Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
c6fb9935
Commit
c6fb9935
authored
Nov 10, 2017
by
Alexander Alekhin
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #10057 from LaurentBerger:ParaCalcError
parents
bafdc44d
b9cf65e9
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
69 additions
and
27 deletions
+69
-27
inner_functions.cpp
modules/ml/src/inner_functions.cpp
+69
-27
No files found.
modules/ml/src/inner_functions.cpp
View file @
c6fb9935
...
...
@@ -72,49 +72,91 @@ bool StatModel::train( InputArray samples, int layout, InputArray responses )
return
train
(
TrainData
::
create
(
samples
,
layout
,
responses
));
}
float
StatModel
::
calcError
(
const
Ptr
<
TrainData
>&
data
,
bool
testerr
,
OutputArray
_resp
)
const
class
ParallelCalcError
:
public
ParallelLoopBody
{
private
:
const
Ptr
<
TrainData
>&
data
;
bool
&
testerr
;
Mat
&
resp
;
const
StatModel
&
s
;
vector
<
double
>
&
errStrip
;
public
:
ParallelCalcError
(
const
Ptr
<
TrainData
>&
d
,
bool
&
t
,
Mat
&
_r
,
const
StatModel
&
w
,
vector
<
double
>
&
e
)
:
data
(
d
),
testerr
(
t
),
resp
(
_r
),
s
(
w
),
errStrip
(
e
)
{
}
virtual
void
operator
()(
const
Range
&
range
)
const
{
int
idxErr
=
range
.
start
;
CV_TRACE_FUNCTION_SKIP_NESTED
();
Mat
samples
=
data
->
getSamples
();
int
layout
=
data
->
getLayout
();
Mat
sidx
=
testerr
?
data
->
getTestSampleIdx
()
:
data
->
getTrainSampleIdx
();
const
int
*
sidx_ptr
=
sidx
.
ptr
<
int
>
();
bool
isclassifier
=
s
.
isClassifier
();
Mat
responses
=
data
->
getResponses
();
int
responses_type
=
responses
.
type
();
double
err
=
0
;
for
(
int
i
=
range
.
start
;
i
<
range
.
end
;
i
++
)
{
int
si
=
sidx_ptr
?
sidx_ptr
[
i
]
:
i
;
Mat
sample
=
layout
==
ROW_SAMPLE
?
samples
.
row
(
si
)
:
samples
.
col
(
si
);
float
val
=
s
.
predict
(
sample
);
float
val0
=
(
responses_type
==
CV_32S
)
?
(
float
)
responses
.
at
<
int
>
(
si
)
:
responses
.
at
<
float
>
(
si
);
if
(
isclassifier
)
err
+=
fabs
(
val
-
val0
)
>
FLT_EPSILON
;
else
err
+=
(
val
-
val0
)
*
(
val
-
val0
);
if
(
!
resp
.
empty
())
resp
.
at
<
float
>
(
i
)
=
val
;
}
errStrip
[
idxErr
]
=
err
;
};
ParallelCalcError
&
operator
=
(
const
ParallelCalcError
&
)
{
return
*
this
;
};
};
float
StatModel
::
calcError
(
const
Ptr
<
TrainData
>&
data
,
bool
testerr
,
OutputArray
_resp
)
const
{
CV_TRACE_FUNCTION_SKIP_NESTED
();
Mat
samples
=
data
->
getSamples
();
int
layout
=
data
->
getLayout
();
Mat
sidx
=
testerr
?
data
->
getTestSampleIdx
()
:
data
->
getTrainSampleIdx
();
const
int
*
sidx_ptr
=
sidx
.
ptr
<
int
>
();
int
i
,
n
=
(
int
)
sidx
.
total
();
int
n
=
(
int
)
sidx
.
total
();
bool
isclassifier
=
isClassifier
();
Mat
responses
=
data
->
getResponses
();
int
responses_type
=
responses
.
type
();
if
(
n
==
0
)
if
(
n
==
0
)
n
=
data
->
getNSamples
();
if
(
n
==
0
)
if
(
n
==
0
)
return
-
FLT_MAX
;
Mat
resp
;
if
(
_resp
.
needed
()
)
if
(
_resp
.
needed
()
)
resp
.
create
(
n
,
1
,
CV_32F
);
double
err
=
0
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
int
si
=
sidx_ptr
?
sidx_ptr
[
i
]
:
i
;
Mat
sample
=
layout
==
ROW_SAMPLE
?
samples
.
row
(
si
)
:
samples
.
col
(
si
);
float
val
=
predict
(
sample
);
float
val0
=
(
responses_type
==
CV_32S
)
?
(
float
)
responses
.
at
<
int
>
(
si
)
:
responses
.
at
<
float
>
(
si
);
if
(
isclassifier
)
err
+=
fabs
(
val
-
val0
)
>
FLT_EPSILON
;
else
err
+=
(
val
-
val0
)
*
(
val
-
val0
);
if
(
!
resp
.
empty
()
)
resp
.
at
<
float
>
(
i
)
=
val
;
/*if( i < 100 )
{
printf("%d. ref %.1f vs pred %.1f\n", i, val0, val);
}*/
}
vector
<
double
>
errStrip
(
n
,
0.0
);
ParallelCalcError
x
(
data
,
testerr
,
resp
,
*
this
,
errStrip
);
parallel_for_
(
Range
(
0
,
n
),
x
);
for
(
size_t
i
=
0
;
i
<
errStrip
.
size
();
i
++
)
err
+=
errStrip
[
i
];
if
(
_resp
.
needed
()
)
if
(
_resp
.
needed
()
)
resp
.
copyTo
(
_resp
);
return
(
float
)(
err
/
n
*
(
isclassifier
?
100
:
1
));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment