Commit c6e43c38 authored by Maria Dimashova's avatar Maria Dimashova

updated documentation on features2d; minor features2d changes

parent 562a3bd5
...@@ -64,17 +64,17 @@ Abstract base class for 2D image feature detectors. ...@@ -64,17 +64,17 @@ Abstract base class for 2D image feature detectors.
class CV_EXPORTS FeatureDetector class CV_EXPORTS FeatureDetector
{ {
public: public:
virtual ~FeatureDetector() {} virtual ~FeatureDetector();
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const = 0; const Mat& mask=Mat() ) const;
void detect( const vector<Mat>& imageCollection, void detect( const vector<Mat>& images,
vector<vector<KeyPoint> >& pointCollection, vector<vector<KeyPoint> >& keypoints,
const vector<Mat>& masks=vector<Mat>() ) const; const vector<Mat>& masks=vector<Mat>() ) const;
virtual void read(const FileNode&) {} virtual void read(const FileNode&);
virtual void write(FileStorage&) const {} virtual void write(FileStorage&) const;
protected: protected:
... ...
...@@ -86,11 +86,8 @@ Detect keypoints in an image (first variant) or image set (second variant). ...@@ -86,11 +86,8 @@ Detect keypoints in an image (first variant) or image set (second variant).
\cvdefCpp{ \cvdefCpp{
void FeatureDetector::detect( const Mat\& image, void FeatureDetector::detect( const Mat\& image,
\par vector<KeyPoint>\& keypoints, \par vector<KeyPoint>\& keypoints,
\par const Mat\& mask=Mat() ) const;\\ \par const Mat\& mask=Mat() ) const;
void FeatureDetector::detect( const vector<Mat>\& imageCollection,
\par vector<vector<KeyPoint> >\& pointCollection,
\par const vector<Mat>\& masks=vector<Mat>() ) const;
} }
\begin{description} \begin{description}
...@@ -98,17 +95,23 @@ void FeatureDetector::detect( const vector<Mat>\& imageCollection, ...@@ -98,17 +95,23 @@ void FeatureDetector::detect( const vector<Mat>\& imageCollection,
\cvarg{keypoints}{The detected keypoints.} \cvarg{keypoints}{The detected keypoints.}
\cvarg{mask}{Mask specifying where to look for keypoints (optional). Must be a char matrix \cvarg{mask}{Mask specifying where to look for keypoints (optional). Must be a char matrix
with non-zero values in the region of interest.} with non-zero values in the region of interest.}
\end{description} \end{description}
\cvdefCpp{
void FeatureDetector::detect( const vector<Mat>\& images,
\par vector<vector<KeyPoint> >\& keypoints,
\par const vector<Mat>\& masks=vector<Mat>() ) const;
}
\begin{description} \begin{description}
\cvarg{imageCollection}{Image collection.} \cvarg{images}{Images set.}
\cvarg{pointCollection}{Collection of keypoints detected in an input images.} \cvarg{keypoints}{Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].}
\cvarg{masks}{Masks for each input image specifying where to look for keypoints (optional). \cvarg{masks}{Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
Each element of \texttt{masks} vector must be a char matrix with non-zero values in the region of interest.} Each element of \texttt{masks} vector must be a char matrix with non-zero values in the region of interest.}
\end{description} \end{description}
\cvCppFunc{FeatureDetector::read} \cvCppFunc{FeatureDetector::read}
Read feature detector from file node. Read feature detector object from file node.
\cvdefCpp{ \cvdefCpp{
void FeatureDetector::read( const FileNode\& fn ); void FeatureDetector::read( const FileNode\& fn );
...@@ -119,7 +122,7 @@ void FeatureDetector::read( const FileNode\& fn ); ...@@ -119,7 +122,7 @@ void FeatureDetector::read( const FileNode\& fn );
\end{description} \end{description}
\cvCppFunc{FeatureDetector::write} \cvCppFunc{FeatureDetector::write}
Write feature detector to file storage. Write feature detector object to file storage.
\cvdefCpp{ \cvdefCpp{
void FeatureDetector::write( FileStorage\& fs ) const; void FeatureDetector::write( FileStorage\& fs ) const;
...@@ -136,34 +139,45 @@ Wrapping class for feature detection using \cvCppCross{FAST} method. ...@@ -136,34 +139,45 @@ Wrapping class for feature detection using \cvCppCross{FAST} method.
class FastFeatureDetector : public FeatureDetector class FastFeatureDetector : public FeatureDetector
{ {
public: public:
FastFeatureDetector( int _threshold=1, bool _nonmaxSuppression=true ); FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
protected: protected:
... ...
}; };
\end{lstlisting} \end{lstlisting}
\cvclass{GoodFeaturesToTrackDetector} \cvclass{GoodFeaturesToTrackDetector}
Wrapping class for feature detection using \cvCppCross{goodFeaturesToTrack} method. Wrapping class for feature detection using \cvCppCross{goodFeaturesToTrack} function.
\begin{lstlisting} \begin{lstlisting}
class GoodFeaturesToTrackDetector : public FeatureDetector class GoodFeaturesToTrackDetector : public FeatureDetector
{ {
public: public:
GoodFeaturesToTrackDetector( int _maxCorners, double _qualityLevel, class Params
double _minDistance, int _blockSize=3, {
bool _useHarrisDetector=false, double _k=0.04 ); public:
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, Params( int maxCorners=1000, double qualityLevel=0.01,
const Mat& mask=Mat() ) const; double minDistance=1., int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double k;
};
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
GoodFeaturesToTrackDetector::Params() );
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
double minDistance, int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
protected: protected:
... ...
}; };
...@@ -176,17 +190,13 @@ Wrapping class for feature detection using \cvCppCross{MSER} class. ...@@ -176,17 +190,13 @@ Wrapping class for feature detection using \cvCppCross{MSER} class.
class MserFeatureDetector : public FeatureDetector class MserFeatureDetector : public FeatureDetector
{ {
public: public:
MserFeatureDetector( CvMSERParams params=cvMSERParams () ); MserFeatureDetector( CvMSERParams params=cvMSERParams() );
MserFeatureDetector( int delta, int minArea, int maxArea, MserFeatureDetector( int delta, int minArea, int maxArea,
double maxVariation, double minDiversity, double maxVariation, double minDiversity,
int maxEvolution, double areaThreshold, int maxEvolution, double areaThreshold,
double minMargin, int edgeBlurSize ); double minMargin, int edgeBlurSize );
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
protected: protected:
... ...
}; };
...@@ -202,12 +212,8 @@ public: ...@@ -202,12 +212,8 @@ public:
StarFeatureDetector( int maxSize=16, int responseThreshold=30, StarFeatureDetector( int maxSize=16, int responseThreshold=30,
int lineThresholdProjected = 10, int lineThresholdProjected = 10,
int lineThresholdBinarized=8, int suppressNonmaxSize=5 ); int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
protected: protected:
... ...
}; };
...@@ -220,20 +226,18 @@ Wrapping class for feature detection using \cvCppCross{SIFT} class. ...@@ -220,20 +226,18 @@ Wrapping class for feature detection using \cvCppCross{SIFT} class.
class SiftFeatureDetector : public FeatureDetector class SiftFeatureDetector : public FeatureDetector
{ {
public: public:
SiftFeatureDetector( double threshold=SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), SiftFeatureDetector(
double edgeThreshold=SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD(), const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, SiftFeatureDetector( double threshold, double edgeThreshold,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
const Mat& mask=Mat() ) const; int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
protected: protected:
... ...
}; };
\end{lstlisting} \end{lstlisting}
...@@ -246,14 +250,10 @@ class SurfFeatureDetector : public FeatureDetector ...@@ -246,14 +250,10 @@ class SurfFeatureDetector : public FeatureDetector
public: public:
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3, SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
int octaveLayers = 4 ); int octaveLayers = 4 );
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
protected: protected:
... ...
}; };
\end{lstlisting} \end{lstlisting}
...@@ -275,13 +275,8 @@ public: ...@@ -275,13 +275,8 @@ public:
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int maxTotalKeypoints, int gridRows=4, int maxTotalKeypoints, int gridRows=4,
int gridCols=4 ); int gridCols=4 );
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, virtual void read( const FileNode& fn );
const Mat& mask=Mat() ) const; virtual void write( FileStorage& fs ) const;
// todo read/write
virtual void read( const FileNode& fn ) {}
virtual void write( FileStorage& fs ) const {}
protected: protected:
... ...
}; };
...@@ -297,12 +292,8 @@ class PyramidAdaptedFeatureDetector : public FeatureDetector ...@@ -297,12 +292,8 @@ class PyramidAdaptedFeatureDetector : public FeatureDetector
public: public:
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector, PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int levels=2 ); int levels=2 );
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints, virtual void read( const FileNode& fn );
const Mat& mask=Mat() ) const; virtual void write( FileStorage& fs ) const;
// todo read/write
virtual void read( const FileNode& fn ) {}
virtual void write( FileStorage& fs ) const {}
protected: protected:
... ...
}; };
...@@ -358,10 +349,11 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType ); ...@@ -358,10 +349,11 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType );
\end{lstlisting} \end{lstlisting}
\begin{description} \begin{description}
\cvarg{detectorType}{Feature detector type, e.g. ''SURF'', ''FAST'', ...} \cvarg{detectorType}{Feature detector type.}
\end{description} \end{description}
Now the following detector types are supported ''FAST'', ''STAR'', ''SIFT'',
''SURF'', ''MSER'', ''GFTT'', ''HARRIS''.
\section{Common Interfaces of Descriptor Extractors} \section{Common Interfaces of Descriptor Extractors}
Extractors of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily Extractors of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily
...@@ -376,17 +368,15 @@ Abstract base class for computing descriptors for image keypoints. ...@@ -376,17 +368,15 @@ Abstract base class for computing descriptors for image keypoints.
class CV_EXPORTS DescriptorExtractor class CV_EXPORTS DescriptorExtractor
{ {
public: public:
virtual ~DescriptorExtractor() {} virtual ~DescriptorExtractor();
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
Mat& descriptors ) const = 0;
void compute( const vector<Mat>& imageCollection, void compute( const Mat& image, vector<KeyPoint>& keypoints,
vector<vector<KeyPoint> >& pointCollection, Mat& descriptors ) const;
vector<Mat>& descCollection ) const; void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
vector<Mat>& descriptors ) const;
virtual void read( const FileNode& ) {} virtual void read( const FileNode& );
virtual void write( FileStorage& ) const {} virtual void write( FileStorage& ) const;
virtual int descriptorSize() const = 0; virtual int descriptorSize() const = 0;
virtual int descriptorType() const = 0; virtual int descriptorType() const = 0;
...@@ -403,15 +393,13 @@ distances between descriptors. Therefore we represent a collection of ...@@ -403,15 +393,13 @@ distances between descriptors. Therefore we represent a collection of
descriptors as a \cvCppCross{Mat}, where each row is one keypoint descriptor. descriptors as a \cvCppCross{Mat}, where each row is one keypoint descriptor.
\cvCppFunc{DescriptorExtractor::compute} \cvCppFunc{DescriptorExtractor::compute}
Compute the descriptors for a set of keypoints detected in an image or image collection. Compute the descriptors for a set of keypoints detected in an image (first variant)
or image set (second variant).
\cvdefCpp{ \cvdefCpp{
void DescriptorExtractor::compute( const Mat\& image, void DescriptorExtractor::compute( const Mat\& image,
\par vector<KeyPoint>\& keypoints, \par vector<KeyPoint>\& keypoints,
\par Mat\& descriptors ) const;\\ \par Mat\& descriptors ) const;
void DescriptorExtractor::compute( const vector<Mat>\& imageCollection,
\par vector<vector<KeyPoint> >\& pointCollection,
\par vector<Mat>\& descCollection ) const;
} }
\begin{description} \begin{description}
...@@ -420,17 +408,23 @@ void DescriptorExtractor::compute( const vector<Mat>\& imageCollection, ...@@ -420,17 +408,23 @@ void DescriptorExtractor::compute( const vector<Mat>\& imageCollection,
\cvarg{descriptors}{The descriptors. Row i is the descriptor for keypoint i.} \cvarg{descriptors}{The descriptors. Row i is the descriptor for keypoint i.}
\end{description} \end{description}
\cvdefCpp{
void DescriptorExtractor::compute( const vector<Mat>\& images,
\par vector<vector<KeyPoint> >\& keypoints,
\par vector<Mat>\& descriptors ) const;
}
\begin{description} \begin{description}
\cvarg{imageCollection}{Image collection.} \cvarg{images}{The image set.}
\cvarg{pointCollection}{Keypoints collection. pointCollection[i] is keypoints \cvarg{keypoints}{Input keypoints collection. keypoints[i] is keypoints
detected in imageCollection[i]. Keypoints for which a descriptor detected in images[i]. Keypoints for which a descriptor
cannot be computed are removed.} can not be computed are removed.}
\cvarg{descCollection}{Descriptor collection. descCollection[i] is descriptors \cvarg{descriptors}{Descriptor collection. descriptors[i] are descriptors computed for
computed for pointCollection[i].} a set keypoints[i].}
\end{description} \end{description}
\cvCppFunc{DescriptorExtractor::read} \cvCppFunc{DescriptorExtractor::read}
Read descriptor extractor from file node. Read descriptor extractor object from file node.
\cvdefCpp{ \cvdefCpp{
void DescriptorExtractor::read( const FileNode\& fn ); void DescriptorExtractor::read( const FileNode\& fn );
...@@ -441,7 +435,7 @@ void DescriptorExtractor::read( const FileNode\& fn ); ...@@ -441,7 +435,7 @@ void DescriptorExtractor::read( const FileNode\& fn );
\end{description} \end{description}
\cvCppFunc{DescriptorExtractor::write} \cvCppFunc{DescriptorExtractor::write}
Write descriptor extractor to file storage. Write descriptor extractor object to file storage.
\cvdefCpp{ \cvdefCpp{
void DescriptorExtractor::write( FileStorage\& fs ) const; void DescriptorExtractor::write( FileStorage\& fs ) const;
...@@ -451,7 +445,6 @@ void DescriptorExtractor::write( FileStorage\& fs ) const; ...@@ -451,7 +445,6 @@ void DescriptorExtractor::write( FileStorage\& fs ) const;
\cvarg{fs}{File storage in which detector will be written.} \cvarg{fs}{File storage in which detector will be written.}
\end{description} \end{description}
\cvclass{SiftDescriptorExtractor} \cvclass{SiftDescriptorExtractor}
Wrapping class for descriptors computing using \cvCppCross{SIFT} class. Wrapping class for descriptors computing using \cvCppCross{SIFT} class.
...@@ -460,15 +453,13 @@ class SiftDescriptorExtractor : public DescriptorExtractor ...@@ -460,15 +453,13 @@ class SiftDescriptorExtractor : public DescriptorExtractor
{ {
public: public:
SiftDescriptorExtractor( SiftDescriptorExtractor(
double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(), const SIFT::DescriptorParams& descriptorParams=SIFT::DescriptorParams(),
bool isNormalize=true, bool recalculateAngles=true, const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, SiftDescriptorExtractor( double magnification, bool isNormalize=true,
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, bool recalculateAngles=true, int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
int angleMode=SIFT::CommonParams::FIRST_ANGLE ); int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
Mat& descriptors) const;
virtual void read (const FileNode &fn); virtual void read (const FileNode &fn);
virtual void write (FileStorage &fs) const; virtual void write (FileStorage &fs) const;
...@@ -489,9 +480,6 @@ public: ...@@ -489,9 +480,6 @@ public:
SurfDescriptorExtractor( int nOctaves=4, SurfDescriptorExtractor( int nOctaves=4,
int nOctaveLayers=2, bool extended=false ); int nOctaveLayers=2, bool extended=false );
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
Mat& descriptors) const;
virtual void read (const FileNode &fn); virtual void read (const FileNode &fn);
virtual void write (FileStorage &fs) const; virtual void write (FileStorage &fs) const;
virtual int descriptorSize() const; virtual int descriptorSize() const;
...@@ -510,8 +498,6 @@ class CalonderDescriptorExtractor : public DescriptorExtractor ...@@ -510,8 +498,6 @@ class CalonderDescriptorExtractor : public DescriptorExtractor
{ {
public: public:
CalonderDescriptorExtractor( const string& classifierFile ); CalonderDescriptorExtractor( const string& classifierFile );
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
Mat& descriptors ) const;
virtual void read( const FileNode &fn ); virtual void read( const FileNode &fn );
virtual void write( FileStorage &fs ) const; virtual void write( FileStorage &fs ) const;
...@@ -535,20 +521,39 @@ class OpponentColorDescriptorExtractor : public DescriptorExtractor ...@@ -535,20 +521,39 @@ class OpponentColorDescriptorExtractor : public DescriptorExtractor
public: public:
OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor ); OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor );
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
Mat& descriptors ) const;
virtual void read( const FileNode& ); virtual void read( const FileNode& );
virtual void write( FileStorage& ) const; virtual void write( FileStorage& ) const;
virtual int descriptorSize() const; virtual int descriptorSize() const;
virtual int descriptorType() const; virtual int descriptorType() const;
protected: protected:
... ...
}; };
\end{lstlisting} \end{lstlisting}
\cvclass{BriefDescriptorExtractor}
Class for computing BRIEF descriptors described in paper of Calonder M., Lepetit V.,
Strecha C., Fua P.: ''BRIEF: Binary Robust Independent Elementary Features.''
11th European Conference on Computer Vision (ECCV), Heraklion, Crete. LNCS Springer, September 2010.
\begin{lstlisting}
class BriefDescriptorExtractor : public DescriptorExtractor
{
public:
static const int PATCH_SIZE = 48;
static const int KERNEL_SIZE = 9;
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
BriefDescriptorExtractor( int bytes = 32 );
virtual void read( const FileNode& );
virtual void write( FileStorage& ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
protected:
...
};
\end{lstlisting}
\cvCppFunc{createDescriptorExtractor} \cvCppFunc{createDescriptorExtractor}
Descriptor extractor factory that creates \cvCppCross{DescriptorExtractor} of given type with Descriptor extractor factory that creates \cvCppCross{DescriptorExtractor} of given type with
default parameters (rather using default constructor). default parameters (rather using default constructor).
...@@ -559,9 +564,11 @@ createDescriptorExtractor( const string& descriptorExtractorType ); ...@@ -559,9 +564,11 @@ createDescriptorExtractor( const string& descriptorExtractorType );
\end{lstlisting} \end{lstlisting}
\begin{description} \begin{description}
\cvarg{descriptorExtractorType}{Descriptor extractor type, e.g. ''SURF'', ''SIFT'', ...} \cvarg{descriptorExtractorType}{Descriptor extractor type.}
\end{description} \end{description}
Now the following descriptor extractor types are supported ''SIFT'', ''SURF'',
''OpponentSIFT'', ''OpponentSURF'', ''BRIEF''.
\section{Common Interfaces of Descriptor Matchers} \section{Common Interfaces of Descriptor Matchers}
Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily
...@@ -587,12 +594,12 @@ struct DMatch ...@@ -587,12 +594,12 @@ struct DMatch
int queryIdx; // query descriptor index int queryIdx; // query descriptor index
int trainIdx; // train descriptor index int trainIdx; // train descriptor index
int imgIdx; // train image index int imgIdx; // train image index
float distance; float distance;
// less is better // less is better
bool operator<( const DMatch &m) const; bool operator<( const DMatch &m ) const;
}; };
\end{lstlisting} \end{lstlisting}
...@@ -605,44 +612,47 @@ with image set. ...@@ -605,44 +612,47 @@ with image set.
class DescriptorMatcher class DescriptorMatcher
{ {
public: public:
virtual ~DescriptorMatcher() {} virtual ~DescriptorMatcher();
virtual void add( const vector<Mat>& descCollection ); virtual void add( const vector<Mat>& descriptors );
const vector<Mat>& getTrainDescCollection() const;
const vector<Mat>& getTrainDescriptors() const;
virtual void clear(); virtual void clear();
virtual bool supportMask() = 0; bool empty() const;
virtual bool isMaskSupported() const = 0;
virtual void train() = 0; virtual void train();
/* /*
* Group of methods to match descriptors from image pair. * Group of methods to match descriptors from image pair.
*/ */
void match( const Mat& queryDescs, const Mat& trainDescs, void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
vector<DMatch>& matches, const Mat& mask=Mat() ) const; vector<DMatch>& matches, const Mat& mask=Mat() ) const;
void knnMatch( const Mat& queryDescs, const Mat& trainDescs, void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
void radiusMatch( const Mat& queryDescs, const Mat& trainDescs, void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
/* /*
* Group of methods to match descriptors from one image to image set. * Group of methods to match descriptors from one image to image set.
*/ */
void match( const Mat& queryDescs, vector<DMatch>& matches, void match( const Mat& queryDescriptors, vector<DMatch>& matches,
const vector<Mat>& masks=vector<Mat>() ); const vector<Mat>& masks=vector<Mat>() );
void knnMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches, void knnMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches,
int knn, const vector<Mat>& masks=vector<Mat>(), int k, const vector<Mat>& masks=vector<Mat>(),
bool compactResult=false ); bool compactResult=false );
void radiusMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches, void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches,
float maxDistance, const vector<Mat>& masks=vector<Mat>(), float maxDistance, const vector<Mat>& masks=vector<Mat>(),
bool compactResult=false ); bool compactResult=false );
virtual void read( const FileNode& ) {} virtual void read( const FileNode& );
virtual void write( FileStorage& ) const {} virtual void write( FileStorage& ) const;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
protected: protected:
vector<Mat> trainDescCollection; vector<Mat> trainDescCollection;
... ...
}; };
\end{lstlisting} \end{lstlisting}
...@@ -652,18 +662,19 @@ Add descriptors to train descriptor collection. If collection \texttt{trainDescC ...@@ -652,18 +662,19 @@ Add descriptors to train descriptor collection. If collection \texttt{trainDescC
the new descriptors are added to existing train descriptors. the new descriptors are added to existing train descriptors.
\cvdefCpp{ \cvdefCpp{
void add( const vector<Mat>\& descCollection ); void add( const vector<Mat>\& descriptors );
} }
\begin{description} \begin{description}
\cvarg{descCollection}{Descriptors to add. Each \texttt{trainDescCollection[i]} is from the same train image.} \cvarg{descriptors}{Descriptors to add. Each \texttt{descriptors[i]} is a set of descriptors
from the same (one) train image.}
\end{description} \end{description}
\cvCppFunc{DescriptorMatcher::getTrainDescCollection} \cvCppFunc{DescriptorMatcher::getTrainDescriptors}
Returns constant link to the train descriptor collection (i.e. \texttt{trainDescCollection}). Returns constant link to the train descriptor collection (i.e. \texttt{trainDescCollection}).
\cvdefCpp{ \cvdefCpp{
const vector<Mat>\& getTrainDescCollection() const; const vector<Mat>\& getTrainDescriptors() const;
} }
\cvCppFunc{DescriptorMatcher::clear} \cvCppFunc{DescriptorMatcher::clear}
...@@ -673,15 +684,25 @@ Clear train descriptor collection. ...@@ -673,15 +684,25 @@ Clear train descriptor collection.
void DescriptorMatcher::clear(); void DescriptorMatcher::clear();
} }
\cvCppFunc{DescriptorMatcher::supportMask} \cvCppFunc{DescriptorMatcher::empty}
Return true if there are not train descriptors in collection.
\cvdefCpp{
bool DescriptorMatcher::empty() const;
}
\cvCppFunc{DescriptorMatcher::isMaskSupported}
Returns true if descriptor matcher supports masking permissible matches. Returns true if descriptor matcher supports masking permissible matches.
\cvdefCpp{ \cvdefCpp{
bool DescriptorMatcher::supportMask(); bool DescriptorMatcher::isMaskSupported();
} }
\cvCppFunc{DescriptorMatcher::train} \cvCppFunc{DescriptorMatcher::train}
Train descriptor matcher (e.g. train flann index). Train descriptor matcher (e.g. train flann index). In all methods to match the method train()
is run every time before matching. Some descriptor matchers (e.g. BruteForceMatcher) have empty
implementation of this method, other matchers realy train their inner structures (e.g. FlannBasedMatcher
trains flann::Index)
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::train(); void DescriptorMatcher::train();
...@@ -694,23 +715,24 @@ In first variant of this method train descriptors are set as input argument and ...@@ -694,23 +715,24 @@ In first variant of this method train descriptors are set as input argument and
supposed that they are of keypoints detected on the same train image. In second variant supposed that they are of keypoints detected on the same train image. In second variant
of the method train descriptors collection that was set using \texttt{add} method is used. of the method train descriptors collection that was set using \texttt{add} method is used.
Optional mask (or masks) can be set to describe which descriptors can be matched. Optional mask (or masks) can be set to describe which descriptors can be matched.
\texttt{descriptors\_1[i]} can be matched with \texttt{descriptors\_2[j]} only if \texttt{mask.at<uchar>(i,j)} is non-zero. \texttt{queryDescriptors[i]} can be matched with \texttt{trainDescriptors[j]} only if
\texttt{mask.at<uchar>(i,j)} is non-zero.
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::match( const Mat\& queryDescs, void DescriptorMatcher::match( const Mat\& queryDescriptors,
\par const Mat\& trainDescs, \par const Mat\& trainDescriptors,
\par vector<DMatch>\& matches, \par vector<DMatch>\& matches,
\par const Mat\& mask=Mat() ) const; \par const Mat\& mask=Mat() ) const;
} }
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::match( const Mat\& queryDescs, void DescriptorMatcher::match( const Mat\& queryDescriptors,
\par vector<DMatch>\& matches, \par vector<DMatch>\& matches,
\par const vector<Mat>\& masks=vector<Mat>() ); \par const vector<Mat>\& masks=vector<Mat>() );
} }
\begin{description} \begin{description}
\cvarg{queryDescs}{Query set of descriptors.} \cvarg{queryDescriptors}{Query set of descriptors.}
\cvarg{trainDescs}{Train set of descriptors. This will not be added to train descripotors collection \cvarg{trainDescriptors}{Train set of descriptors. This will not be added to train descriptors collection
stored in class object.} stored in class object.}
\cvarg{matches}{Matches. If some query descriptor masked out in \texttt{mask} no match will be added for this descriptor. \cvarg{matches}{Matches. If some query descriptor masked out in \texttt{mask} no match will be added for this descriptor.
So \texttt{matches} size may be less query descriptors count.} So \texttt{matches} size may be less query descriptors count.}
...@@ -720,29 +742,30 @@ void DescriptorMatcher::match( const Mat\& queryDescs, ...@@ -720,29 +742,30 @@ void DescriptorMatcher::match( const Mat\& queryDescs,
\end{description} \end{description}
\cvCppFunc{DescriptorMatcher::knnMatch} \cvCppFunc{DescriptorMatcher::knnMatch}
Find the knn best matches for each descriptor from a query set with train descriptors. Find the k best matches for each descriptor from a query set with train descriptors.
Found knn (or less if not possible) matches are returned in distance increasing order. Found k (or less if not possible) matches are returned in distance increasing order.
Details about query and train descriptors see in \cvCppCross{DescriptorMatcher::match}. Details about query and train descriptors see in \cvCppCross{DescriptorMatcher::match}.
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::knnMatch( const Mat\& queryDescs, void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors,
\par const Mat\& trainDescs, vector<vector<DMatch> >\& matches, \par const Mat\& trainDescriptors,
\par int knn, const Mat\& mask=Mat(), \par vector<vector<DMatch> >\& matches,
\par int k, const Mat\& mask=Mat(),
\par bool compactResult=false ) const; \par bool compactResult=false ) const;
} }
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::knnMatch( const Mat\& queryDescs, void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors,
\par vector<vector<DMatch> >\& matches, int knn, \par vector<vector<DMatch> >\& matches, int k,
\par const vector<Mat>\& masks=vector<Mat>(), \par const vector<Mat>\& masks=vector<Mat>(),
\par bool compactResult=false ); \par bool compactResult=false );
} }
\begin{description} \begin{description}
\cvarg{queryDescs, trainDescs, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.} \cvarg{queryDescriptors, trainDescriptors, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.}
\cvarg{matches}{Mathes. Each \texttt{matches[i]} is knn or less matches for the same query descriptor.} \cvarg{matches}{Mathes. Each \texttt{matches[i]} is k or less matches for the same query descriptor.}
\cvarg{knn}{Count of best matches will be found per each query descriptor (or less if it's not possible).} \cvarg{k}{Count of best matches will be found per each query descriptor (or less if it's not possible).}
\cvarg{compactResult}{It's used when mask (or masks) is not empty. If \texttt{compactResult} is false \cvarg{compactResult}{It's used when mask (or masks) is not empty. If \texttt{compactResult} is false
\texttt{matches} vector will have the same size as \texttt{queryDescs} rows. If \texttt{compactResult} \texttt{matches} vector will have the same size as \texttt{queryDescriptors} rows. If \texttt{compactResult}
is true \texttt{matches} vector will not contain matches for fully masked out query descriptors.} is true \texttt{matches} vector will not contain matches for fully masked out query descriptors.}
\end{description} \end{description}
...@@ -752,23 +775,38 @@ Found matches are returned in distance increasing order. Details about query and ...@@ -752,23 +775,38 @@ Found matches are returned in distance increasing order. Details about query and
descriptors see in \cvCppCross{DescriptorMatcher::match}. descriptors see in \cvCppCross{DescriptorMatcher::match}.
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::radiusMatch( const Mat\& queryDescs, void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors,
\par const Mat\& trainDescs, vector<vector<DMatch> >\& matches, \par const Mat\& trainDescriptors,
\par vector<vector<DMatch> >\& matches,
\par float maxDistance, const Mat\& mask=Mat(), \par float maxDistance, const Mat\& mask=Mat(),
\par bool compactResult=false ) const; \par bool compactResult=false ) const;
} }
\cvdefCpp{ \cvdefCpp{
void DescriptorMatcher::radiusMatch( const Mat\& queryDescs, void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors,
\par vector<vector<DMatch> >\& matches, float maxDistance, \par vector<vector<DMatch> >\& matches,
\par float maxDistance,
\par const vector<Mat>\& masks=vector<Mat>(), \par const vector<Mat>\& masks=vector<Mat>(),
\par bool compactResult=false ); \par bool compactResult=false );
} }
\begin{description} \begin{description}
\cvarg{queryDescs, trainDescs, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.} \cvarg{queryDescriptors, trainDescriptors, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.}
\cvarg{matches, compactResult}{See in \cvCppCross{DescriptorMatcher::knnMatch}.} \cvarg{matches, compactResult}{See in \cvCppCross{DescriptorMatcher::knnMatch}.}
\cvarg{maxDistance}{The threshold to found match distances.} \cvarg{maxDistance}{The threshold to found match distances.}
\end{description} \end{description}
\cvCppFunc{DescriptorMatcher::clone}
Clone the matcher.
\cvdefCpp{
Ptr<DescriptorMatcher> \\
DescriptorMatcher::clone( bool emptyTrainData ) const;
}
\begin{description}
\cvarg{emptyTrainData}{If emptyTrainData is false the method create deep copy of the object, i.e. copies
both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
but with empty train data..}
\end{description}
\cvclass{BruteForceMatcher} \cvclass{BruteForceMatcher}
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest
descriptor in the second set by trying each one. This descriptor matcher supports masking descriptor in the second set by trying each one. This descriptor matcher supports masking
...@@ -779,19 +817,19 @@ template<class Distance> ...@@ -779,19 +817,19 @@ template<class Distance>
class BruteForceMatcher : public DescriptorMatcher class BruteForceMatcher : public DescriptorMatcher
{ {
public: public:
BruteForceMatcher( Distance d = Distance() ) : distance(d) {} BruteForceMatcher( Distance d = Distance() );
virtual ~BruteForceMatcher() {} virtual ~BruteForceMatcher();
virtual void train() {}
virtual bool supportMask() { return true; }
virtual bool isMaskSupported() const;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
... ...
} }
\end{lstlisting} \end{lstlisting}
For efficiency, BruteForceMatcher is templated on the distance metric. For efficiency, BruteForceMatcher is templated on the distance metric.
For float descriptors, a common choice would be \texttt{L2<float>}. Class \texttt{L2} is defined as: For float descriptors, a common choice would be \texttt{L2<float>}. Class of supported distances are:
\begin{lstlisting} \begin{lstlisting}
template<typename T> template<typename T>
struct Accumulator struct Accumulator
...@@ -814,15 +852,42 @@ struct L2 ...@@ -814,15 +852,42 @@ struct L2
typedef typename Accumulator<T>::Type ResultType; typedef typename Accumulator<T>::Type ResultType;
ResultType operator()( const T* a, const T* b, int size ) const; ResultType operator()( const T* a, const T* b, int size ) const;
{ };
ResultType result = ResultType();
for( int i = 0; i < size; i++ ) /*
{ * Manhattan distance (city block distance) functor
ResultType diff = a[i] - b[i]; */
result += diff*diff; template<class T>
} struct CV_EXPORTS L1
return sqrt(result); {
} typedef T ValueType;
typedef typename Accumulator<T>::Type ResultType;
ResultType operator()( const T* a, const T* b, int size ) const;
...
};
/*
* Hamming distance (city block distance) functor
*/
struct HammingLUT
{
typedef unsigned char ValueType;
typedef int ResultType;
ResultType operator()( const unsigned char* a, const unsigned char* b,
int size ) const;
...
};
struct Hamming
{
typedef unsigned char ValueType;
typedef int ResultType;
ResultType operator()( const unsigned char* a, const unsigned char* b,
int size ) const;
...
}; };
\end{lstlisting} \end{lstlisting}
...@@ -842,11 +907,13 @@ public: ...@@ -842,11 +907,13 @@ public:
const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(), const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() ); const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
virtual void add( const vector<Mat>& descCollection ); virtual void add( const vector<Mat>& descriptors );
virtual void clear(); virtual void clear();
virtual void train(); virtual void train();
virtual bool supportMask() { return false; } virtual bool isMaskSupported() const;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
... ...
}; };
...@@ -861,8 +928,10 @@ Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherT ...@@ -861,8 +928,10 @@ Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherT
\end{lstlisting} \end{lstlisting}
\begin{description} \begin{description}
\cvarg{descriptorMatcherType}{Descriptor matcher type, e. g. ''BruteForce'', ''FlannBased'', ...} \cvarg{descriptorMatcherType}{Descriptor matcher type.}
\end{description} \end{description}
Now the following matcher types are supported: ''BruteForce'' (it uses L2), ''BruteForce-L1'',
''BruteForce-Hamming'', ''BruteForce-HammingLUT''.
\section{Common Interfaces of Generic Descriptor Matchers} \section{Common Interfaces of Generic Descriptor Matchers}
Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily
...@@ -888,55 +957,57 @@ with image set. ...@@ -888,55 +957,57 @@ with image set.
class GenericDescriptorMatcher class GenericDescriptorMatcher
{ {
public: public:
GenericDescriptorMatcher() {} GenericDescriptorMatcher();
virtual ~GenericDescriptorMatcher() {} virtual ~GenericDescriptorMatcher();
virtual void add( const vector<Mat>& imgCollection, virtual void add( const vector<Mat>& images,
vector<vector<KeyPoint> >& pointCollection ); vector<vector<KeyPoint> >& keypoints );
const vector<Mat>& getTrainImgCollection() const; const vector<Mat>& getTrainImages() const;
const vector<vector<KeyPoint> >& getTrainPointCollection() const; const vector<vector<KeyPoint> >& getTrainKeypoints() const;
virtual void clear(); virtual void clear();
virtual void train() = 0; virtual void train() = 0;
virtual bool supportMask() = 0; virtual bool isMaskSupported() = 0;
virtual void classify( const Mat& queryImage, void classify( const Mat& queryImage,
vector<KeyPoint>& queryPoints, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, const Mat& trainImage,
vector<KeyPoint>& trainPoints ) const; vector<KeyPoint>& trainKeypoints ) const;
virtual void classify( const Mat& queryImage, void classify( const Mat& queryImage,
vector<KeyPoint>& queryPoints ); vector<KeyPoint>& queryKeypoints );
/* /*
* Group of methods to match keypoints from image pair. * Group of methods to match keypoints from image pair.
*/ */
void match( const Mat& queryImg, vector<KeyPoint>& queryPoints, void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<DMatch>& matches, const Mat& mask=Mat() ) const; vector<DMatch>& matches, const Mat& mask=Mat() ) const;
void knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
void radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const; const Mat& mask=Mat(), bool compactResult=false ) const;
/* /*
* Group of methods to match keypoints from one image to image set. * Group of methods to match keypoints from one image to image set.
*/ */
void match( const Mat& queryImg, vector<KeyPoint>& queryPoints, void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() ); vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
void knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
void radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false ); const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
virtual void read( const FileNode& ) {} virtual void read( const FileNode& );
virtual void write( FileStorage& ) const {} virtual void write( FileStorage& ) const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
protected: protected:
... ...
...@@ -949,29 +1020,29 @@ If train collection is not empty new image and keypoints from them will be added ...@@ -949,29 +1020,29 @@ If train collection is not empty new image and keypoints from them will be added
existing data. existing data.
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::add( const vector<Mat>\& imgCollection, void GenericDescriptorMatcher::add( const vector<Mat>\& images,
\par vector<vector<KeyPoint> >\& pointCollection ); \par vector<vector<KeyPoint> >\& keypoints );
} }
\begin{description} \begin{description}
\cvarg{imgCollection}{Image collection.} \cvarg{images}{Image collection.}
\cvarg{pointCollection}{Point collection. Assumes that \texttt{pointCollection[i]} are keypoints \cvarg{keypoints}{Point collection. Assumes that \texttt{keypoints[i]} are keypoints
detected in an image \texttt{imgCollection[i]}. } detected in an image \texttt{images[i]}. }
\end{description} \end{description}
\cvCppFunc{GenericDescriptorMatcher::getTrainImgCollection} \cvCppFunc{GenericDescriptorMatcher::getTrainImages}
Returns train image collection. Returns train image collection.
\begin{lstlisting} \begin{lstlisting}
const vector<Mat>& GenericDescriptorMatcher::getTrainImgCollection() const; const vector<Mat>& GenericDescriptorMatcher::getTrainImages() const;
\end{lstlisting} \end{lstlisting}
\cvCppFunc{GenericDescriptorMatcher::getTrainPointCollection} \cvCppFunc{GenericDescriptorMatcher::getTrainKeypoints}
Returns train keypoints collection. Returns train keypoints collection.
\begin{lstlisting} \begin{lstlisting}
const vector<vector<KeyPoint> >& const vector<vector<KeyPoint> >&
GenericDescriptorMatcher::getTrainPointCollection() const; GenericDescriptorMatcher::getTrainKeypoints() const;
\end{lstlisting} \end{lstlisting}
\cvCppFunc{GenericDescriptorMatcher::clear} \cvCppFunc{GenericDescriptorMatcher::clear}
...@@ -989,11 +1060,11 @@ to optimize descriptors matching. ...@@ -989,11 +1060,11 @@ to optimize descriptors matching.
void GenericDescriptorMatcher::train(); void GenericDescriptorMatcher::train();
\end{lstlisting} \end{lstlisting}
\cvCppFunc{GenericDescriptorMatcher::supportMask} \cvCppFunc{GenericDescriptorMatcher::isMaskSupported}
Returns true if generic descriptor matcher supports masking permissible matches. Returns true if generic descriptor matcher supports masking permissible matches.
\begin{lstlisting} \begin{lstlisting}
void GenericDescriptorMatcher::supportMask(); void GenericDescriptorMatcher::isMaskSupported();
\end{lstlisting} \end{lstlisting}
\cvCppFunc{GenericDescriptorMatcher::classify} \cvCppFunc{GenericDescriptorMatcher::classify}
...@@ -1003,20 +1074,20 @@ Classifies query keypoints under keypoints of one train image qiven as input arg ...@@ -1003,20 +1074,20 @@ Classifies query keypoints under keypoints of one train image qiven as input arg
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::classify( \par const Mat\& queryImage, void GenericDescriptorMatcher::classify( \par const Mat\& queryImage,
\par vector<KeyPoint>\& queryPoints, \par vector<KeyPoint>\& queryKeypoints,
\par const Mat\& trainImage, \par const Mat\& trainImage,
\par vector<KeyPoint>\& trainPoints ) const; \par vector<KeyPoint>\& trainKeypoints ) const;
} }
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::classify( const Mat\& queryImage, void GenericDescriptorMatcher::classify( const Mat\& queryImage,
\par vector<KeyPoint>\& queryPoints ); \par vector<KeyPoint>\& queryKeypoints );
} }
\begin{description} \begin{description}
\cvarg{queryImage}{The query image.} \cvarg{queryImage}{The query image.}
\cvarg{queryPoints}{Keypoints from the query image.} \cvarg{queryKeypoints}{Keypoints from the query image.}
\cvarg{trainImage}{The train image.} \cvarg{trainImage}{The train image.}
\cvarg{trainPoints}{Keypoints from the train image.} \cvarg{trainKeypoints}{Keypoints from the train image.}
\end{description} \end{description}
\cvCppFunc{GenericDescriptorMatcher::match} \cvCppFunc{GenericDescriptorMatcher::match}
...@@ -1028,24 +1099,24 @@ the mask can be set. ...@@ -1028,24 +1099,24 @@ the mask can be set.
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::match( void GenericDescriptorMatcher::match(
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, \par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints, \par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints,
\par vector<DMatch>\& matches, const Mat\& mask=Mat() ) const; \par vector<DMatch>\& matches, const Mat\& mask=Mat() ) const;
} }
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::match( void GenericDescriptorMatcher::match(
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, \par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
\par vector<DMatch>\& matches, \par vector<DMatch>\& matches,
\par const vector<Mat>\& masks=vector<Mat>() ); \par const vector<Mat>\& masks=vector<Mat>() );
} }
\begin{description} \begin{description}
\cvarg{queryImg}{Query image.} \cvarg{queryImage}{Query image.}
\cvarg{queryPoints}{Keypoints detected in \texttt{queryImg}.} \cvarg{queryKeypoints}{Keypoints detected in \texttt{queryImage}.}
\cvarg{trainImg}{Train image. This will not be added to train image collection \cvarg{trainImage}{Train image. This will not be added to train image collection
stored in class object.} stored in class object.}
\cvarg{trainPoints}{Keypoints detected in \texttt{trainImg}. They will not be added to train points collection \cvarg{trainKeypoints}{Keypoints detected in \texttt{trainImage}. They will not be added to train points collection
stored in class object.} stored in class object.}
\cvarg{matches}{Matches. If some query descriptor (keypoint) masked out in \texttt{mask} \cvarg{matches}{Matches. If some query descriptor (keypoint) masked out in \texttt{mask}
no match will be added for this descriptor. no match will be added for this descriptor.
...@@ -1063,16 +1134,16 @@ Details see in \cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{Desc ...@@ -1063,16 +1134,16 @@ Details see in \cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{Desc
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::knnMatch( void GenericDescriptorMatcher::knnMatch(
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, \par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints, \par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints,
\par vector<vector<DMatch> >\& matches, int knn, \par vector<vector<DMatch> >\& matches, int k,
\par const Mat\& mask=Mat(), bool compactResult=false ) const; \par const Mat\& mask=Mat(), bool compactResult=false ) const;
} }
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::knnMatch( void GenericDescriptorMatcher::knnMatch(
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, \par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
\par vector<vector<DMatch> >\& matches, int knn, \par vector<vector<DMatch> >\& matches, int k,
\par const vector<Mat>\& masks=vector<Mat>(), \par const vector<Mat>\& masks=vector<Mat>(),
\par bool compactResult=false ); \par bool compactResult=false );
} }
...@@ -1084,8 +1155,8 @@ Found matches are returned in distance increasing order. Details see in ...@@ -1084,8 +1155,8 @@ Found matches are returned in distance increasing order. Details see in
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::radiusMatch( void GenericDescriptorMatcher::radiusMatch(
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, \par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints, \par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints,
\par vector<vector<DMatch> >\& matches, float maxDistance, \par vector<vector<DMatch> >\& matches, float maxDistance,
\par const Mat\& mask=Mat(), bool compactResult=false ) const; \par const Mat\& mask=Mat(), bool compactResult=false ) const;
...@@ -1093,7 +1164,7 @@ void GenericDescriptorMatcher::radiusMatch( ...@@ -1093,7 +1164,7 @@ void GenericDescriptorMatcher::radiusMatch(
} }
\cvdefCpp{ \cvdefCpp{
void GenericDescriptorMatcher::radiusMatch( void GenericDescriptorMatcher::radiusMatch(
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints, \par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
\par vector<vector<DMatch> >\& matches, float maxDistance, \par vector<vector<DMatch> >\& matches, float maxDistance,
\par const vector<Mat>\& masks=vector<Mat>(), \par const vector<Mat>\& masks=vector<Mat>(),
\par bool compactResult=false ); \par bool compactResult=false );
...@@ -1113,6 +1184,20 @@ Writes match object to a file storage ...@@ -1113,6 +1184,20 @@ Writes match object to a file storage
void GenericDescriptorMatcher::write( FileStorage\& fs ) const; void GenericDescriptorMatcher::write( FileStorage\& fs ) const;
} }
\cvCppFunc{GenericDescriptorMatcher::clone}
Clone the matcher.
\cvdefCpp{
Ptr<GenericDescriptorMatcher>\\
GenericDescriptorMatcher::clone( bool emptyTrainData ) const;
}
\begin{description}
\cvarg{emptyTrainData}{If emptyTrainData is false the method create deep copy of the object, i.e. copies
both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
but with empty train data.}
\end{description}
\cvclass{OneWayDescriptorMatcher} \cvclass{OneWayDescriptorMatcher}
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{OneWayDescriptorBase} class. Wrapping class for computing, matching and classification of descriptors using \cvCppCross{OneWayDescriptorBase} class.
...@@ -1130,16 +1215,12 @@ public: ...@@ -1130,16 +1215,12 @@ public:
static float GET_MAX_SCALE() { return 1.5f; } static float GET_MAX_SCALE() { return 1.5f; }
static float GET_STEP_SCALE() { return 1.2f; } static float GET_STEP_SCALE() { return 1.2f; }
Params( int _poseCount = POSE_COUNT, Params( int poseCount = POSE_COUNT,
Size _patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
string _pcaFilename = string(), string pcaFilename = string(),
string _trainPath = string(), string trainPath = string(), string trainImagesList = string(),
string _trainImagesList = string(), float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(),
float _minScale = GET_MIN_SCALE(), float _maxScale = GET_MAX_SCALE(), float stepScale = GET_STEP_SCALE() );
float _stepScale = GET_STEP_SCALE() ) :
poseCount(_poseCount), patchSize(_patchSize), pcaFilename(_pcaFilename),
trainPath(_trainPath), trainImagesList(_trainImagesList),
minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {}
int poseCount; int poseCount;
Size patchSize; Size patchSize;
...@@ -1150,21 +1231,22 @@ public: ...@@ -1150,21 +1231,22 @@ public:
float minScale, maxScale, stepScale; float minScale, maxScale, stepScale;
}; };
// Equivalent to calling PointMatchOneWay() followed by Initialize(_params) OneWayDescriptorMatcher( const Params& params=Params() );
OneWayDescriptorMatcher( const Params& _params=Params() );
virtual ~OneWayDescriptorMatcher(); virtual ~OneWayDescriptorMatcher();
void initialize( const Params& _params, void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() );
const Ptr<OneWayDescriptorBase>& _base=Ptr<OneWayDescriptorBase>() );
virtual void clear (); // Clears keypoints storing in collection and OneWayDescriptorBase
virtual void train(); virtual void clear();
virtual void train();
virtual bool supportMask() { return false; } virtual bool isMaskSupported();
virtual void read( const FileNode &fn ); virtual void read( const FileNode &fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
... ...
}; };
...@@ -1180,16 +1262,16 @@ public: ...@@ -1180,16 +1262,16 @@ public:
class Params class Params
{ {
public: public:
Params( int _nclasses=0, Params( int nclasses=0,
int _patchSize=FernClassifier::PATCH_SIZE, int patchSize=FernClassifier::PATCH_SIZE,
int _signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE,
int _nstructs=FernClassifier::DEFAULT_STRUCTS, int nstructs=FernClassifier::DEFAULT_STRUCTS,
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, int structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
int _nviews=FernClassifier::DEFAULT_VIEWS, int nviews=FernClassifier::DEFAULT_VIEWS,
int _compressionMethod=FernClassifier::COMPRESSION_NONE, int compressionMethod=FernClassifier::COMPRESSION_NONE,
const PatchGenerator& patchGenerator=PatchGenerator() ); const PatchGenerator& patchGenerator=PatchGenerator() );
Params( const string& _filename ); Params( const string& filename );
int nclasses; int nclasses;
int patchSize; int patchSize;
...@@ -1203,18 +1285,20 @@ public: ...@@ -1203,18 +1285,20 @@ public:
string filename; string filename;
}; };
FernDescriptorMatcher( const Params& _params=Params() ); FernDescriptorMatcher( const Params& params=Params() );
virtual ~FernDescriptorMatcher(); virtual ~FernDescriptorMatcher();
virtual void clear(); virtual void clear();
virtual void train(); virtual void train();
virtual bool supportMask() { return false; } virtual bool isMaskSupported();
virtual void read( const FileNode &fn ); virtual void read( const FileNode &fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
... ...
}; };
...@@ -1224,28 +1308,23 @@ protected: ...@@ -1224,28 +1308,23 @@ protected:
Class used for matching descriptors that can be described as vectors in a finite-dimensional space. Class used for matching descriptors that can be described as vectors in a finite-dimensional space.
\begin{lstlisting} \begin{lstlisting}
class VectorDescriptorMatcher : public GenericDescriptorMatcher class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
{ {
public: public:
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& _extractor, VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
const Ptr<DescriptorMatcher>& _matcher ) virtual ~VectorDescriptorMatcher();
: extractor( _extractor ), matcher( _matcher )
{ CV_Assert( !extractor.empty() && !matcher.empty() ); }
virtual ~VectorDescriptorMatcher() {}
virtual void add( const vector<Mat>& imgCollection, virtual void add( const vector<Mat>& imgCollection,
vector<vector<KeyPoint> >& pointCollection ); vector<vector<KeyPoint> >& pointCollection );
virtual void clear(); virtual void clear();
virtual void train(); virtual void train();
virtual bool isMaskSupported();
virtual bool supportMask() { matcher->supportMask(); }
virtual void read( const FileNode& fn ); virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const; virtual void write( FileStorage& fs ) const;
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected: protected:
... ...
}; };
......
...@@ -1448,9 +1448,9 @@ protected: ...@@ -1448,9 +1448,9 @@ protected:
int levels; int levels;
}; };
/****************************************************************************************\ /*
* Dynamic Feature Detectors * * Dynamic Feature Detectors
\****************************************************************************************/ */
/** \brief an adaptively adjusting detector that iteratively detects until the desired number /** \brief an adaptively adjusting detector that iteratively detects until the desired number
* of features are detected. * of features are detected.
* Beware that this is not thread safe - as the adjustment of parameters breaks the const * Beware that this is not thread safe - as the adjustment of parameters breaks the const
...@@ -1473,9 +1473,9 @@ public: ...@@ -1473,9 +1473,9 @@ public:
max_features), adjuster_(a) { max_features), adjuster_(a) {
} }
protected: protected:
virtual void detectImpl(const cv::Mat& image, virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask = std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const { cv::Mat()) const {
//for oscillation testing //for oscillation testing
bool down = false; bool down = false;
bool up = false; bool up = false;
...@@ -1630,7 +1630,7 @@ public: ...@@ -1630,7 +1630,7 @@ public:
* images Image collection. * images Image collection.
* keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i]. * keypoints Input keypoints collection. keypoints[i] is keypoints detected in images[i].
* Keypoints for which a descriptor cannot be computed are removed. * Keypoints for which a descriptor cannot be computed are removed.
* descriptors Descriptor collection. descriptors[i] is descriptors computed for keypoints[i]. * descriptors Descriptor collection. descriptors[i] are descriptors computed for set keypoints[i].
*/ */
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const; void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, vector<Mat>& descriptors ) const;
...@@ -1788,7 +1788,8 @@ public: ...@@ -1788,7 +1788,8 @@ public:
static const int PATCH_SIZE = 48; static const int PATCH_SIZE = 48;
static const int KERNEL_SIZE = 9; static const int KERNEL_SIZE = 9;
BriefDescriptorExtractor(int bytes = 32); // bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
BriefDescriptorExtractor( int bytes = 32 );
virtual int descriptorSize() const; virtual int descriptorSize() const;
virtual int descriptorType() const; virtual int descriptorType() const;
...@@ -1893,7 +1894,7 @@ struct CV_EXPORTS HammingLUT ...@@ -1893,7 +1894,7 @@ struct CV_EXPORTS HammingLUT
/// @todo Variable-length version, maybe default size=0 and specialize /// @todo Variable-length version, maybe default size=0 and specialize
/// @todo Need to choose C/SSE4 at runtime, but amortize this at matcher level for efficiency... /// @todo Need to choose C/SSE4 at runtime, but amortize this at matcher level for efficiency...
struct Hamming struct CV_EXPORTS Hamming
{ {
typedef unsigned char ValueType; typedef unsigned char ValueType;
typedef int ResultType; typedef int ResultType;
...@@ -1936,7 +1937,7 @@ struct CV_EXPORTS DMatch ...@@ -1936,7 +1937,7 @@ struct CV_EXPORTS DMatch
float distance; float distance;
// less is better // less is better
bool operator<( const DMatch &m) const bool operator<( const DMatch &m ) const
{ {
return distance < m.distance; return distance < m.distance;
} }
...@@ -2370,10 +2371,10 @@ public: ...@@ -2370,10 +2371,10 @@ public:
* trainKeypoints Keypoints from the train image * trainKeypoints Keypoints from the train image
*/ */
// Classify keypoints from query image under one train image. // Classify keypoints from query image under one train image.
virtual void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints, void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const; const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
// Classify keypoints from query image under train image collection. // Classify keypoints from query image under train image collection.
virtual void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints ); void classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints );
/* /*
* Group of methods to match keypoints from image pair. * Group of methods to match keypoints from image pair.
......
...@@ -84,6 +84,7 @@ void DescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints ...@@ -84,6 +84,7 @@ void DescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints
void DescriptorExtractor::compute( const vector<Mat>& imageCollection, vector<vector<KeyPoint> >& pointCollection, vector<Mat>& descCollection ) const void DescriptorExtractor::compute( const vector<Mat>& imageCollection, vector<vector<KeyPoint> >& pointCollection, vector<Mat>& descCollection ) const
{ {
CV_Assert( imageCollection.size() == pointCollection.size() );
descCollection.resize( imageCollection.size() ); descCollection.resize( imageCollection.size() );
for( size_t i = 0; i < imageCollection.size(); i++ ) for( size_t i = 0; i < imageCollection.size(); i++ )
compute( imageCollection[i], pointCollection[i], descCollection[i] ); compute( imageCollection[i], pointCollection[i], descCollection[i] );
......
...@@ -591,7 +591,11 @@ void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vec ...@@ -591,7 +591,11 @@ void FlannBasedMatcher::radiusMatchImpl( const Mat& queryDescriptors, vector<vec
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType ) Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType )
{ {
DescriptorMatcher* dm = 0; DescriptorMatcher* dm = 0;
if( !descriptorMatcherType.compare( "BruteForce" ) ) if( !descriptorMatcherType.compare( "FlannBased" ) )
{
dm = new FlannBasedMatcher();
}
else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2
{ {
dm = new BruteForceMatcher<L2<float> >(); dm = new BruteForceMatcher<L2<float> >();
} }
...@@ -599,21 +603,13 @@ Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherT ...@@ -599,21 +603,13 @@ Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherT
{ {
dm = new BruteForceMatcher<L1<float> >(); dm = new BruteForceMatcher<L1<float> >();
} }
else if ( !descriptorMatcherType.compare( "FlannBased" ) ) else if( !descriptorMatcherType.compare("BruteForce-Hamming") )
{ {
dm = new FlannBasedMatcher(); dm = new BruteForceMatcher<Hamming>();
} }
else if (!descriptorMatcherType.compare("BruteForce-Hamming")) else if( !descriptorMatcherType.compare( "BruteForce-HammingLUT") )
{
dm = new BruteForceMatcher<Hamming> ();
}
else if (!descriptorMatcherType.compare("BruteForce-HammingLUT"))
{
dm = new BruteForceMatcher<HammingLUT> ();
}
else
{ {
//CV_Error( CV_StsBadArg, "unsupported descriptor matcher type"); dm = new BruteForceMatcher<HammingLUT>();
} }
return dm; return dm;
...@@ -766,83 +762,83 @@ void GenericDescriptorMatcher::clear() ...@@ -766,83 +762,83 @@ void GenericDescriptorMatcher::clear()
void GenericDescriptorMatcher::train() void GenericDescriptorMatcher::train()
{} {}
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainPoints ) const const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const
{ {
vector<DMatch> matches; vector<DMatch> matches;
match( queryImage, queryPoints, trainImage, trainPoints, matches ); match( queryImage, queryKeypoints, trainImage, trainKeypoints, matches );
// remap keypoint indices to descriptors // remap keypoint indices to descriptors
for( size_t i = 0; i < matches.size(); i++ ) for( size_t i = 0; i < matches.size(); i++ )
queryPoints[matches[i].queryIdx].class_id = trainPoints[matches[i].trainIdx].class_id; queryKeypoints[matches[i].queryIdx].class_id = trainKeypoints[matches[i].trainIdx].class_id;
} }
void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryPoints ) void GenericDescriptorMatcher::classify( const Mat& queryImage, vector<KeyPoint>& queryKeypoints )
{ {
vector<DMatch> matches; vector<DMatch> matches;
match( queryImage, queryPoints, matches ); match( queryImage, queryKeypoints, matches );
// remap keypoint indices to descriptors // remap keypoint indices to descriptors
for( size_t i = 0; i < matches.size(); i++ ) for( size_t i = 0; i < matches.size(); i++ )
queryPoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id; queryKeypoints[matches[i].queryIdx].class_id = trainPointCollection.getKeyPoint( matches[i].trainIdx, matches[i].trainIdx ).class_id;
} }
void GenericDescriptorMatcher::match( const Mat& queryImg, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<DMatch>& matches, const Mat& mask ) const vector<DMatch>& matches, const Mat& mask ) const
{ {
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true ); Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints); vector<vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints ); tempMatcher->add( vector<Mat>(1, trainImage), vecTrainPoints );
tempMatcher->match( queryImg, queryPoints, matches, vector<Mat>(1, mask) ); tempMatcher->match( queryImage, queryKeypoints, matches, vector<Mat>(1, mask) );
vecTrainPoints[0].swap( trainPoints ); vecTrainPoints[0].swap( trainKeypoints );
} }
void GenericDescriptorMatcher::knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const vector<vector<DMatch> >& matches, int knn, const Mat& mask, bool compactResult ) const
{ {
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true ); Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints); vector<vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints ); tempMatcher->add( vector<Mat>(1, trainImage), vecTrainPoints );
tempMatcher->knnMatch( queryImg, queryPoints, matches, knn, vector<Mat>(1, mask), compactResult ); tempMatcher->knnMatch( queryImage, queryKeypoints, matches, knn, vector<Mat>(1, mask), compactResult );
vecTrainPoints[0].swap( trainPoints ); vecTrainPoints[0].swap( trainKeypoints );
} }
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImg, vector<KeyPoint>& trainPoints, const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask, bool compactResult ) const const Mat& mask, bool compactResult ) const
{ {
Ptr<GenericDescriptorMatcher> tempMatcher = clone( true ); Ptr<GenericDescriptorMatcher> tempMatcher = clone( true );
vector<vector<KeyPoint> > vecTrainPoints(1, trainPoints); vector<vector<KeyPoint> > vecTrainPoints(1, trainKeypoints);
tempMatcher->add( vector<Mat>(1, trainImg), vecTrainPoints ); tempMatcher->add( vector<Mat>(1, trainImage), vecTrainPoints );
tempMatcher->radiusMatch( queryImg, queryPoints, matches, maxDistance, vector<Mat>(1, mask), compactResult ); tempMatcher->radiusMatch( queryImage, queryKeypoints, matches, maxDistance, vector<Mat>(1, mask), compactResult );
vecTrainPoints[0].swap( trainPoints ); vecTrainPoints[0].swap( trainKeypoints );
} }
void GenericDescriptorMatcher::match( const Mat& queryImg, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<DMatch>& matches, const vector<Mat>& masks ) vector<DMatch>& matches, const vector<Mat>& masks )
{ {
vector<vector<DMatch> > knnMatches; vector<vector<DMatch> > knnMatches;
knnMatch( queryImg, queryPoints, knnMatches, 1, masks, false ); knnMatch( queryImage, queryKeypoints, knnMatches, 1, masks, false );
convertMatches( knnMatches, matches ); convertMatches( knnMatches, matches );
} }
void GenericDescriptorMatcher::knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& masks, bool compactResult ) const vector<Mat>& masks, bool compactResult )
{ {
train(); train();
knnMatchImpl( queryImg, queryPoints, matches, knn, masks, compactResult ); knnMatchImpl( queryImage, queryKeypoints, matches, knn, masks, compactResult );
} }
void GenericDescriptorMatcher::radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints, void GenericDescriptorMatcher::radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult ) const vector<Mat>& masks, bool compactResult )
{ {
train(); train();
radiusMatchImpl( queryImg, queryPoints, matches, maxDistance, masks, compactResult ); radiusMatchImpl( queryImage, queryKeypoints, matches, maxDistance, masks, compactResult );
} }
void GenericDescriptorMatcher::read( const FileNode& ) void GenericDescriptorMatcher::read( const FileNode& )
...@@ -920,7 +916,7 @@ bool OneWayDescriptorMatcher::isMaskSupported() ...@@ -920,7 +916,7 @@ bool OneWayDescriptorMatcher::isMaskSupported()
return false; return false;
} }
void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints, void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& /*masks*/, bool /*compactResult*/ ) const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
...@@ -928,30 +924,30 @@ void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint ...@@ -928,30 +924,30 @@ void OneWayDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint
CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case CV_Assert( knn == 1 ); // knn > 1 unsupported because of bug in OneWayDescriptorBase for this case
matches.resize( queryPoints.size() ); matches.resize( queryKeypoints.size() );
IplImage _qimage = queryImg; IplImage _qimage = queryImage;
for( size_t i = 0; i < queryPoints.size(); i++ ) for( size_t i = 0; i < queryKeypoints.size(); i++ )
{ {
int descIdx = -1, poseIdx = -1; int descIdx = -1, poseIdx = -1;
float distance; float distance;
base->FindDescriptor( &_qimage, queryPoints[i].pt, descIdx, poseIdx, distance ); base->FindDescriptor( &_qimage, queryKeypoints[i].pt, descIdx, poseIdx, distance );
matches[i].push_back( DMatch(i, descIdx, distance) ); matches[i].push_back( DMatch(i, descIdx, distance) );
} }
} }
void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints, void OneWayDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& /*masks*/, bool /*compactResult*/ ) const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
train(); train();
matches.resize( queryPoints.size() ); matches.resize( queryKeypoints.size() );
IplImage _qimage = queryImg; IplImage _qimage = queryImage;
for( size_t i = 0; i < queryPoints.size(); i++ ) for( size_t i = 0; i < queryKeypoints.size(); i++ )
{ {
int descIdx = -1, poseIdx = -1; int descIdx = -1, poseIdx = -1;
float distance; float distance;
base->FindDescriptor( &_qimage, queryPoints[i].pt, descIdx, poseIdx, distance ); base->FindDescriptor( &_qimage, queryKeypoints[i].pt, descIdx, poseIdx, distance );
if( distance < maxDistance ) if( distance < maxDistance )
matches[i].push_back( DMatch(i, descIdx, distance) ); matches[i].push_back( DMatch(i, descIdx, distance) );
} }
...@@ -1064,18 +1060,18 @@ void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Poi ...@@ -1064,18 +1060,18 @@ void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Poi
} }
} }
void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints, void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& /*masks*/, bool /*compactResult*/ ) const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
train(); train();
matches.resize( queryPoints.size() ); matches.resize( queryKeypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() ); vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t queryIdx = 0; queryIdx < queryPoints.size(); queryIdx++ ) for( size_t queryIdx = 0; queryIdx < queryKeypoints.size(); queryIdx++ )
{ {
(*classifier)( queryImg, queryPoints[queryIdx].pt, signature); (*classifier)( queryImage, queryKeypoints[queryIdx].pt, signature);
for( int k = 0; k < knn; k++ ) for( int k = 0; k < knn; k++ )
{ {
...@@ -1099,17 +1095,17 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& ...@@ -1099,17 +1095,17 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>&
} }
} }
void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints, void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& /*masks*/, bool /*compactResult*/ ) const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{ {
train(); train();
matches.resize( queryPoints.size() ); matches.resize( queryKeypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() ); vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t i = 0; i < queryPoints.size(); i++ ) for( size_t i = 0; i < queryKeypoints.size(); i++ )
{ {
(*classifier)( queryImg, queryPoints[i].pt, signature); (*classifier)( queryImage, queryKeypoints[i].pt, signature);
for( int ci = 0; ci < classifier->getClassCount(); ci++ ) for( int ci = 0; ci < classifier->getClassCount(); ci++ )
{ {
...@@ -1206,21 +1202,21 @@ bool VectorDescriptorMatcher::isMaskSupported() ...@@ -1206,21 +1202,21 @@ bool VectorDescriptorMatcher::isMaskSupported()
return matcher->isMaskSupported(); return matcher->isMaskSupported();
} }
void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints, void VectorDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, int knn, vector<vector<DMatch> >& matches, int knn,
const vector<Mat>& masks, bool compactResult ) const vector<Mat>& masks, bool compactResult )
{ {
Mat queryDescriptors; Mat queryDescriptors;
extractor->compute( queryImg, queryPoints, queryDescriptors ); extractor->compute( queryImage, queryKeypoints, queryDescriptors );
matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult ); matcher->knnMatch( queryDescriptors, matches, knn, masks, compactResult );
} }
void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImg, vector<KeyPoint>& queryPoints, void VectorDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
vector<vector<DMatch> >& matches, float maxDistance, vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks, bool compactResult ) const vector<Mat>& masks, bool compactResult )
{ {
Mat queryDescriptors; Mat queryDescriptors;
extractor->compute( queryImg, queryPoints, queryDescriptors ); extractor->compute( queryImage, queryKeypoints, queryDescriptors );
matcher->radiusMatch( queryDescriptors, matches, maxDistance, masks, compactResult ); matcher->radiusMatch( queryDescriptors, matches, maxDistance, masks, compactResult );
} }
...@@ -1245,7 +1241,8 @@ Ptr<GenericDescriptorMatcher> VectorDescriptorMatcher::clone( bool emptyTrainDat ...@@ -1245,7 +1241,8 @@ Ptr<GenericDescriptorMatcher> VectorDescriptorMatcher::clone( bool emptyTrainDat
/* /*
* Factory function for GenericDescriptorMatch creating * Factory function for GenericDescriptorMatch creating
*/ */
Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType, const string &paramsFilename ) Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& genericDescritptorMatcherType,
const string &paramsFilename )
{ {
Ptr<GenericDescriptorMatcher> descriptorMatcher; Ptr<GenericDescriptorMatcher> descriptorMatcher;
if( ! genericDescritptorMatcherType.compare("ONEWAY") ) if( ! genericDescritptorMatcherType.compare("ONEWAY") )
...@@ -1256,12 +1253,8 @@ Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& gene ...@@ -1256,12 +1253,8 @@ Ptr<GenericDescriptorMatcher> createGenericDescriptorMatcher( const string& gene
{ {
descriptorMatcher = new FernDescriptorMatcher(); descriptorMatcher = new FernDescriptorMatcher();
} }
else if( ! genericDescritptorMatcherType.compare ("CALONDER") )
{
//descriptorMatch = new CalonderDescriptorMatch ();
}
if( !paramsFilename.empty() && descriptorMatcher != 0 ) if( !paramsFilename.empty() && !descriptorMatcher.empty() )
{ {
FileStorage fs = FileStorage( paramsFilename, FileStorage::READ ); FileStorage fs = FileStorage( paramsFilename, FileStorage::READ );
if( fs.isOpened() ) if( fs.isOpened() )
......
...@@ -69,7 +69,7 @@ bool createDetectorDescriptorMatcher( const string& detectorType, const string& ...@@ -69,7 +69,7 @@ bool createDetectorDescriptorMatcher( const string& detectorType, const string&
bool isCreated = !( featureDetector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() ); bool isCreated = !( featureDetector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() );
if( !isCreated ) if( !isCreated )
cout << "Can not create feature detector or descriptor exstractor or descriptor matcher of given types." << endl << ">" << endl; cout << "Can not create feature detector or descriptor extractor or descriptor matcher of given types." << endl << ">" << endl;
return isCreated; return isCreated;
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment