
=
ro0
;
int
jc
=
N
/
2
-
1
,
ic
=
M
/
2
-
1
;
romax
=
min
(
ic
,
jc
);
a
=
exp
(
log
((
double
)
romax
/
(
double
)
ro0
)
/
(
double
)
R
);
q
=
((
double
)
S
)
/
(
2
*
M_PI
);
Rsri
=
Mat
::
zeros
(
S
,
R
,
CV_32FC1
);
Csri
=
Mat
::
zeros
(
S
,
R
,
CV_32FC1
);
ETAyx
=
Mat
::
zeros
(
N
,
M
,
CV_32FC1
);
CSIyx
=
Mat
::
zeros
(
N
,
M
,
CV_32FC1
);
for
(
int
v
=
0
;
v
<
S
;
v
++
)
{
for
(
int
u
=
0
;
u
<
R
;
u
++
)
{
Rsri
.
at
<
float
>
(
v
,
u
)
=
(
float
)(
ro0
*
pow
(
a
,
u
)
*
sin
(
v
/
q
)
+
jc
);
Csri
.
at
<
float
>
(
v
,
u
)
=
(
float
)(
ro0
*
pow
(
a
,
u
)
*
cos
(
v
/
q
)
+
ic
);
}
}
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
double
theta
;
if
(
i
>=
ic
)
theta
=
atan
((
double
)(
j
-
jc
)
/
(
double
)(
i
-
ic
));
else
theta
=
atan
((
double
)(
j
-
jc
)
/
(
double
)(
i
-
ic
))
+
M_PI
;
if
(
theta
<
0
)
theta
+=
2
*
M_PI
;
ETAyx
.
at
<
float
>
(
j
,
i
)
=
(
float
)(
q
*
theta
);
double
ro2
=
(
j
-
jc
)
*
(
j
-
jc
)
+
(
i
-
ic
)
*
(
i
-
ic
);
CSIyx
.
at
<
float
>
(
j
,
i
)
=
(
float
)(
0.5
*
log
(
ro2
/
(
ro0
*
ro0
))
/
log
(
a
));
}
}
}
const
Mat
LogPolar_Interp
::
to_cortical
(
const
Mat
&
source
)
{
Mat
out
(
S
,
R
,
CV_8UC1
,
Scalar
(
0
));
Mat
source_border
;
copyMakeBorder
(
source
,
source_border
,
top
,
bottom
,
left
,
right
,
BORDER_CONSTANT
,
Scalar
(
0
));
remap
(
source_border
,
out
,
Csri
,
Rsri
,
interp
);
return
out
;
}
const
Mat
LogPolar_Interp
::
to_cartesian
(
const
Mat
&
source
)
{
Mat
out
(
N
,
M
,
CV_8UC1
,
Scalar
(
0
));
Mat
source_border
;
if
(
interp
==
INTER_NEAREST
||
interp
==
INTER_LINEAR
){
copyMakeBorder
(
source
,
source_border
,
0
,
1
,
0
,
0
,
BORDER_CONSTANT
,
Scalar
(
0
));
Mat
rowS0
=
source_border
.
row
(
S
);
source_border
.
row
(
0
).
copyTo
(
rowS0
);
}
else
if
(
interp
==
INTER_CUBIC
){
copyMakeBorder
(
source
,
source_border
,
0
,
2
,
0
,
0
,
BORDER_CONSTANT
,
Scalar
(
0
));
Mat
rowS0
=
source_border
.
row
(
S
);
Mat
rowS1
=
source_border
.
row
(
S
+
1
);
source_border
.
row
(
0
).
copyTo
(
rowS0
);
source_border
.
row
(
1
).
copyTo
(
rowS1
);
}
else
if
(
interp
==
INTER_LANCZOS4
){
copyMakeBorder
(
source
,
source_border
,
0
,
4
,
0
,
0
,
BORDER_CONSTANT
,
Scalar
(
0
));
Mat
rowS0
=
source_border
.
row
(
S
);
Mat
rowS1
=
source_border
.
row
(
S
+
1
);
Mat
rowS2
=
source_border
.
row
(
S
+
2
);
Mat
rowS3
=
source_border
.
row
(
S
+
3
);
source_border
.
row
(
0
).
copyTo
(
rowS0
);
source_border
.
row
(
1
).
copyTo
(
rowS1
);
source_border
.
row
(
2
).
copyTo
(
rowS2
);
source_border
.
row
(
3
).
copyTo
(
rowS3
);
}
remap
(
source_border
,
out
,
CSIyx
,
ETAyx
,
interp
);
Mat
out_cropped
=
out
(
Range
(
top
,
N
-
1
-
bottom
),
Range
(
left
,
M
-
1
-
right
));
return
out_cropped
;
}
LogPolar_Interp
::~
LogPolar_Interp
()
{
}
//------------------------------------overlapping----------------------------------
LogPolar_Overlapping
::
LogPolar_Overlapping
(
int
w
,
int
h
,
Point2i
center
,
int
R
,
double
ro0
,
int
full
,
int
S
,
int
sp
)
{
if
(
(
center
.
x
!=
w
/
2
||
center
.
y
!=
h
/
2
)
&&
full
==
0
)
full
=
1
;
if
(
center
.
x
<
0
)
center
.
x
=
0
;
if
(
center
.
y
<
0
)
center
.
y
=
0
;
if
(
center
.
x
>=
w
)
center
.
x
=
w
-
1
;
if
(
center
.
y
>=
h
)
center
.
y
=
h
-
1
;
if
(
full
){
int
rtmp
;
if
(
center
.
x
<=
w
/
2
&&
center
.
y
>=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)
center
.
y
*
center
.
y
+
(
float
)(
w
-
center
.
x
)
*
(
w
-
center
.
x
));
if
(
center
.
x
>=
w
/
2
&&
center
.
y
>=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)
center
.
y
*
center
.
y
+
(
float
)
center
.
x
*
center
.
x
);
if
(
center
.
x
>=
w
/
2
&&
center
.
y
<=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)(
h
-
center
.
y
)
*
(
h
-
center
.
y
)
+
(
float
)
center
.
x
*
center
.
x
);
if
(
center
.
x
<=
w
/
2
&&
center
.
y
<=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)(
h
-
center
.
y
)
*
(
h
-
center
.
y
)
+
(
float
)(
w
-
center
.
x
)
*
(
w
-
center
.
x
));
M
=
2
*
rtmp
;
N
=
2
*
rtmp
;
top
=
M
/
2
-
center
.
y
;
bottom
=
M
/
2
-
(
h
-
center
.
y
);
left
=
M
/
2
-
center
.
x
;
right
=
M
/
2
-
(
w
-
center
.
x
);
}
else
{
top
=
bottom
=
left
=
right
=
0
;
M
=
w
;
N
=
h
;
}
if
(
sp
){
int
jc
=
M
/
2
-
1
,
ic
=
N
/
2
-
1
;
int
romax
=
min
(
ic
,
jc
);
double
a
=
exp
(
log
((
double
)(
romax
/
2
-
1
)
/
(
double
)
ro0
)
/
(
double
)
R
);
S
=
(
int
)
floor
(
2
*
M_PI
/
(
a
-
1
)
+
0.5
);
}
create_map
(
M
,
N
,
R
,
S
,
ro0
);
}
void
LogPolar_Overlapping
::
create_map
(
int
M
,
int
N
,
int
R
,
int
S
,
double
ro0
)
{
this
->
M
=
M
;
this
->
N
=
N
;
this
->
R
=
R
;
this
->
S
=
S
;
this
->
ro0
=
ro0
;
int
jc
=
N
/
2
-
1
,
ic
=
M
/
2
-
1
;
romax
=
min
(
ic
,
jc
);
a
=
exp
(
log
((
double
)
romax
/
(
double
)
ro0
)
/
(
double
)
R
);
q
=
((
double
)
S
)
/
(
2
*
M_PI
);
ind1
=
0
;
Rsri
=
Mat
::
zeros
(
S
,
R
,
CV_32FC1
);
Csri
=
Mat
::
zeros
(
S
,
R
,
CV_32FC1
);
ETAyx
=
Mat
::
zeros
(
N
,
M
,
CV_32FC1
);
CSIyx
=
Mat
::
zeros
(
N
,
M
,
CV_32FC1
);
Rsr
.
resize
(
R
*
S
);
Csr
.
resize
(
R
*
S
);
Wsr
.
resize
(
R
);
w_ker_2D
.
resize
(
R
*
S
);
for
(
int
v
=
0
;
v
<
S
;
v
++
)
{
for
(
int
u
=
0
;
u
<
R
;
u
++
)
{
Rsri
.
at
<
float
>
(
v
,
u
)
=
(
float
)(
ro0
*
pow
(
a
,
u
)
*
sin
(
v
/
q
)
+
jc
);
Csri
.
at
<
float
>
(
v
,
u
)
=
(
float
)(
ro0
*
pow
(
a
,
u
)
*
cos
(
v
/
q
)
+
ic
);
Rsr
[
v
*
R
+
u
]
=
(
int
)
floor
(
Rsri
.
at
<
float
>
(
v
,
u
));
Csr
[
v
*
R
+
u
]
=
(
int
)
floor
(
Csri
.
at
<
float
>
(
v
,
u
));
}
}
bool
done
=
false
;
for
(
int
i
=
0
;
i
<
R
;
i
++
)
{
Wsr
[
i
]
=
ro0
*
(
a
-
1
)
*
pow
(
a
,
i
-
1
);
if
((
Wsr
[
i
]
>
1
)
&&
(
done
==
false
))
{
ind1
=
i
;
done
=
true
;
}
}
for
(
int
j
=
0
;
j
<
N
;
j
++
)
{
for
(
int
i
=
0
;
i
<
M
;
i
++
)
//mdf
{
double
theta
;
if
(
i
>=
ic
)
theta
=
atan
((
double
)(
j
-
jc
)
/
(
double
)(
i
-
ic
));
else
theta
=
atan
((
double
)(
j
-
jc
)
/
(
double
)(
i
-
ic
))
+
M_PI
;
if
(
theta
<
0
)
theta
+=
2
*
M_PI
;
ETAyx
.
at
<
float
>
(
j
,
i
)
=
(
float
)(
q
*
theta
);
double
ro2
=
(
j
-
jc
)
*
(
j
-
jc
)
+
(
i
-
ic
)
*
(
i
-
ic
);
CSIyx
.
at
<
float
>
(
j
,
i
)
=
(
float
)(
0.5
*
log
(
ro2
/
(
ro0
*
ro0
))
/
log
(
a
));
}
}
for
(
int
v
=
0
;
v
<
S
;
v
++
)
for
(
int
u
=
ind1
;
u
<
R
;
u
++
)
{
//double sigma=Wsr[u]/2.0;
double
sigma
=
Wsr
[
u
]
/
3.0
;
//modf
int
w
=
(
int
)
floor
(
3
*
sigma
+
0.5
);
w_ker_2D
[
v
*
R
+
u
].
w
=
w
;
w_ker_2D
[
v
*
R
+
u
].
weights
.
resize
((
2
*
w
+
1
)
*
(
2
*
w
+
1
));
double
dx
=
Csri
.
at
<
float
>
(
v
,
u
)
-
Csr
[
v
*
R
+
u
];
double
dy
=
Rsri
.
at
<
float
>
(
v
,
u
)
-
Rsr
[
v
*
R
+
u
];
double
tot
=
0
;
for
(
int
j
=
0
;
j
<
2
*
w
+
1
;
j
++
)
for
(
int
i
=
0
;
i
<
2
*
w
+
1
;
i
++
)
{
(
w_ker_2D
[
v
*
R
+
u
].
weights
)[
j
*
(
2
*
w
+
1
)
+
i
]
=
exp
(
-
(
pow
(
i
-
w
-
dx
,
2
)
+
pow
(
j
-
w
-
dy
,
2
))
/
(
2
*
sigma
*
sigma
));
tot
+=
(
w_ker_2D
[
v
*
R
+
u
].
weights
)[
j
*
(
2
*
w
+
1
)
+
i
];
}
for
(
int
j
=
0
;
j
<
(
2
*
w
+
1
);
j
++
)
for
(
int
i
=
0
;
i
<
(
2
*
w
+
1
);
i
++
)
(
w_ker_2D
[
v
*
R
+
u
].
weights
)[
j
*
(
2
*
w
+
1
)
+
i
]
/=
tot
;
}
}
const
Mat
LogPolar_Overlapping
::
to_cortical
(
const
Mat
&
source
)
{
Mat
out
(
S
,
R
,
CV_8UC1
,
Scalar
(
0
));
Mat
source_border
;
copyMakeBorder
(
source
,
source_border
,
top
,
bottom
,
left
,
right
,
BORDER_CONSTANT
,
Scalar
(
0
));
remap
(
source_border
,
out
,
Csri
,
Rsri
,
INTER_LINEAR
);
int
wm
=
w_ker_2D
[
R
-
1
].
w
;
vector
<
int
>
IMG
((
M
+
2
*
wm
+
1
)
*
(
N
+
2
*
wm
+
1
),
0
);
for
(
int
j
=
0
;
j
<
N
;
j
++
)
for
(
int
i
=
0
;
i
<
M
;
i
++
)
IMG
[(
M
+
2
*
wm
+
1
)
*
(
j
+
wm
)
+
i
+
wm
]
=
source_border
.
at
<
uchar
>
(
j
,
i
);
for
(
int
v
=
0
;
v
<
S
;
v
++
)
for
(
int
u
=
ind1
;
u
<
R
;
u
++
)
{
int
w
=
w_ker_2D
[
v
*
R
+
u
].
w
;
double
tmp
=
0
;
for
(
int
rf
=
0
;
rf
<
(
2
*
w
+
1
);
rf
++
)
{
for
(
int
cf
=
0
;
cf
<
(
2
*
w
+
1
);
cf
++
)
{
double
weight
=
(
w_ker_2D
[
v
*
R
+
u
]).
weights
[
rf
*
(
2
*
w
+
1
)
+
cf
];
tmp
+=
IMG
[(
M
+
2
*
wm
+
1
)
*
((
rf
-
w
)
+
Rsr
[
v
*
R
+
u
]
+
wm
)
+
((
cf
-
w
)
+
Csr
[
v
*
R
+
u
]
+
wm
)]
*
weight
;
}
}
out
.
at
<
uchar
>
(
v
,
u
)
=
(
uchar
)
floor
(
tmp
+
0.5
);
}
return
out
;
}
const
Mat
LogPolar_Overlapping
::
to_cartesian
(
const
Mat
&
source
)
{
Mat
out
(
N
,
M
,
CV_8UC1
,
Scalar
(
0
));
Mat
source_border
;
copyMakeBorder
(
source
,
source_border
,
0
,
1
,
0
,
0
,
BORDER_CONSTANT
,
Scalar
(
0
));
Mat
rowS
=
source_border
.
row
(
S
);
source_border
.
row
(
0
).
copyTo
(
rowS
);
remap
(
source_border
,
out
,
CSIyx
,
ETAyx
,
INTER_LINEAR
);
int
wm
=
w_ker_2D
[
R
-
1
].
w
;
vector
<
double
>
IMG
((
N
+
2
*
wm
+
1
)
*
(
M
+
2
*
wm
+
1
),
0.
);
vector
<
double
>
NOR
((
N
+
2
*
wm
+
1
)
*
(
M
+
2
*
wm
+
1
),
0.
);
for
(
int
v
=
0
;
v
<
S
;
v
++
)
for
(
int
u
=
ind1
;
u
<
R
;
u
++
)
{
int
w
=
w_ker_2D
[
v
*
R
+
u
].
w
;
for
(
int
j
=
0
;
j
<
(
2
*
w
+
1
);
j
++
)
{
for
(
int
i
=
0
;
i
<
(
2
*
w
+
1
);
i
++
)
{
int
ind
=
(
M
+
2
*
wm
+
1
)
*
((
j
-
w
)
+
Rsr
[
v
*
R
+
u
]
+
wm
)
+
(
i
-
w
)
+
Csr
[
v
*
R
+
u
]
+
wm
;
IMG
[
ind
]
+=
((
w_ker_2D
[
v
*
R
+
u
]).
weights
[
j
*
(
2
*
w
+
1
)
+
i
])
*
source
.
at
<
uchar
>
(
v
,
u
);
NOR
[
ind
]
+=
((
w_ker_2D
[
v
*
R
+
u
]).
weights
[
j
*
(
2
*
w
+
1
)
+
i
]);
}
}
}
for
(
int
i
=
0
;
i
<
((
N
+
2
*
wm
+
1
)
*
(
M
+
2
*
wm
+
1
));
i
++
)
IMG
[
i
]
/=
NOR
[
i
];
//int xc=M/2-1, yc=N/2-1;
for
(
int
j
=
wm
;
j
<
N
+
wm
;
j
++
)
for
(
int
i
=
wm
;
i
<
M
+
wm
;
i
++
)
{
/*if(NOR[(M+2*wm+1)*j+i]>0)
ret[M*(j-wm)+i-wm]=(int) floor(IMG[(M+2*wm+1)*j+i]+0.5);*/
//int ro=(int)floor(sqrt((double)((j-wm-yc)*(j-wm-yc)+(i-wm-xc)*(i-wm-xc))));
int
csi
=
(
int
)
floor
(
CSIyx
.
at
<
float
>
(
j
-
wm
,
i
-
wm
));
if
((
csi
>=
(
ind1
-
(
w_ker_2D
[
ind1
]).
w
))
&&
(
csi
<
R
))
out
.
at
<
uchar
>
(
j
-
wm
,
i
-
wm
)
=
(
uchar
)
floor
(
IMG
[(
M
+
2
*
wm
+
1
)
*
j
+
i
]
+
0.5
);
}
Mat
out_cropped
=
out
(
Range
(
top
,
N
-
1
-
bottom
),
Range
(
left
,
M
-
1
-
right
));
return
out_cropped
;
}
LogPolar_Overlapping
::~
LogPolar_Overlapping
()
{
}
//----------------------------------------adjacent---------------------------------------
LogPolar_Adjacent
::
LogPolar_Adjacent
(
int
w
,
int
h
,
Point2i
center
,
int
R
,
double
ro0
,
double
smin
,
int
full
,
int
S
,
int
sp
)
{
if
(
(
center
.
x
!=
w
/
2
||
center
.
y
!=
h
/
2
)
&&
full
==
0
)
full
=
1
;
if
(
center
.
x
<
0
)
center
.
x
=
0
;
if
(
center
.
y
<
0
)
center
.
y
=
0
;
if
(
center
.
x
>=
w
)
center
.
x
=
w
-
1
;
if
(
center
.
y
>=
h
)
center
.
y
=
h
-
1
;
if
(
full
){
int
rtmp
;
if
(
center
.
x
<=
w
/
2
&&
center
.
y
>=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)
center
.
y
*
center
.
y
+
(
float
)(
w
-
center
.
x
)
*
(
w
-
center
.
x
));
if
(
center
.
x
>=
w
/
2
&&
center
.
y
>=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)
center
.
y
*
center
.
y
+
(
float
)
center
.
x
*
center
.
x
);
if
(
center
.
x
>=
w
/
2
&&
center
.
y
<=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)(
h
-
center
.
y
)
*
(
h
-
center
.
y
)
+
(
float
)
center
.
x
*
center
.
x
);
if
(
center
.
x
<=
w
/
2
&&
center
.
y
<=
h
/
2
)
rtmp
=
(
int
)
sqrt
((
float
)(
h
-
center
.
y
)
*
(
h
-
center
.
y
)
+
(
float
)(
w
-
center
.
x
)
*
(
w
-
center
.
x
));
M
=
2
*
rtmp
;
N
=
2
*
rtmp
;
top
=
M
/
2
-
center
.
y
;
bottom
=
M
/
2
-
(
h
-
center
.
y
);
left
=
M
/
2
-
center
.
x
;
right
=
M
/
2
-
(
w
-
center
.
x
);
}
else
{
top
=
bottom
=
left
=
right
=
0
;
M
=
w
;
N
=
h
;
}
if
(
sp
){
int
jc
=
M
/
2
-
1
,
ic
=
N
/
2
-
1
;
int
romax
=
min
(
ic
,
jc
);
double
a
=
exp
(
log
((
double
)(
romax
/
2
-
1
)
/
(
double
)
ro0
)
/
(
double
)
R
);
S
=
(
int
)
floor
(
2
*
M_PI
/
(
a
-
1
)
+
0.5
);
}
create_map
(
M
,
N
,
R
,
S
,
ro0
,
smin
);
}
void
LogPolar_Adjacent
::
create_map
(
int
M
,
int
N
,
int
R
,
int
S
,
double
ro0
,
double
smin
)
{
LogPolar_Adjacent
::
M
=
M
;
LogPolar_Adjacent
::
N
=
N
;
LogPolar_Adjacent
::
R
=
R
;
LogPolar_Adjacent
::
S
=
S
;
LogPolar_Adjacent
::
ro0
=
ro0
;
romax
=
min
(
M
/
2.0
,
N
/
2.0
);
a
=
exp
(
log
(
romax
/
ro0
)
/
(
double
)
R
);
q
=
S
/
(
2
*
M_PI
);
A
.
resize
(
R
*
S
);
L
.
resize
(
M
*
N
);
for
(
int
i
=
0
;
i
<
R
*
S
;
i
++
)
A
[
i
]
=
0
;
double
xc
=
M
/
2.0
,
yc
=
N
/
2.0
;
for
(
int
j
=
0
;
j
<
N
;
j
++
)
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
double
x
=
i
+
0.5
-
xc
,
y
=
j
+
0.5
-
yc
;
subdivide_recursively
(
x
,
y
,
i
,
j
,
1
,
smin
);
}
}
void
LogPolar_Adjacent
::
subdivide_recursively
(
double
x
,
double
y
,
int
i
,
int
j
,
double
length
,
double
smin
)
{
if
(
length
<=
smin
)
{
int
u
,
v
;
if
(
get_uv
(
x
,
y
,
u
,
v
))
{
pixel
p
;
p
.
u
=
u
;
p
.
v
=
v
;
p
.
a
=
length
*
length
;
L
[
M
*
j
+
i
].
push_back
(
p
);
A
[
v
*
R
+
u
]
+=
length
*
length
;
}
}
if
(
length
>
smin
)
{
double
xs
[
4
],
ys
[
4
];
int
us
[
4
],
vs
[
4
];
xs
[
0
]
=
xs
[
3
]
=
x
+
length
/
4.0
;
xs
[
1
]
=
xs
[
2
]
=
x
-
length
/
4.0
;
ys
[
1
]
=
ys
[
0
]
=
y
+
length
/
4.0
;
ys
[
2
]
=
ys
[
3
]
=
y
-
length
/
4.0
;
for
(
int
z
=
0
;
z
<
4
;
z
++
)
get_uv
(
xs
[
z
],
ys
[
z
],
us
[
z
],
vs
[
z
]);
bool
c
=
true
;
for
(
int
w
=
1
;
w
<
4
;
w
++
)
{
if
(
us
[
w
]
!=
us
[
w
-
1
])
c
=
false
;
if
(
vs
[
w
]
!=
vs
[
w
-
1
])
c
=
false
;
}
if
(
c
)
{
if
(
us
[
0
]
!=-
1
)
{
pixel
p
;
p
.
u
=
us
[
0
];
p
.
v
=
vs
[
0
];
p
.
a
=
length
*
length
;
L
[
M
*
j
+
i
].
push_back
(
p
);
A
[
vs
[
0
]
*
R
+
us
[
0
]]
+=
length
*
length
;
}
}
else
{
for
(
int
z
=
0
;
z
<
4
;
z
++
)
if
(
us
[
z
]
!=-
1
)
subdivide_recursively
(
xs
[
z
],
ys
[
z
],
i
,
j
,
length
/
2.0
,
smin
);
}
}
}
const
Mat
LogPolar_Adjacent
::
to_cortical
(
const
Mat
&
source
)
{
Mat
source_border
;
copyMakeBorder
(
source
,
source_border
,
top
,
bottom
,
left
,
right
,
BORDER_CONSTANT
,
Scalar
(
0
));
vector
<
double
>
map
(
R
*
S
,
0.
);
for
(
int
j
=
0
;
j
<
N
;
j
++
)
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
size_t
z
=
0
;
z
<
(
L
[
M
*
j
+
i
]).
size
();
z
++
)
{
map
[
R
*
((
L
[
M
*
j
+
i
])[
z
].
v
)
+
((
L
[
M
*
j
+
i
])[
z
].
u
)]
+=
((
L
[
M
*
j
+
i
])[
z
].
a
)
*
(
source_border
.
at
<
uchar
>
(
j
,
i
));
}
}
for
(
int
i
=
0
;
i
<
R
*
S
;
i
++
)
map
[
i
]
/=
A
[
i
];
Mat
out
(
S
,
R
,
CV_8UC1
,
Scalar
(
0
));
for
(
int
i
=
0
;
i
<
S
;
i
++
)
for
(
int
j
=
0
;
j
<
R
;
j
++
)
out
.
at
<
uchar
>
(
i
,
j
)
=
(
uchar
)
floor
(
map
[
i
*
R
+
j
]
+
0.5
);
return
out
;
}
const
Mat
LogPolar_Adjacent
::
to_cartesian
(
const
Mat
&
source
)
{
vector
<
double
>
map
(
M
*
N
,
0.
);
for
(
int
j
=
0
;
j
<
N
;
j
++
)
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
for
(
size_t
z
=
0
;
z
<
(
L
[
M
*
j
+
i
]).
size
();
z
++
)
{
map
[
M
*
j
+
i
]
+=
(
L
[
M
*
j
+
i
])[
z
].
a
*
source
.
at
<
uchar
>
((
L
[
M
*
j
+
i
])[
z
].
v
,(
L
[
M
*
j
+
i
])[
z
].
u
);
}
}
Mat
out
(
N
,
M
,
CV_8UC1
,
Scalar
(
0
));
for
(
int
i
=
0
;
i
<
N
;
i
++
)
for
(
int
j
=
0
;
j
<
M
;
j
++
)
out
.
at
<
uchar
>
(
i
,
j
)
=
(
uchar
)
floor
(
map
[
i
*
M
+
j
]
+
0.5
);
Mat
out_cropped
=
out
(
Range
(
top
,
N
-
1
-
bottom
),
Range
(
left
,
M
-
1
-
right
));
return
out_cropped
;
}
bool
LogPolar_Adjacent
::
get_uv
(
double
x
,
double
y
,
int
&
u
,
int
&
v
)
{
double
ro
=
sqrt
(
x
*
x
+
y
*
y
),
theta
;
if
(
x
>
0
)
theta
=
atan
(
y
/
x
);
else
theta
=
atan
(
y
/
x
)
+
M_PI
;
if
(
ro
<
ro0
||
ro
>
romax
)
{
u
=-
1
;
v
=-
1
;
return
false
;
}
else
{
u
=
(
int
)
floor
(
log
(
ro
/
ro0
)
/
log
(
a
));
if
(
theta
>=
0
)
v
=
(
int
)
floor
(
q
*
theta
);
else
v
=
(
int
)
floor
(
q
*
(
theta
+
2
*
M_PI
));
return
true
;
}
}
LogPolar_Adjacent
::~
LogPolar_Adjacent
()
{
}
}
samples/cpp/logpolar_bsm.cpp
0 → 100644
View file @
c8e206c2
/*Authors
* Manuela Chessa, Fabio Solari, Fabio Tatti, Silvio P. Sabatini
*
* manuela.chessa@unige.it, fabio.solari@unige.it
*
* PSPC-lab - University of Genoa
*/
#include "opencv2/opencv.hpp"
#include <iostream>
#include <cmath>
using
namespace
cv
;
using
namespace
std
;
void
help
()
{
cout
<<
"LogPolar Blind Spot Model sample.
\n
Shortcuts:"
"
\n\t
n for nearest pixel technique"
"
\n\t
b for bilinear interpolation technique"
"
\n\t
o for overlapping circular receptive fields"
"
\n\t
a for adjacent receptive fields"
"
\n\t
q or ESC quit
\n
"
;
}
int
main
(
int
argc
,
char
**
argv
)
{
Mat
img
=
imread
(
argc
>
1
?
argv
[
1
]
:
"lena.jpg"
,
1
);
// open the image
if
(
img
.
empty
())
// check if we succeeded
{
cout
<<
"can not load image
\n
"
;
return
0
;
}
help
();
Size
s
=
img
.
size
();
int
w
=
s
.
width
,
h
=
s
.
height
;
int
ro0
=
3
;
//radius of the blind spot
int
R
=
120
;
//number of rings
//Creation of the four different objects that implement the four log-polar transformations
//Off-line computation
Point2i
center
(
w
/
2
,
h
/
2
);
LogPolar_Interp
nearest
(
w
,
h
,
center
,
R
,
ro0
,
INTER_NEAREST
);
LogPolar_Interp
bilin
(
w
,
h
,
center
,
R
,
ro0
);
LogPolar_Overlapping
overlap
(
w
,
h
,
center
,
R
,
ro0
);
LogPolar_Adjacent
adj
(
w
,
h
,
center
,
R
,
ro0
,
0.25
);
namedWindow
(
"Cartesian"
,
1
);
namedWindow
(
"retinal"
,
1
);
namedWindow
(
"cortical"
,
1
);
int
wk
=
'n'
;
Mat
Cortical
,
Retinal
;
//On-line computation
for
(;;)
{
if
(
wk
==
'n'
){
Cortical
=
nearest
.
to_cortical
(
img
);
Retinal
=
nearest
.
to_cartesian
(
Cortical
);
}
else
if
(
wk
==
'b'
){
Cortical
=
bilin
.
to_cortical
(
img
);
Retinal
=
bilin
.
to_cartesian
(
Cortical
);
}
else
if
(
wk
==
'o'
){
Cortical
=
overlap
.
to_cortical
(
img
);
Retinal
=
overlap
.
to_cartesian
(
Cortical
);
}
else
if
(
wk
==
'a'
){
Cortical
=
adj
.
to_cortical
(
img
);
Retinal
=
adj
.
to_cartesian
(
Cortical
);
}
imshow
(
"Cartesian"
,
img
);
imshow
(
"cortical"
,
Cortical
);
imshow
(
"retinal"
,
Retinal
);
int
c
=
waitKey
(
15
);
if
(
c
>
0
)
wk
=
c
;
if
(
wk
==
'q'
||
(
wk
&
255
)
==
27
)
break
;
}
return
0
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment