Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
c58cc4c2
Commit
c58cc4c2
authored
May 31, 2018
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #11255 from dkurt:dnn_tf_faster_rcnn
parents
f96f9344
bf87a431
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
457 additions
and
5 deletions
+457
-5
all_layers.hpp
modules/dnn/include/opencv2/dnn/all_layers.hpp
+6
-0
init.cpp
modules/dnn/src/init.cpp
+1
-0
crop_and_resize_layer.cpp
modules/dnn/src/layers/crop_and_resize_layer.cpp
+108
-0
detection_output_layer.cpp
modules/dnn/src/layers/detection_output_layer.cpp
+3
-2
tf_importer.cpp
modules/dnn/src/tensorflow/tf_importer.cpp
+29
-2
test_tf_importer.cpp
modules/dnn/test/test_tf_importer.cpp
+16
-0
README.md
samples/dnn/README.md
+3
-1
tf_text_graph_faster_rcnn.py
samples/dnn/tf_text_graph_faster_rcnn.py
+291
-0
No files found.
modules/dnn/include/opencv2/dnn/all_layers.hpp
View file @
c58cc4c2
...
...
@@ -581,6 +581,12 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
static
Ptr
<
ProposalLayer
>
create
(
const
LayerParams
&
params
);
};
class
CV_EXPORTS
CropAndResizeLayer
:
public
Layer
{
public
:
static
Ptr
<
Layer
>
create
(
const
LayerParams
&
params
);
};
//! @}
//! @}
CV__DNN_EXPERIMENTAL_NS_END
...
...
modules/dnn/src/init.cpp
View file @
c58cc4c2
...
...
@@ -84,6 +84,7 @@ void initializeLayerFactory()
CV_DNN_REGISTER_LAYER_CLASS
(
Reshape
,
ReshapeLayer
);
CV_DNN_REGISTER_LAYER_CLASS
(
Flatten
,
FlattenLayer
);
CV_DNN_REGISTER_LAYER_CLASS
(
ResizeNearestNeighbor
,
ResizeNearestNeighborLayer
);
CV_DNN_REGISTER_LAYER_CLASS
(
CropAndResize
,
CropAndResizeLayer
);
CV_DNN_REGISTER_LAYER_CLASS
(
Convolution
,
ConvolutionLayer
);
CV_DNN_REGISTER_LAYER_CLASS
(
Deconvolution
,
DeconvolutionLayer
);
...
...
modules/dnn/src/layers/crop_and_resize_layer.cpp
0 → 100644
View file @
c58cc4c2
#include "../precomp.hpp"
#include "layers_common.hpp"
namespace
cv
{
namespace
dnn
{
class
CropAndResizeLayerImpl
CV_FINAL
:
public
CropAndResizeLayer
{
public
:
CropAndResizeLayerImpl
(
const
LayerParams
&
params
)
{
CV_Assert
(
params
.
has
(
"width"
),
params
.
has
(
"height"
));
outWidth
=
params
.
get
<
float
>
(
"width"
);
outHeight
=
params
.
get
<
float
>
(
"height"
);
}
bool
getMemoryShapes
(
const
std
::
vector
<
MatShape
>
&
inputs
,
const
int
requiredOutputs
,
std
::
vector
<
MatShape
>
&
outputs
,
std
::
vector
<
MatShape
>
&
internals
)
const
CV_OVERRIDE
{
CV_Assert
(
inputs
.
size
()
==
2
,
inputs
[
0
].
size
()
==
4
);
if
(
inputs
[
0
][
0
]
!=
1
)
CV_Error
(
Error
::
StsNotImplemented
,
""
);
outputs
.
resize
(
1
,
MatShape
(
4
));
outputs
[
0
][
0
]
=
inputs
[
1
][
2
];
// Number of bounding boxes.
outputs
[
0
][
1
]
=
inputs
[
0
][
1
];
// Number of channels.
outputs
[
0
][
2
]
=
outHeight
;
outputs
[
0
][
3
]
=
outWidth
;
return
false
;
}
void
forward
(
InputArrayOfArrays
inputs_arr
,
OutputArrayOfArrays
outputs_arr
,
OutputArrayOfArrays
internals_arr
)
CV_OVERRIDE
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
Layer
::
forward_fallback
(
inputs_arr
,
outputs_arr
,
internals_arr
);
}
void
forward
(
std
::
vector
<
Mat
*>
&
inputs
,
std
::
vector
<
Mat
>
&
outputs
,
std
::
vector
<
Mat
>
&
internals
)
CV_OVERRIDE
{
CV_TRACE_FUNCTION
();
CV_TRACE_ARG_VALUE
(
name
,
"name"
,
name
.
c_str
());
Mat
&
inp
=
*
inputs
[
0
];
Mat
&
out
=
outputs
[
0
];
Mat
boxes
=
inputs
[
1
]
->
reshape
(
1
,
inputs
[
1
]
->
total
()
/
7
);
const
int
numChannels
=
inp
.
size
[
1
];
const
int
inpHeight
=
inp
.
size
[
2
];
const
int
inpWidth
=
inp
.
size
[
3
];
const
int
inpSpatialSize
=
inpHeight
*
inpWidth
;
const
int
outSpatialSize
=
outHeight
*
outWidth
;
CV_Assert
(
inp
.
isContinuous
(),
out
.
isContinuous
());
for
(
int
b
=
0
;
b
<
boxes
.
rows
;
++
b
)
{
float
*
outDataBox
=
out
.
ptr
<
float
>
(
b
);
float
left
=
boxes
.
at
<
float
>
(
b
,
3
);
float
top
=
boxes
.
at
<
float
>
(
b
,
4
);
float
right
=
boxes
.
at
<
float
>
(
b
,
5
);
float
bottom
=
boxes
.
at
<
float
>
(
b
,
6
);
float
boxWidth
=
right
-
left
;
float
boxHeight
=
bottom
-
top
;
float
heightScale
=
boxHeight
*
static_cast
<
float
>
(
inpHeight
-
1
)
/
(
outHeight
-
1
);
float
widthScale
=
boxWidth
*
static_cast
<
float
>
(
inpWidth
-
1
)
/
(
outWidth
-
1
);
for
(
int
y
=
0
;
y
<
outHeight
;
++
y
)
{
float
input_y
=
top
*
(
inpHeight
-
1
)
+
y
*
heightScale
;
int
y0
=
static_cast
<
int
>
(
input_y
);
const
float
*
inpData_row0
=
(
float
*
)
inp
.
data
+
y0
*
inpWidth
;
const
float
*
inpData_row1
=
(
y0
+
1
<
inpHeight
)
?
(
inpData_row0
+
inpWidth
)
:
inpData_row0
;
for
(
int
x
=
0
;
x
<
outWidth
;
++
x
)
{
float
input_x
=
left
*
(
inpWidth
-
1
)
+
x
*
widthScale
;
int
x0
=
static_cast
<
int
>
(
input_x
);
int
x1
=
std
::
min
(
x0
+
1
,
inpWidth
-
1
);
float
*
outData
=
outDataBox
+
y
*
outWidth
+
x
;
const
float
*
inpData_row0_c
=
inpData_row0
;
const
float
*
inpData_row1_c
=
inpData_row1
;
for
(
int
c
=
0
;
c
<
numChannels
;
++
c
)
{
*
outData
=
inpData_row0_c
[
x0
]
+
(
input_y
-
y0
)
*
(
inpData_row1_c
[
x0
]
-
inpData_row0_c
[
x0
])
+
(
input_x
-
x0
)
*
(
inpData_row0_c
[
x1
]
-
inpData_row0_c
[
x0
]
+
(
input_y
-
y0
)
*
(
inpData_row1_c
[
x1
]
-
inpData_row0_c
[
x1
]
-
inpData_row1_c
[
x0
]
+
inpData_row0_c
[
x0
]));
inpData_row0_c
+=
inpSpatialSize
;
inpData_row1_c
+=
inpSpatialSize
;
outData
+=
outSpatialSize
;
}
}
}
}
}
private
:
int
outWidth
,
outHeight
;
};
Ptr
<
Layer
>
CropAndResizeLayer
::
create
(
const
LayerParams
&
params
)
{
return
Ptr
<
CropAndResizeLayer
>
(
new
CropAndResizeLayerImpl
(
params
));
}
}
// namespace dnn
}
// namespace cv
modules/dnn/src/layers/detection_output_layer.cpp
View file @
c58cc4c2
...
...
@@ -208,8 +208,9 @@ public:
CV_Assert
(
inputs
[
0
][
0
]
==
inputs
[
1
][
0
]);
int
numPriors
=
inputs
[
2
][
2
]
/
4
;
CV_Assert
((
numPriors
*
_numLocClasses
*
4
)
==
inputs
[
0
][
1
]);
CV_Assert
(
int
(
numPriors
*
_numClasses
)
==
inputs
[
1
][
1
]);
CV_Assert
((
numPriors
*
_numLocClasses
*
4
)
==
total
(
inputs
[
0
],
1
));
CV_Assert
(
int
(
numPriors
*
_numClasses
)
==
total
(
inputs
[
1
],
1
));
CV_Assert
(
inputs
[
2
][
1
]
==
1
+
(
int
)(
!
_varianceEncodedInTarget
));
// num() and channels() are 1.
// Since the number of bboxes to be kept is unknown before nms, we manually
...
...
modules/dnn/src/tensorflow/tf_importer.cpp
View file @
c58cc4c2
...
...
@@ -1094,9 +1094,9 @@ void TFImporter::populateNet(Net dstNet)
CV_Assert
(
!
begins
.
empty
(),
!
sizes
.
empty
(),
begins
.
type
()
==
CV_32SC1
,
sizes
.
type
()
==
CV_32SC1
);
if
(
begins
.
total
()
==
4
)
if
(
begins
.
total
()
==
4
&&
data_layouts
[
name
]
==
DATA_LAYOUT_NHWC
)
{
//
Perhabs, we have an NHWC order. Swap it
to NCHW.
//
Swap NHWC parameters' order
to NCHW.
std
::
swap
(
*
begins
.
ptr
<
int32_t
>
(
0
,
2
),
*
begins
.
ptr
<
int32_t
>
(
0
,
3
));
std
::
swap
(
*
begins
.
ptr
<
int32_t
>
(
0
,
1
),
*
begins
.
ptr
<
int32_t
>
(
0
,
2
));
std
::
swap
(
*
sizes
.
ptr
<
int32_t
>
(
0
,
2
),
*
sizes
.
ptr
<
int32_t
>
(
0
,
3
));
...
...
@@ -1176,6 +1176,9 @@ void TFImporter::populateNet(Net dstNet)
layers_to_ignore
.
insert
(
next_layers
[
0
].
first
);
}
if
(
hasLayerAttr
(
layer
,
"axis"
))
layerParams
.
set
(
"axis"
,
getLayerAttr
(
layer
,
"axis"
).
i
());
id
=
dstNet
.
addLayer
(
name
,
"Scale"
,
layerParams
);
}
layer_id
[
name
]
=
id
;
...
...
@@ -1547,6 +1550,10 @@ void TFImporter::populateNet(Net dstNet)
layerParams
.
set
(
"confidence_threshold"
,
getLayerAttr
(
layer
,
"confidence_threshold"
).
f
());
if
(
hasLayerAttr
(
layer
,
"loc_pred_transposed"
))
layerParams
.
set
(
"loc_pred_transposed"
,
getLayerAttr
(
layer
,
"loc_pred_transposed"
).
b
());
if
(
hasLayerAttr
(
layer
,
"clip"
))
layerParams
.
set
(
"clip"
,
getLayerAttr
(
layer
,
"clip"
).
b
());
if
(
hasLayerAttr
(
layer
,
"variance_encoded_in_target"
))
layerParams
.
set
(
"variance_encoded_in_target"
,
getLayerAttr
(
layer
,
"variance_encoded_in_target"
).
b
());
int
id
=
dstNet
.
addLayer
(
name
,
"DetectionOutput"
,
layerParams
);
layer_id
[
name
]
=
id
;
...
...
@@ -1563,6 +1570,26 @@ void TFImporter::populateNet(Net dstNet)
layer_id
[
name
]
=
id
;
connectToAllBlobs
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
layer
.
input_size
());
}
else
if
(
type
==
"CropAndResize"
)
{
// op: "CropAndResize"
// input: "input"
// input: "boxes"
// input: "sizes"
CV_Assert
(
layer
.
input_size
()
==
3
);
Mat
cropSize
=
getTensorContent
(
getConstBlob
(
layer
,
value_id
,
2
));
CV_Assert
(
cropSize
.
type
()
==
CV_32SC1
,
cropSize
.
total
()
==
2
);
layerParams
.
set
(
"height"
,
cropSize
.
at
<
int
>
(
0
));
layerParams
.
set
(
"width"
,
cropSize
.
at
<
int
>
(
1
));
int
id
=
dstNet
.
addLayer
(
name
,
"CropAndResize"
,
layerParams
);
layer_id
[
name
]
=
id
;
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
0
)),
id
,
0
);
connect
(
layer_id
,
dstNet
,
parsePin
(
layer
.
input
(
1
)),
id
,
1
);
}
else
if
(
type
==
"Mean"
)
{
Mat
indices
=
getTensorContent
(
getConstBlob
(
layer
,
value_id
,
1
));
...
...
modules/dnn/test/test_tf_importer.cpp
View file @
c58cc4c2
...
...
@@ -270,6 +270,22 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
normAssertDetections
(
ref
,
out
,
""
,
0.5
);
}
TEST_P
(
Test_TensorFlow_nets
,
Inception_v2_Faster_RCNN
)
{
std
::
string
proto
=
findDataFile
(
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
,
false
);
std
::
string
model
=
findDataFile
(
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb"
,
false
);
Net
net
=
readNetFromTensorflow
(
model
,
proto
);
Mat
img
=
imread
(
findDataFile
(
"dnn/dog416.png"
,
false
));
Mat
blob
=
blobFromImage
(
img
,
1.0
f
/
127.5
,
Size
(
800
,
600
),
Scalar
(
127.5
,
127.5
,
127.5
),
true
,
false
);
net
.
setInput
(
blob
);
Mat
out
=
net
.
forward
();
Mat
ref
=
blobFromNPY
(
findDataFile
(
"dnn/tensorflow/faster_rcnn_inception_v2_coco_2018_01_28.detection_out.npy"
));
normAssertDetections
(
ref
,
out
,
""
,
0.3
);
}
TEST_P
(
Test_TensorFlow_nets
,
opencv_face_detector_uint8
)
{
std
::
string
proto
=
findDataFile
(
"dnn/opencv_face_detector.pbtxt"
,
false
);
...
...
samples/dnn/README.md
View file @
c58cc4c2
...
...
@@ -11,8 +11,10 @@
|
[
SSDs from TensorFlow
](
https://github.com/tensorflow/models/tree/master/research/object_detection/
)
|
`0.00784 (2/255)`
|
`300x300`
|
`127.5 127.5 127.5`
| RGB |
|
[
YOLO
](
https://pjreddie.com/darknet/yolo/
)
|
`0.00392 (1/255)`
|
`416x416`
|
`0 0 0`
| RGB |
|
[
VGG16-SSD
](
https://github.com/weiliu89/caffe/tree/ssd
)
|
`1.0`
|
`300x300`
|
`104 117 123`
| BGR |
|
[
Faster-RCNN
](
https://github.com/rbgirshick/py-faster-rcnn
)
|
`1.0`
|
`800x600`
|
`102.9801
, 115.9465,
122.7717`
| BGR |
|
[
Faster-RCNN
](
https://github.com/rbgirshick/py-faster-rcnn
)
|
`1.0`
|
`800x600`
|
`102.9801
115.9465
122.7717`
| BGR |
|
[
R-FCN
](
https://github.com/YuwenXiong/py-R-FCN
)
|
`1.0`
|
`800x600`
|
`102.9801 115.9465 122.7717`
| BGR |
|
[
Faster-RCNN, ResNet backbone
](
https://github.com/tensorflow/models/tree/master/research/object_detection/
)
|
`1.0`
|
`300x300`
|
`103.939 116.779 123.68`
| RGB |
|
[
Faster-RCNN, InceptionV2 backbone
](
https://github.com/tensorflow/models/tree/master/research/object_detection/
)
|
`0.00784 (2/255)`
|
`300x300`
|
`127.5 127.5 127.5`
| RGB |
#### Face detection
[
An origin model
](
https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector
)
...
...
samples/dnn/tf_text_graph_faster_rcnn.py
0 → 100644
View file @
c58cc4c2
import
argparse
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.core.framework.node_def_pb2
import
NodeDef
from
tensorflow.tools.graph_transforms
import
TransformGraph
from
google.protobuf
import
text_format
parser
=
argparse
.
ArgumentParser
(
description
=
'Run this script to get a text graph of '
'SSD model from TensorFlow Object Detection API. '
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.'
)
parser
.
add_argument
(
'--input'
,
required
=
True
,
help
=
'Path to frozen TensorFlow graph.'
)
parser
.
add_argument
(
'--output'
,
required
=
True
,
help
=
'Path to output text graph.'
)
parser
.
add_argument
(
'--num_classes'
,
default
=
90
,
type
=
int
,
help
=
'Number of trained classes.'
)
parser
.
add_argument
(
'--scales'
,
default
=
[
0.25
,
0.5
,
1.0
,
2.0
],
type
=
float
,
nargs
=
'+'
,
help
=
'Hyper-parameter of grid_anchor_generator from a config file.'
)
parser
.
add_argument
(
'--aspect_ratios'
,
default
=
[
0.5
,
1.0
,
2.0
],
type
=
float
,
nargs
=
'+'
,
help
=
'Hyper-parameter of grid_anchor_generator from a config file.'
)
parser
.
add_argument
(
'--features_stride'
,
default
=
16
,
type
=
float
,
nargs
=
'+'
,
help
=
'Hyper-parameter from a config file.'
)
args
=
parser
.
parse_args
()
scopesToKeep
=
(
'FirstStageFeatureExtractor'
,
'Conv'
,
'FirstStageBoxPredictor/BoxEncodingPredictor'
,
'FirstStageBoxPredictor/ClassPredictor'
,
'CropAndResize'
,
'MaxPool2D'
,
'SecondStageFeatureExtractor'
,
'SecondStageBoxPredictor'
,
'image_tensor'
)
scopesToIgnore
=
(
'FirstStageFeatureExtractor/Assert'
,
'FirstStageFeatureExtractor/Shape'
,
'FirstStageFeatureExtractor/strided_slice'
,
'FirstStageFeatureExtractor/GreaterEqual'
,
'FirstStageFeatureExtractor/LogicalAnd'
)
unusedAttrs
=
[
'T'
,
'Tshape'
,
'N'
,
'Tidx'
,
'Tdim'
,
'use_cudnn_on_gpu'
,
'Index'
,
'Tperm'
,
'is_training'
,
'Tpaddings'
]
# Read the graph.
with
tf
.
gfile
.
FastGFile
(
args
.
input
,
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
# Removes Identity nodes
def
removeIdentity
():
identities
=
{}
for
node
in
graph_def
.
node
:
if
node
.
op
==
'Identity'
:
identities
[
node
.
name
]
=
node
.
input
[
0
]
graph_def
.
node
.
remove
(
node
)
for
node
in
graph_def
.
node
:
for
i
in
range
(
len
(
node
.
input
)):
if
node
.
input
[
i
]
in
identities
:
node
.
input
[
i
]
=
identities
[
node
.
input
[
i
]]
removeIdentity
()
removedNodes
=
[]
for
i
in
reversed
(
range
(
len
(
graph_def
.
node
))):
op
=
graph_def
.
node
[
i
]
.
op
name
=
graph_def
.
node
[
i
]
.
name
if
op
==
'Const'
or
name
.
startswith
(
scopesToIgnore
)
or
not
name
.
startswith
(
scopesToKeep
):
if
op
!=
'Const'
:
removedNodes
.
append
(
name
)
del
graph_def
.
node
[
i
]
else
:
for
attr
in
unusedAttrs
:
if
attr
in
graph_def
.
node
[
i
]
.
attr
:
del
graph_def
.
node
[
i
]
.
attr
[
attr
]
# Remove references to removed nodes except Const nodes.
for
node
in
graph_def
.
node
:
for
i
in
reversed
(
range
(
len
(
node
.
input
))):
if
node
.
input
[
i
]
in
removedNodes
:
del
node
.
input
[
i
]
# Connect input node to the first layer
assert
(
graph_def
.
node
[
0
]
.
op
==
'Placeholder'
)
graph_def
.
node
[
1
]
.
input
.
insert
(
0
,
graph_def
.
node
[
0
]
.
name
)
# Temporarily remove top nodes.
topNodes
=
[]
while
True
:
node
=
graph_def
.
node
.
pop
()
topNodes
.
append
(
node
)
if
node
.
op
==
'CropAndResize'
:
break
def
tensorMsg
(
values
):
if
all
([
isinstance
(
v
,
float
)
for
v
in
values
]):
dtype
=
'DT_FLOAT'
field
=
'float_val'
elif
all
([
isinstance
(
v
,
int
)
for
v
in
values
]):
dtype
=
'DT_INT32'
field
=
'int_val'
else
:
raise
Exception
(
'Wrong values types'
)
msg
=
'tensor { dtype: '
+
dtype
+
' tensor_shape { dim { size:
%
d } }'
%
len
(
values
)
for
value
in
values
:
msg
+=
'
%
s:
%
s '
%
(
field
,
str
(
value
))
return
msg
+
'}'
def
addSlice
(
inp
,
out
,
begins
,
sizes
):
beginsNode
=
NodeDef
()
beginsNode
.
name
=
out
+
'/begins'
beginsNode
.
op
=
'Const'
text_format
.
Merge
(
tensorMsg
(
begins
),
beginsNode
.
attr
[
"value"
])
graph_def
.
node
.
extend
([
beginsNode
])
sizesNode
=
NodeDef
()
sizesNode
.
name
=
out
+
'/sizes'
sizesNode
.
op
=
'Const'
text_format
.
Merge
(
tensorMsg
(
sizes
),
sizesNode
.
attr
[
"value"
])
graph_def
.
node
.
extend
([
sizesNode
])
sliced
=
NodeDef
()
sliced
.
name
=
out
sliced
.
op
=
'Slice'
sliced
.
input
.
append
(
inp
)
sliced
.
input
.
append
(
beginsNode
.
name
)
sliced
.
input
.
append
(
sizesNode
.
name
)
graph_def
.
node
.
extend
([
sliced
])
def
addReshape
(
inp
,
out
,
shape
):
shapeNode
=
NodeDef
()
shapeNode
.
name
=
out
+
'/shape'
shapeNode
.
op
=
'Const'
text_format
.
Merge
(
tensorMsg
(
shape
),
shapeNode
.
attr
[
"value"
])
graph_def
.
node
.
extend
([
shapeNode
])
reshape
=
NodeDef
()
reshape
.
name
=
out
reshape
.
op
=
'Reshape'
reshape
.
input
.
append
(
inp
)
reshape
.
input
.
append
(
shapeNode
.
name
)
graph_def
.
node
.
extend
([
reshape
])
def
addSoftMax
(
inp
,
out
):
softmax
=
NodeDef
()
softmax
.
name
=
out
softmax
.
op
=
'Softmax'
text_format
.
Merge
(
'i: -1'
,
softmax
.
attr
[
'axis'
])
softmax
.
input
.
append
(
inp
)
graph_def
.
node
.
extend
([
softmax
])
addReshape
(
'FirstStageBoxPredictor/ClassPredictor/BiasAdd'
,
'FirstStageBoxPredictor/ClassPredictor/reshape_1'
,
[
0
,
-
1
,
2
])
addSoftMax
(
'FirstStageBoxPredictor/ClassPredictor/reshape_1'
,
'FirstStageBoxPredictor/ClassPredictor/softmax'
)
# Compare with Reshape_4
flatten
=
NodeDef
()
flatten
.
name
=
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten'
# Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
flatten
.
op
=
'Flatten'
flatten
.
input
.
append
(
'FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd'
)
graph_def
.
node
.
extend
([
flatten
])
proposals
=
NodeDef
()
proposals
.
name
=
'proposals'
# Compare with ClipToWindow/Gather/Gather (NOTE: normalized)
proposals
.
op
=
'PriorBox'
proposals
.
input
.
append
(
'FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd'
)
proposals
.
input
.
append
(
graph_def
.
node
[
0
]
.
name
)
# image_tensor
text_format
.
Merge
(
'b: false'
,
proposals
.
attr
[
"flip"
])
text_format
.
Merge
(
'b: true'
,
proposals
.
attr
[
"clip"
])
text_format
.
Merge
(
'f:
%
f'
%
args
.
features_stride
,
proposals
.
attr
[
"step"
])
text_format
.
Merge
(
'f: 0.0'
,
proposals
.
attr
[
"offset"
])
text_format
.
Merge
(
tensorMsg
([
0.1
,
0.1
,
0.2
,
0.2
]),
proposals
.
attr
[
"variance"
])
widths
=
[]
heights
=
[]
for
a
in
args
.
aspect_ratios
:
for
s
in
args
.
scales
:
ar
=
np
.
sqrt
(
a
)
heights
.
append
((
args
.
features_stride
**
2
)
*
s
/
ar
)
widths
.
append
((
args
.
features_stride
**
2
)
*
s
*
ar
)
text_format
.
Merge
(
tensorMsg
(
widths
),
proposals
.
attr
[
"width"
])
text_format
.
Merge
(
tensorMsg
(
heights
),
proposals
.
attr
[
"height"
])
graph_def
.
node
.
extend
([
proposals
])
# Compare with Reshape_5
detectionOut
=
NodeDef
()
detectionOut
.
name
=
'detection_out'
detectionOut
.
op
=
'DetectionOutput'
detectionOut
.
input
.
append
(
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten'
)
detectionOut
.
input
.
append
(
'FirstStageBoxPredictor/ClassPredictor/softmax'
)
detectionOut
.
input
.
append
(
'proposals'
)
text_format
.
Merge
(
'i: 2'
,
detectionOut
.
attr
[
'num_classes'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'share_location'
])
text_format
.
Merge
(
'i: 0'
,
detectionOut
.
attr
[
'background_label_id'
])
text_format
.
Merge
(
'f: 0.7'
,
detectionOut
.
attr
[
'nms_threshold'
])
text_format
.
Merge
(
'i: 6000'
,
detectionOut
.
attr
[
'top_k'
])
text_format
.
Merge
(
's: "CENTER_SIZE"'
,
detectionOut
.
attr
[
'code_type'
])
text_format
.
Merge
(
'i: 100'
,
detectionOut
.
attr
[
'keep_top_k'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'clip'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'loc_pred_transposed'
])
graph_def
.
node
.
extend
([
detectionOut
])
# Save as text.
for
node
in
reversed
(
topNodes
):
graph_def
.
node
.
extend
([
node
])
addSoftMax
(
'SecondStageBoxPredictor/Reshape_1'
,
'SecondStageBoxPredictor/Reshape_1/softmax'
)
addSlice
(
'SecondStageBoxPredictor/Reshape_1/softmax'
,
'SecondStageBoxPredictor/Reshape_1/slice'
,
[
0
,
0
,
1
],
[
-
1
,
-
1
,
-
1
])
addReshape
(
'SecondStageBoxPredictor/Reshape_1/slice'
,
'SecondStageBoxPredictor/Reshape_1/Reshape'
,
[
1
,
-
1
])
# Replace Flatten subgraph onto a single node.
for
i
in
reversed
(
range
(
len
(
graph_def
.
node
))):
if
graph_def
.
node
[
i
]
.
op
==
'CropAndResize'
:
graph_def
.
node
[
i
]
.
input
.
insert
(
1
,
'detection_out'
)
if
graph_def
.
node
[
i
]
.
name
==
'SecondStageBoxPredictor/Reshape'
:
shapeNode
=
NodeDef
()
shapeNode
.
name
=
'SecondStageBoxPredictor/Reshape/shape2'
shapeNode
.
op
=
'Const'
text_format
.
Merge
(
tensorMsg
([
1
,
-
1
,
4
]),
shapeNode
.
attr
[
"value"
])
graph_def
.
node
.
extend
([
shapeNode
])
graph_def
.
node
[
i
]
.
input
.
pop
()
graph_def
.
node
[
i
]
.
input
.
append
(
shapeNode
.
name
)
if
graph_def
.
node
[
i
]
.
name
in
[
'SecondStageBoxPredictor/Flatten/flatten/Shape'
,
'SecondStageBoxPredictor/Flatten/flatten/strided_slice'
,
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape'
]:
del
graph_def
.
node
[
i
]
for
node
in
graph_def
.
node
:
if
node
.
name
==
'SecondStageBoxPredictor/Flatten/flatten/Reshape'
:
node
.
op
=
'Flatten'
node
.
input
.
pop
()
break
################################################################################
### Postprocessing
################################################################################
addSlice
(
'detection_out'
,
'detection_out/slice'
,
[
0
,
0
,
0
,
3
],
[
-
1
,
-
1
,
-
1
,
4
])
variance
=
NodeDef
()
variance
.
name
=
'proposals/variance'
variance
.
op
=
'Const'
text_format
.
Merge
(
tensorMsg
([
0.1
,
0.1
,
0.2
,
0.2
]),
variance
.
attr
[
"value"
])
graph_def
.
node
.
extend
([
variance
])
varianceEncoder
=
NodeDef
()
varianceEncoder
.
name
=
'variance_encoded'
varianceEncoder
.
op
=
'Mul'
varianceEncoder
.
input
.
append
(
'SecondStageBoxPredictor/Reshape'
)
varianceEncoder
.
input
.
append
(
variance
.
name
)
text_format
.
Merge
(
'i: 2'
,
varianceEncoder
.
attr
[
"axis"
])
graph_def
.
node
.
extend
([
varianceEncoder
])
addReshape
(
'detection_out/slice'
,
'detection_out/slice/reshape'
,
[
1
,
1
,
-
1
])
detectionOut
=
NodeDef
()
detectionOut
.
name
=
'detection_out_final'
detectionOut
.
op
=
'DetectionOutput'
detectionOut
.
input
.
append
(
'variance_encoded'
)
detectionOut
.
input
.
append
(
'SecondStageBoxPredictor/Reshape_1/Reshape'
)
detectionOut
.
input
.
append
(
'detection_out/slice/reshape'
)
text_format
.
Merge
(
'i:
%
d'
%
args
.
num_classes
,
detectionOut
.
attr
[
'num_classes'
])
text_format
.
Merge
(
'b: false'
,
detectionOut
.
attr
[
'share_location'
])
text_format
.
Merge
(
'i:
%
d'
%
(
args
.
num_classes
+
1
),
detectionOut
.
attr
[
'background_label_id'
])
text_format
.
Merge
(
'f: 0.6'
,
detectionOut
.
attr
[
'nms_threshold'
])
text_format
.
Merge
(
's: "CENTER_SIZE"'
,
detectionOut
.
attr
[
'code_type'
])
text_format
.
Merge
(
'i: 100'
,
detectionOut
.
attr
[
'keep_top_k'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'loc_pred_transposed'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'clip'
])
text_format
.
Merge
(
'b: true'
,
detectionOut
.
attr
[
'variance_encoded_in_target'
])
graph_def
.
node
.
extend
([
detectionOut
])
tf
.
train
.
write_graph
(
graph_def
,
""
,
args
.
output
,
as_text
=
True
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment