Commit c6f5b013 authored by Alexander Alekhin's avatar Alexander Alekhin

Merge pull request #12242 from alalek:fix_12236

parents e593d5bb 6e84abc7
...@@ -239,7 +239,18 @@ public: ...@@ -239,7 +239,18 @@ public:
/** @brief Returns vector of symbolic names captured in loadFromCSV() */ /** @brief Returns vector of symbolic names captured in loadFromCSV() */
CV_WRAP void getNames(std::vector<String>& names) const; CV_WRAP void getNames(std::vector<String>& names) const;
CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx); /** @brief Extract from 1D vector elements specified by passed indexes.
@param vec input vector (supported types: CV_32S, CV_32F, CV_64F)
@param idx 1D index vector
*/
static CV_WRAP Mat getSubVector(const Mat& vec, const Mat& idx);
/** @brief Extract from matrix rows/cols specified by passed indexes.
@param matrix input matrix (supported types: CV_32S, CV_32F, CV_64F)
@param idx 1D index vector
@param layout specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES)
*/
static CV_WRAP Mat getSubMatrix(const Mat& matrix, const Mat& idx, int layout);
/** @brief Reads the dataset from a .csv file and returns the ready-to-use training data. /** @brief Reads the dataset from a .csv file and returns the ready-to-use training data.
......
...@@ -43,6 +43,8 @@ ...@@ -43,6 +43,8 @@
#include <algorithm> #include <algorithm>
#include <iterator> #include <iterator>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace ml { namespace cv { namespace ml {
static const float MISSED_VAL = TrainData::missingValue(); static const float MISSED_VAL = TrainData::missingValue();
...@@ -54,69 +56,65 @@ Mat TrainData::getTestSamples() const ...@@ -54,69 +56,65 @@ Mat TrainData::getTestSamples() const
{ {
Mat idx = getTestSampleIdx(); Mat idx = getTestSampleIdx();
Mat samples = getSamples(); Mat samples = getSamples();
return idx.empty() ? Mat() : getSubVector(samples, idx); return idx.empty() ? Mat() : getSubMatrix(samples, idx, getLayout());
} }
Mat TrainData::getSubVector(const Mat& vec, const Mat& idx) Mat TrainData::getSubVector(const Mat& vec, const Mat& idx)
{ {
if( idx.empty() ) if (!(vec.cols == 1 || vec.rows == 1))
return vec; CV_LOG_WARNING(NULL, "'getSubVector(const Mat& vec, const Mat& idx)' call with non-1D input is deprecated. It is not designed to work with 2D matrixes (especially with 'cv::ml::COL_SAMPLE' layout).");
int i, j, n = idx.checkVector(1, CV_32S); return getSubMatrix(vec, idx, vec.rows == 1 ? cv::ml::COL_SAMPLE : cv::ml::ROW_SAMPLE);
int type = vec.type(); }
CV_Assert( type == CV_32S || type == CV_32F || type == CV_64F );
int dims = 1, m; template<typename T>
Mat getSubMatrixImpl(const Mat& m, const Mat& idx, int layout)
if( vec.cols == 1 || vec.rows == 1 ) {
int nidx = idx.checkVector(1, CV_32S);
int dims = m.cols, nsamples = m.rows;
Mat subm;
if (layout == COL_SAMPLE)
{ {
dims = 1; std::swap(dims, nsamples);
m = vec.cols + vec.rows - 1; subm.create(dims, nidx, m.type());
} }
else else
{ {
dims = vec.cols; subm.create(nidx, dims, m.type());
m = vec.rows;
} }
Mat subvec; for (int i = 0; i < nidx; i++)
{
if( vec.cols == m ) int k = idx.at<int>(i); CV_CheckGE(k, 0, "Bad idx"); CV_CheckLT(k, nsamples, "Bad idx or layout");
subvec.create(dims, n, type); if (dims == 1)
else
subvec.create(n, dims, type);
if( type == CV_32S )
for( i = 0; i < n; i++ )
{ {
int k = idx.at<int>(i); subm.at<T>(i) = m.at<T>(k); // at() has "transparent" access for 1D col-based / row-based vectors.
CV_Assert( 0 <= k && k < m );
if( dims == 1 )
subvec.at<int>(i) = vec.at<int>(k);
else
for( j = 0; j < dims; j++ )
subvec.at<int>(i, j) = vec.at<int>(k, j);
} }
else if( type == CV_32F ) else if (layout == COL_SAMPLE)
for( i = 0; i < n; i++ )
{ {
int k = idx.at<int>(i); for (int j = 0; j < dims; j++)
CV_Assert( 0 <= k && k < m ); subm.at<T>(j, i) = m.at<T>(j, k);
if( dims == 1 )
subvec.at<float>(i) = vec.at<float>(k);
else
for( j = 0; j < dims; j++ )
subvec.at<float>(i, j) = vec.at<float>(k, j);
} }
else else
for( i = 0; i < n; i++ )
{ {
int k = idx.at<int>(i); for (int j = 0; j < dims; j++)
CV_Assert( 0 <= k && k < m ); subm.at<T>(i, j) = m.at<T>(k, j);
if( dims == 1 )
subvec.at<double>(i) = vec.at<double>(k);
else
for( j = 0; j < dims; j++ )
subvec.at<double>(i, j) = vec.at<double>(k, j);
} }
return subvec; }
return subm;
}
Mat TrainData::getSubMatrix(const Mat& m, const Mat& idx, int layout)
{
if (idx.empty())
return m;
int type = m.type();
CV_CheckType(type, type == CV_32S || type == CV_32F || type == CV_64F, "");
if (type == CV_32S || type == CV_32F) // 32-bit
return getSubMatrixImpl<int>(m, idx, layout);
if (type == CV_64F) // 64-bit
return getSubMatrixImpl<double>(m, idx, layout);
CV_Error(Error::StsInternal, "");
} }
class TrainDataImpl CV_FINAL : public TrainData class TrainDataImpl CV_FINAL : public TrainData
...@@ -172,30 +170,30 @@ public: ...@@ -172,30 +170,30 @@ public:
} }
Mat getTrainSampleWeights() const CV_OVERRIDE Mat getTrainSampleWeights() const CV_OVERRIDE
{ {
return getSubVector(sampleWeights, getTrainSampleIdx()); return getSubVector(sampleWeights, getTrainSampleIdx()); // 1D-vector
} }
Mat getTestSampleWeights() const CV_OVERRIDE Mat getTestSampleWeights() const CV_OVERRIDE
{ {
Mat idx = getTestSampleIdx(); Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubVector(sampleWeights, idx); return idx.empty() ? Mat() : getSubVector(sampleWeights, idx); // 1D-vector
} }
Mat getTrainResponses() const CV_OVERRIDE Mat getTrainResponses() const CV_OVERRIDE
{ {
return getSubVector(responses, getTrainSampleIdx()); return getSubMatrix(responses, getTrainSampleIdx(), cv::ml::ROW_SAMPLE); // col-based responses are transposed in setData()
} }
Mat getTrainNormCatResponses() const CV_OVERRIDE Mat getTrainNormCatResponses() const CV_OVERRIDE
{ {
return getSubVector(normCatResponses, getTrainSampleIdx()); return getSubMatrix(normCatResponses, getTrainSampleIdx(), cv::ml::ROW_SAMPLE); // like 'responses'
} }
Mat getTestResponses() const CV_OVERRIDE Mat getTestResponses() const CV_OVERRIDE
{ {
Mat idx = getTestSampleIdx(); Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubVector(responses, idx); return idx.empty() ? Mat() : getSubMatrix(responses, idx, cv::ml::ROW_SAMPLE); // col-based responses are transposed in setData()
} }
Mat getTestNormCatResponses() const CV_OVERRIDE Mat getTestNormCatResponses() const CV_OVERRIDE
{ {
Mat idx = getTestSampleIdx(); Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubVector(normCatResponses, idx); return idx.empty() ? Mat() : getSubMatrix(normCatResponses, idx, cv::ml::ROW_SAMPLE); // like 'responses'
} }
Mat getNormCatResponses() const CV_OVERRIDE { return normCatResponses; } Mat getNormCatResponses() const CV_OVERRIDE { return normCatResponses; }
Mat getClassLabels() const CV_OVERRIDE { return classLabels; } Mat getClassLabels() const CV_OVERRIDE { return classLabels; }
......
...@@ -721,5 +721,68 @@ void CV_MLBaseTest::load( const char* filename ) ...@@ -721,5 +721,68 @@ void CV_MLBaseTest::load( const char* filename )
CV_Error( CV_StsNotImplemented, "invalid stat model name"); CV_Error( CV_StsNotImplemented, "invalid stat model name");
} }
TEST(TrainDataGet, layout_ROW_SAMPLE) // Details: #12236
{
cv::Mat test = cv::Mat::ones(150, 30, CV_32FC1) * 2;
test.col(3) += Scalar::all(3);
cv::Mat labels = cv::Mat::ones(150, 3, CV_32SC1) * 5;
labels.col(1) += 1;
cv::Ptr<cv::ml::TrainData> train_data = cv::ml::TrainData::create(test, cv::ml::ROW_SAMPLE, labels);
train_data->setTrainTestSplitRatio(0.9);
Mat tidx = train_data->getTestSampleIdx();
EXPECT_EQ((size_t)15, tidx.total());
Mat tresp = train_data->getTestResponses();
EXPECT_EQ(15, tresp.rows);
EXPECT_EQ(labels.cols, tresp.cols);
EXPECT_EQ(5, tresp.at<int>(0, 0)) << tresp;
EXPECT_EQ(6, tresp.at<int>(0, 1)) << tresp;
EXPECT_EQ(6, tresp.at<int>(14, 1)) << tresp;
EXPECT_EQ(5, tresp.at<int>(14, 2)) << tresp;
Mat tsamples = train_data->getTestSamples();
EXPECT_EQ(15, tsamples.rows);
EXPECT_EQ(test.cols, tsamples.cols);
EXPECT_EQ(2, tsamples.at<float>(0, 0)) << tsamples;
EXPECT_EQ(5, tsamples.at<float>(0, 3)) << tsamples;
EXPECT_EQ(2, tsamples.at<float>(14, test.cols - 1)) << tsamples;
EXPECT_EQ(5, tsamples.at<float>(14, 3)) << tsamples;
}
TEST(TrainDataGet, layout_COL_SAMPLE) // Details: #12236
{
cv::Mat test = cv::Mat::ones(30, 150, CV_32FC1) * 3;
test.row(3) += Scalar::all(3);
cv::Mat labels = cv::Mat::ones(3, 150, CV_32SC1) * 5;
labels.row(1) += 1;
cv::Ptr<cv::ml::TrainData> train_data = cv::ml::TrainData::create(test, cv::ml::COL_SAMPLE, labels);
train_data->setTrainTestSplitRatio(0.9);
Mat tidx = train_data->getTestSampleIdx();
EXPECT_EQ((size_t)15, tidx.total());
Mat tresp = train_data->getTestResponses(); // always row-based, transposed
EXPECT_EQ(15, tresp.rows);
EXPECT_EQ(labels.rows, tresp.cols);
EXPECT_EQ(5, tresp.at<int>(0, 0)) << tresp;
EXPECT_EQ(6, tresp.at<int>(0, 1)) << tresp;
EXPECT_EQ(6, tresp.at<int>(14, 1)) << tresp;
EXPECT_EQ(5, tresp.at<int>(14, 2)) << tresp;
Mat tsamples = train_data->getTestSamples();
EXPECT_EQ(15, tsamples.cols);
EXPECT_EQ(test.rows, tsamples.rows);
EXPECT_EQ(3, tsamples.at<float>(0, 0)) << tsamples;
EXPECT_EQ(6, tsamples.at<float>(3, 0)) << tsamples;
EXPECT_EQ(6, tsamples.at<float>(3, 14)) << tsamples;
EXPECT_EQ(3, tsamples.at<float>(test.rows - 1, 14)) << tsamples;
}
} // namespace } // namespace
/* End of file. */ /* End of file. */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment