Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
c57e427f
Commit
c57e427f
authored
Jan 16, 2014
by
vbystricky
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Move OpticalFlowPyrLK from ocl module to video module
parent
ac3f06bc
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1125 additions
and
0 deletions
+1125
-0
ocl.hpp
modules/core/include/opencv2/core/ocl.hpp
+16
-0
ocl.cpp
modules/core/src/ocl.cpp
+154
-0
lkpyramid.cpp
modules/video/src/lkpyramid.cpp
+230
-0
pyrlk.cl
modules/video/src/opencl/pyrlk.cl
+584
-0
test_optflowpyrlk.cpp
modules/video/test/ocl/test_optflowpyrlk.cpp
+141
-0
No files found.
modules/core/include/opencv2/core/ocl.hpp
View file @
c57e427f
...
...
@@ -60,6 +60,7 @@ class CV_EXPORTS Program;
class
CV_EXPORTS
ProgramSource2
;
class
CV_EXPORTS
Queue
;
class
CV_EXPORTS
PlatformInfo2
;
class
CV_EXPORTS
Image2D
;
class
CV_EXPORTS
Device
{
...
...
@@ -89,6 +90,7 @@ public:
String
vendor
()
const
;
String
OpenCL_C_Version
()
const
;
String
OpenCLVersion
()
const
;
String
deviceVersion
()
const
;
String
driverVersion
()
const
;
void
*
ptr
()
const
;
...
...
@@ -325,6 +327,7 @@ public:
const
String
&
buildopts
,
String
*
errmsg
=
0
);
int
set
(
int
i
,
const
void
*
value
,
size_t
sz
);
int
set
(
int
i
,
const
Image2D
&
image2D
);
int
set
(
int
i
,
const
UMat
&
m
);
int
set
(
int
i
,
const
KernelArg
&
arg
);
template
<
typename
_Tp
>
int
set
(
int
i
,
const
_Tp
&
value
)
...
...
@@ -574,6 +577,19 @@ CV_EXPORTS const char* typeToStr(int t);
CV_EXPORTS
const
char
*
memopTypeToStr
(
int
t
);
CV_EXPORTS
void
getPlatfomsInfo
(
std
::
vector
<
PlatformInfo2
>&
platform_info
);
class
CV_EXPORTS
Image2D
{
public
:
Image2D
();
Image2D
(
const
UMat
&
src
);
~
Image2D
();
void
*
ptr
()
const
;
protected
:
struct
Impl
;
Impl
*
p
;
};
}}
#endif
modules/core/src/ocl.cpp
View file @
c57e427f
...
...
@@ -1705,6 +1705,9 @@ String Device::OpenCL_C_Version() const
String
Device
::
OpenCLVersion
()
const
{
return
p
?
p
->
getStrProp
(
CL_DEVICE_EXTENSIONS
)
:
String
();
}
String
Device
::
deviceVersion
()
const
{
return
p
?
p
->
getStrProp
(
CL_DEVICE_VERSION
)
:
String
();
}
String
Device
::
driverVersion
()
const
{
return
p
?
p
->
getStrProp
(
CL_DRIVER_VERSION
)
:
String
();
}
...
...
@@ -2689,6 +2692,12 @@ int Kernel::set(int i, const void* value, size_t sz)
return
i
+
1
;
}
int
Kernel
::
set
(
int
i
,
const
Image2D
&
image2D
)
{
cl_mem
h
=
(
cl_mem
)
image2D
.
ptr
();
return
set
(
i
,
&
h
,
sizeof
(
h
));
}
int
Kernel
::
set
(
int
i
,
const
UMat
&
m
)
{
return
set
(
i
,
KernelArg
(
KernelArg
::
READ_WRITE
,
(
UMat
*
)
&
m
,
0
,
0
));
...
...
@@ -3785,4 +3794,149 @@ const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
return
buf
;
}
///////////////////////////////////////////////////////////////////////////////////////////////
// deviceVersion has format
// OpenCL<space><major_version.minor_version><space><vendor-specific information>
// by specification
// http://www.khronos.org/registry/cl/sdk/1.1/docs/man/xhtml/clGetDeviceInfo.html
// http://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/clGetDeviceInfo.html
static
void
parseDeviceVersion
(
const
String
&
deviceVersion
,
int
&
major
,
int
&
minor
)
{
major
=
minor
=
0
;
if
(
10
>=
deviceVersion
.
length
())
return
;
const
char
*
pstr
=
deviceVersion
.
c_str
();
if
(
0
!=
strncmp
(
pstr
,
"OpenCL "
,
7
))
return
;
size_t
ppos
=
deviceVersion
.
find
(
'.'
,
7
);
if
(
String
::
npos
==
ppos
)
return
;
String
temp
=
deviceVersion
.
substr
(
7
,
ppos
-
7
);
major
=
atoi
(
temp
.
c_str
());
temp
=
deviceVersion
.
substr
(
ppos
+
1
);
minor
=
atoi
(
temp
.
c_str
());
}
struct
Image2D
::
Impl
{
Impl
(
const
UMat
&
src
)
{
init
(
src
);
}
~
Impl
()
{
if
(
handle
)
clReleaseMemObject
(
handle
);
}
void
init
(
const
UMat
&
src
)
{
cl_image_format
format
;
int
err
;
int
depth
=
src
.
depth
();
int
channels
=
src
.
channels
();
switch
(
depth
)
{
case
CV_8U
:
format
.
image_channel_data_type
=
CL_UNSIGNED_INT8
;
break
;
case
CV_32S
:
format
.
image_channel_data_type
=
CL_UNSIGNED_INT32
;
break
;
case
CV_32F
:
format
.
image_channel_data_type
=
CL_FLOAT
;
break
;
default
:
CV_Error
(
-
1
,
"Image forma is not supported"
);
break
;
}
switch
(
channels
)
{
case
1
:
format
.
image_channel_order
=
CL_R
;
break
;
case
3
:
format
.
image_channel_order
=
CL_RGB
;
break
;
case
4
:
format
.
image_channel_order
=
CL_RGBA
;
break
;
default
:
CV_Error
(
-
1
,
"Image format is not supported"
);
break
;
}
#ifdef CL_VERSION_1_2
//this enables backwards portability to
//run on OpenCL 1.1 platform if library binaries are compiled with OpenCL 1.2 support
int
minor
,
major
;
parseDeviceVersion
(
Device
::
getDefault
().
deviceVersion
(),
major
,
minor
);
if
((
1
<
major
)
||
((
1
==
major
)
&&
(
2
<=
minor
)))
{
cl_image_desc
desc
;
desc
.
image_type
=
CL_MEM_OBJECT_IMAGE2D
;
desc
.
image_width
=
src
.
cols
;
desc
.
image_height
=
src
.
rows
;
desc
.
image_depth
=
0
;
desc
.
image_array_size
=
1
;
desc
.
image_row_pitch
=
0
;
desc
.
image_slice_pitch
=
0
;
desc
.
buffer
=
NULL
;
desc
.
num_mip_levels
=
0
;
desc
.
num_samples
=
0
;
handle
=
clCreateImage
((
cl_context
)
Context2
::
getDefault
().
ptr
(),
CL_MEM_READ_WRITE
,
&
format
,
&
desc
,
NULL
,
&
err
);
}
else
#endif
{
handle
=
clCreateImage2D
((
cl_context
)
Context2
::
getDefault
().
ptr
(),
CL_MEM_READ_WRITE
,
&
format
,
src
.
cols
,
src
.
rows
,
0
,
NULL
,
&
err
);
}
size_t
origin
[]
=
{
0
,
0
,
0
};
size_t
region
[]
=
{
src
.
cols
,
src
.
rows
,
1
};
cl_mem
devData
;
if
(
!
src
.
isContinuous
())
{
devData
=
clCreateBuffer
((
cl_context
)
Context2
::
getDefault
().
ptr
(),
CL_MEM_READ_ONLY
,
src
.
cols
*
src
.
rows
*
src
.
elemSize
(),
NULL
,
NULL
);
const
size_t
roi
[
3
]
=
{
src
.
cols
*
src
.
elemSize
(),
src
.
rows
,
1
};
clEnqueueCopyBufferRect
((
cl_command_queue
)
Queue
::
getDefault
().
ptr
(),
(
cl_mem
)
src
.
handle
(
ACCESS_READ
),
devData
,
origin
,
origin
,
roi
,
src
.
step
,
0
,
src
.
cols
*
src
.
elemSize
(),
0
,
0
,
NULL
,
NULL
);
clFlush
((
cl_command_queue
)
Queue
::
getDefault
().
ptr
());
}
else
{
devData
=
(
cl_mem
)
src
.
handle
(
ACCESS_READ
);
}
clEnqueueCopyBufferToImage
((
cl_command_queue
)
Queue
::
getDefault
().
ptr
(),
devData
,
handle
,
0
,
origin
,
region
,
0
,
NULL
,
0
);
if
(
!
src
.
isContinuous
())
{
clFlush
((
cl_command_queue
)
Queue
::
getDefault
().
ptr
());
clReleaseMemObject
(
devData
);
}
}
IMPLEMENT_REFCOUNTABLE
();
cl_mem
handle
;
};
Image2D
::
Image2D
()
{
p
=
NULL
;
}
Image2D
::
Image2D
(
const
UMat
&
src
)
{
p
=
new
Impl
(
src
);
}
Image2D
::~
Image2D
()
{
if
(
p
)
p
->
release
();
}
void
*
Image2D
::
ptr
()
const
{
return
p
?
p
->
handle
:
0
;
}
}}
modules/video/src/lkpyramid.cpp
View file @
c57e427f
...
...
@@ -43,6 +43,7 @@
#include <float.h>
#include <stdio.h>
#include "lkpyramid.hpp"
#include "opencl_kernels.hpp"
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
...
...
@@ -590,6 +591,231 @@ int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Si
return
maxLevel
;
}
namespace
cv
{
class
PyrLKOpticalFlow
{
struct
dim3
{
unsigned
int
x
,
y
,
z
;
};
public
:
PyrLKOpticalFlow
()
{
winSize
=
Size
(
21
,
21
);
maxLevel
=
3
;
iters
=
30
;
derivLambda
=
0.5
;
useInitialFlow
=
false
;
//minEigThreshold = 1e-4f;
//getMinEigenVals = false;
}
bool
sparse
(
const
UMat
&
prevImg
,
const
UMat
&
nextImg
,
const
UMat
&
prevPts
,
UMat
&
nextPts
,
UMat
&
status
,
UMat
&
err
)
{
if
(
prevPts
.
empty
())
{
nextPts
.
release
();
status
.
release
();
return
false
;
}
derivLambda
=
std
::
min
(
std
::
max
(
derivLambda
,
0.0
),
1.0
);
if
(
derivLambda
<
0
)
return
false
;
if
(
maxLevel
<
0
||
winSize
.
width
<=
2
||
winSize
.
height
<=
2
)
return
false
;
iters
=
std
::
min
(
std
::
max
(
iters
,
0
),
100
);
if
(
prevPts
.
rows
!=
1
||
prevPts
.
type
()
!=
CV_32FC2
)
return
false
;
dim3
patch
;
calcPatchSize
(
patch
);
if
(
patch
.
x
<=
0
||
patch
.
x
>=
6
||
patch
.
y
<=
0
||
patch
.
y
>=
6
)
return
false
;
if
(
!
initWaveSize
())
return
false
;
if
(
useInitialFlow
)
{
if
(
nextPts
.
size
()
!=
prevPts
.
size
()
||
nextPts
.
type
()
!=
CV_32FC2
)
return
false
;
}
else
ensureSizeIsEnough
(
1
,
prevPts
.
cols
,
prevPts
.
type
(),
nextPts
);
UMat
temp1
=
(
useInitialFlow
?
nextPts
:
prevPts
).
reshape
(
1
);
UMat
temp2
=
nextPts
.
reshape
(
1
);
multiply
(
1.0
f
/
(
1
<<
maxLevel
)
/
2.0
f
,
temp1
,
temp2
);
ensureSizeIsEnough
(
1
,
prevPts
.
cols
,
CV_8UC1
,
status
);
status
.
setTo
(
Scalar
::
all
(
1
));
ensureSizeIsEnough
(
1
,
prevPts
.
cols
,
CV_32FC1
,
err
);
// build the image pyramids.
std
::
vector
<
UMat
>
prevPyr
;
prevPyr
.
resize
(
maxLevel
+
1
);
std
::
vector
<
UMat
>
nextPyr
;
nextPyr
.
resize
(
maxLevel
+
1
);
prevImg
.
convertTo
(
prevPyr
[
0
],
CV_32F
);
nextImg
.
convertTo
(
nextPyr
[
0
],
CV_32F
);
for
(
int
level
=
1
;
level
<=
maxLevel
;
++
level
)
{
pyrDown
(
prevPyr
[
level
-
1
],
prevPyr
[
level
]);
pyrDown
(
nextPyr
[
level
-
1
],
nextPyr
[
level
]);
}
// dI/dx ~ Ix, dI/dy ~ Iy
for
(
int
level
=
maxLevel
;
level
>=
0
;
level
--
)
{
lkSparse_run
(
prevPyr
[
level
],
nextPyr
[
level
],
prevPts
,
nextPts
,
status
,
err
,
prevPts
.
cols
,
level
,
patch
);
}
return
true
;
}
Size
winSize
;
int
maxLevel
;
int
iters
;
double
derivLambda
;
bool
useInitialFlow
;
//float minEigThreshold;
//bool getMinEigenVals;
private
:
void
calcPatchSize
(
dim3
&
patch
)
{
dim3
block
;
//winSize.width *= cn;
if
(
winSize
.
width
>
32
&&
winSize
.
width
>
2
*
winSize
.
height
)
{
block
.
x
=
32
;
block
.
y
=
8
;
}
else
{
block
.
x
=
16
;
block
.
y
=
16
;
}
patch
.
x
=
(
winSize
.
width
+
block
.
x
-
1
)
/
block
.
x
;
patch
.
y
=
(
winSize
.
height
+
block
.
y
-
1
)
/
block
.
y
;
block
.
z
=
patch
.
z
=
1
;
}
private
:
int
waveSize
;
bool
initWaveSize
()
{
waveSize
=
1
;
if
(
isDeviceCPU
())
return
true
;
ocl
::
Kernel
kernel
;
if
(
!
kernel
.
create
(
"lkSparse"
,
cv
::
ocl
::
video
::
pyrlk_oclsrc
,
""
))
return
false
;
waveSize
=
(
int
)
kernel
.
preferedWorkGroupSizeMultiple
();
return
true
;
}
bool
lkSparse_run
(
UMat
&
I
,
UMat
&
J
,
const
UMat
&
prevPts
,
UMat
&
nextPts
,
UMat
&
status
,
UMat
&
err
,
int
ptcount
,
int
level
,
dim3
patch
)
{
size_t
localThreads
[
3
]
=
{
8
,
8
};
size_t
globalThreads
[
3
]
=
{
8
*
ptcount
,
8
};
char
calcErr
=
(
0
==
level
)
?
1
:
0
;
cv
::
String
build_options
;
if
(
isDeviceCPU
())
build_options
=
" -D CPU"
;
else
build_options
=
cv
::
format
(
"-D WAVE_SIZE=%d"
,
waveSize
);
ocl
::
Kernel
kernel
;
if
(
!
kernel
.
create
(
"lkSparse"
,
cv
::
ocl
::
video
::
pyrlk_oclsrc
,
build_options
))
return
false
;
ocl
::
Image2D
imageI
(
I
);
ocl
::
Image2D
imageJ
(
J
);
int
idxArg
=
0
;
idxArg
=
kernel
.
set
(
idxArg
,
imageI
);
//image2d_t I
idxArg
=
kernel
.
set
(
idxArg
,
imageJ
);
//image2d_t J
idxArg
=
kernel
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadOnly
(
prevPts
));
// __global const float2* prevPts
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
prevPts
.
step
);
// int prevPtsStep
idxArg
=
kernel
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadWrite
(
nextPts
));
// __global const float2* nextPts
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
nextPts
.
step
);
// int nextPtsStep
idxArg
=
kernel
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadWrite
(
status
));
// __global uchar* status
idxArg
=
kernel
.
set
(
idxArg
,
ocl
::
KernelArg
::
PtrReadWrite
(
err
));
// __global float* err
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
level
);
// const int level
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
I
.
rows
);
// const int rows
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
I
.
cols
);
// const int cols
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
patch
.
x
);
// int PATCH_X
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
patch
.
y
);
// int PATCH_Y
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
winSize
.
width
);
// int c_winSize_x
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
winSize
.
height
);
// int c_winSize_y
idxArg
=
kernel
.
set
(
idxArg
,
(
int
)
iters
);
// int c_iters
idxArg
=
kernel
.
set
(
idxArg
,
(
char
)
calcErr
);
//char calcErr
return
kernel
.
run
(
2
,
globalThreads
,
localThreads
,
true
);
}
private
:
inline
static
bool
isDeviceCPU
()
{
return
(
cv
::
ocl
::
Device
::
TYPE_CPU
==
cv
::
ocl
::
Device
::
getDefault
().
type
());
}
inline
static
void
ensureSizeIsEnough
(
int
rows
,
int
cols
,
int
type
,
UMat
&
m
)
{
if
(
m
.
type
()
==
type
&&
m
.
rows
>=
rows
&&
m
.
cols
>=
cols
)
m
=
m
(
Rect
(
0
,
0
,
cols
,
rows
));
else
m
.
create
(
rows
,
cols
,
type
);
}
};
bool
ocl_calcOpticalFlowPyrLK
(
InputArray
_prevImg
,
InputArray
_nextImg
,
InputArray
_prevPts
,
InputOutputArray
_nextPts
,
OutputArray
_status
,
OutputArray
_err
,
Size
winSize
,
int
maxLevel
,
TermCriteria
criteria
,
int
flags
/*, double minEigThreshold*/
)
{
if
(
0
!=
(
OPTFLOW_LK_GET_MIN_EIGENVALS
&
flags
))
return
false
;
if
(
!
cv
::
ocl
::
Device
::
getDefault
().
imageSupport
())
return
false
;
if
(
_nextImg
.
size
()
!=
_prevImg
.
size
())
return
false
;
int
typePrev
=
_prevImg
.
type
();
int
typeNext
=
_nextImg
.
type
();
if
((
1
!=
CV_MAT_CN
(
typePrev
))
||
(
1
!=
CV_MAT_CN
(
typeNext
)))
return
false
;
if
((
0
!=
CV_MAT_DEPTH
(
typePrev
))
||
(
0
!=
CV_MAT_DEPTH
(
typeNext
)))
return
false
;
PyrLKOpticalFlow
opticalFlow
;
opticalFlow
.
winSize
=
winSize
;
opticalFlow
.
maxLevel
=
maxLevel
;
opticalFlow
.
iters
=
criteria
.
maxCount
;
opticalFlow
.
derivLambda
=
criteria
.
epsilon
;
opticalFlow
.
useInitialFlow
=
(
0
!=
(
flags
&
OPTFLOW_USE_INITIAL_FLOW
));
UMat
umatErr
;
if
(
_err
.
needed
())
{
_err
.
create
(
_prevPts
.
size
(),
CV_8UC1
);
umatErr
=
_err
.
getUMat
();
}
_nextPts
.
create
(
_prevPts
.
size
(),
_prevPts
.
type
());
_status
.
create
(
_prevPts
.
size
(),
CV_8UC1
);
UMat
umatNextPts
=
_nextPts
.
getUMat
();
UMat
umatStatus
=
_status
.
getUMat
();
return
opticalFlow
.
sparse
(
_prevImg
.
getUMat
(),
_nextImg
.
getUMat
(),
_prevPts
.
getUMat
(),
umatNextPts
,
umatStatus
,
umatErr
);
}
};
void
cv
::
calcOpticalFlowPyrLK
(
InputArray
_prevImg
,
InputArray
_nextImg
,
InputArray
_prevPts
,
InputOutputArray
_nextPts
,
OutputArray
_status
,
OutputArray
_err
,
...
...
@@ -597,6 +823,10 @@ void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg,
TermCriteria
criteria
,
int
flags
,
double
minEigThreshold
)
{
bool
use_opencl
=
ocl
::
useOpenCL
()
&&
(
_prevImg
.
isUMat
()
||
_nextImg
.
isUMat
());
if
(
use_opencl
&&
ocl_calcOpticalFlowPyrLK
(
_prevImg
,
_nextImg
,
_prevPts
,
_nextPts
,
_status
,
_err
,
winSize
,
maxLevel
,
criteria
,
flags
/*, minEigThreshold*/
))
return
;
Mat
prevPtsMat
=
_prevPts
.
getMat
();
const
int
derivDepth
=
DataType
<
cv
::
detail
::
deriv_type
>::
depth
;
...
...
modules/video/src/opencl/pyrlk.cl
0 → 100644
View file @
c57e427f
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//
IMPORTANT:
READ
BEFORE
DOWNLOADING,
COPYING,
INSTALLING
OR
USING.
//
//
By
downloading,
copying,
installing
or
using
the
software
you
agree
to
this
license.
//
If
you
do
not
agree
to
this
license,
do
not
download,
install,
//
copy
or
use
the
software.
//
//
//
License
Agreement
//
For
Open
Source
Computer
Vision
Library
//
//
Copyright
(
C
)
2010-2012,
Multicoreware,
Inc.,
all
rights
reserved.
//
Copyright
(
C
)
2010-2012,
Advanced
Micro
Devices,
Inc.,
all
rights
reserved.
//
Third
party
copyrights
are
property
of
their
respective
owners.
//
//
@Authors
//
Dachuan
Zhao,
dachuan@multicorewareinc.com
//
Yao
Wang,
bitwangyaoyao@gmail.com
//
Xiaopeng
Fu,
fuxiaopeng2222@163.com
//
//
Redistribution
and
use
in
source
and
binary
forms,
with
or
without
modification,
//
are
permitted
provided
that
the
following
conditions
are
met:
//
//
*
Redistribution
's
of
source
code
must
retain
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer.
//
//
*
Redistribution
's
in
binary
form
must
reproduce
the
above
copyright
notice,
//
this
list
of
conditions
and
the
following
disclaimer
in
the
documentation
//
and/or
other
materials
provided
with
the
distribution.
//
//
*
The
name
of
the
copyright
holders
may
not
be
used
to
endorse
or
promote
products
//
derived
from
this
software
without
specific
prior
written
permission.
//
//
This
software
is
provided
by
the
copyright
holders
and
contributors
as
is
and
//
any
express
or
implied
warranties,
including,
but
not
limited
to,
the
implied
//
warranties
of
merchantability
and
fitness
for
a
particular
purpose
are
disclaimed.
//
In
no
event
shall
the
Intel
Corporation
or
contributors
be
liable
for
any
direct,
//
indirect,
incidental,
special,
exemplary,
or
consequential
damages
//
(
including,
but
not
limited
to,
procurement
of
substitute
goods
or
services
;
//
loss
of
use,
data,
or
profits
; or business interruption) however caused
//
and
on
any
theory
of
liability,
whether
in
contract,
strict
liability,
//
or
tort
(
including
negligence
or
otherwise
)
arising
in
any
way
out
of
//
the
use
of
this
software,
even
if
advised
of
the
possibility
of
such
damage.
//
//M*/
#
define
BUFFER
64
#
define
BUFFER2
BUFFER>>1
#
ifndef
WAVE_SIZE
#
define
WAVE_SIZE
1
#
endif
#
ifdef
CPU
inline
void
reduce3
(
float
val1,
float
val2,
float
val3,
__local
float*
smem1,
__local
float*
smem2,
__local
float*
smem3,
int
tid
)
{
smem1[tid]
=
val1
;
smem2[tid]
=
val2
;
smem3[tid]
=
val3
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
for
(
int
i
=
BUFFER2
; i > 0; i >>= 1)
{
if
(
tid
<
i
)
{
smem1[tid]
+=
smem1[tid
+
i]
;
smem2[tid]
+=
smem2[tid
+
i]
;
smem3[tid]
+=
smem3[tid
+
i]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
}
inline
void
reduce2
(
float
val1,
float
val2,
volatile
__local
float*
smem1,
volatile
__local
float*
smem2,
int
tid
)
{
smem1[tid]
=
val1
;
smem2[tid]
=
val2
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
for
(
int
i
=
BUFFER2
; i > 0; i >>= 1)
{
if
(
tid
<
i
)
{
smem1[tid]
+=
smem1[tid
+
i]
;
smem2[tid]
+=
smem2[tid
+
i]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
}
inline
void
reduce1
(
float
val1,
volatile
__local
float*
smem1,
int
tid
)
{
smem1[tid]
=
val1
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
for
(
int
i
=
BUFFER2
; i > 0; i >>= 1)
{
if
(
tid
<
i
)
{
smem1[tid]
+=
smem1[tid
+
i]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
}
#
else
inline
void
reduce3
(
float
val1,
float
val2,
float
val3,
__local
volatile
float*
smem1,
__local
volatile
float*
smem2,
__local
volatile
float*
smem3,
int
tid
)
{
smem1[tid]
=
val1
;
smem2[tid]
=
val2
;
smem3[tid]
=
val3
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
32
)
{
smem1[tid]
+=
smem1[tid
+
32]
;
smem2[tid]
+=
smem2[tid
+
32]
;
smem3[tid]
+=
smem3[tid
+
32]
;
#
if
WAVE_SIZE
<
32
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
16
)
{
#
endif
smem1[tid]
+=
smem1[tid
+
16]
;
smem2[tid]
+=
smem2[tid
+
16]
;
smem3[tid]
+=
smem3[tid
+
16]
;
#
if
WAVE_SIZE
<16
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
8
)
{
#
endif
smem1[tid]
+=
smem1[tid
+
8]
;
smem2[tid]
+=
smem2[tid
+
8]
;
smem3[tid]
+=
smem3[tid
+
8]
;
smem1[tid]
+=
smem1[tid
+
4]
;
smem2[tid]
+=
smem2[tid
+
4]
;
smem3[tid]
+=
smem3[tid
+
4]
;
smem1[tid]
+=
smem1[tid
+
2]
;
smem2[tid]
+=
smem2[tid
+
2]
;
smem3[tid]
+=
smem3[tid
+
2]
;
smem1[tid]
+=
smem1[tid
+
1]
;
smem2[tid]
+=
smem2[tid
+
1]
;
smem3[tid]
+=
smem3[tid
+
1]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
inline
void
reduce2
(
float
val1,
float
val2,
__local
volatile
float*
smem1,
__local
volatile
float*
smem2,
int
tid
)
{
smem1[tid]
=
val1
;
smem2[tid]
=
val2
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
32
)
{
smem1[tid]
+=
smem1[tid
+
32]
;
smem2[tid]
+=
smem2[tid
+
32]
;
#
if
WAVE_SIZE
<
32
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
16
)
{
#
endif
smem1[tid]
+=
smem1[tid
+
16]
;
smem2[tid]
+=
smem2[tid
+
16]
;
#
if
WAVE_SIZE
<16
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
8
)
{
#
endif
smem1[tid]
+=
smem1[tid
+
8]
;
smem2[tid]
+=
smem2[tid
+
8]
;
smem1[tid]
+=
smem1[tid
+
4]
;
smem2[tid]
+=
smem2[tid
+
4]
;
smem1[tid]
+=
smem1[tid
+
2]
;
smem2[tid]
+=
smem2[tid
+
2]
;
smem1[tid]
+=
smem1[tid
+
1]
;
smem2[tid]
+=
smem2[tid
+
1]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
inline
void
reduce1
(
float
val1,
__local
volatile
float*
smem1,
int
tid
)
{
smem1[tid]
=
val1
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
32
)
{
smem1[tid]
+=
smem1[tid
+
32]
;
#
if
WAVE_SIZE
<
32
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
16
)
{
#
endif
smem1[tid]
+=
smem1[tid
+
16]
;
#
if
WAVE_SIZE
<16
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
if
(
tid
<
8
)
{
#
endif
smem1[tid]
+=
smem1[tid
+
8]
;
smem1[tid]
+=
smem1[tid
+
4]
;
smem1[tid]
+=
smem1[tid
+
2]
;
smem1[tid]
+=
smem1[tid
+
1]
;
}
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
}
#
endif
#
define
SCALE
(
1.0f
/
(
1
<<
20
))
#
define
THRESHOLD
0.01f
//
Image
read
mode
__constant
sampler_t
sampler
=
CLK_NORMALIZED_COORDS_FALSE
| CLK_ADDRESS_CLAMP_TO_EDGE |
CLK_FILTER_LINEAR
;
inline
void
SetPatch
(
image2d_t
I,
float
x,
float
y,
float*
Pch,
float*
Dx,
float*
Dy,
float*
A11,
float*
A12,
float*
A22
)
{
*Pch
=
read_imagef
(
I,
sampler,
(
float2
)(
x,
y
))
.
x
;
float
dIdx
=
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
-
1
))
.
x
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
))
.
x
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
+
1
))
.
x
-
(
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
-
1
))
.
x
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
))
.
x
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
+
1
))
.
x
)
;
float
dIdy
=
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
+
1
))
.
x
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x,
y
+
1
))
.
x
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
+
1
))
.
x
-
(
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
-
1
))
.
x
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x,
y
-
1
))
.
x
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
-
1
))
.
x
)
;
*Dx
=
dIdx
;
*Dy
=
dIdy
;
*A11
+=
dIdx
*
dIdx
;
*A12
+=
dIdx
*
dIdy
;
*A22
+=
dIdy
*
dIdy
;
}
inline
void
GetPatch
(
image2d_t
J,
float
x,
float
y,
float*
Pch,
float*
Dx,
float*
Dy,
float*
b1,
float*
b2
)
{
float
J_val
=
read_imagef
(
J,
sampler,
(
float2
)(
x,
y
))
.
x
;
float
diff
=
(
J_val
-
*Pch
)
*
32.0f
;
*b1
+=
diff**Dx
;
*b2
+=
diff**Dy
;
}
inline
void
GetError
(
image2d_t
J,
const
float
x,
const
float
y,
const
float*
Pch,
float*
errval
)
{
float
diff
=
read_imagef
(
J,
sampler,
(
float2
)(
x,y
))
.
x-*Pch
;
*errval
+=
fabs
(
diff
)
;
}
inline
void
SetPatch4
(
image2d_t
I,
const
float
x,
const
float
y,
float4*
Pch,
float4*
Dx,
float4*
Dy,
float*
A11,
float*
A12,
float*
A22
)
{
*Pch
=
read_imagef
(
I,
sampler,
(
float2
)(
x,
y
))
;
float4
dIdx
=
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
-
1
))
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
))
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
+
1
))
-
(
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
-
1
))
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
))
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
+
1
)))
;
float4
dIdy
=
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
+
1
))
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x,
y
+
1
))
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
+
1
))
-
(
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
-
1
,
y
-
1
))
+
10.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x,
y
-
1
))
+
3.0f
*
read_imagef
(
I,
sampler,
(
float2
)(
x
+
1
,
y
-
1
)))
;
*Dx
=
dIdx
;
*Dy
=
dIdy
;
float4
sqIdx
=
dIdx
*
dIdx
;
*A11
+=
sqIdx.x
+
sqIdx.y
+
sqIdx.z
;
sqIdx
=
dIdx
*
dIdy
;
*A12
+=
sqIdx.x
+
sqIdx.y
+
sqIdx.z
;
sqIdx
=
dIdy
*
dIdy
;
*A22
+=
sqIdx.x
+
sqIdx.y
+
sqIdx.z
;
}
inline
void
GetPatch4
(
image2d_t
J,
const
float
x,
const
float
y,
const
float4*
Pch,
const
float4*
Dx,
const
float4*
Dy,
float*
b1,
float*
b2
)
{
float4
J_val
=
read_imagef
(
J,
sampler,
(
float2
)(
x,
y
))
;
float4
diff
=
(
J_val
-
*Pch
)
*
32.0f
;
float4
xdiff
=
diff*
*Dx
;
*b1
+=
xdiff.x
+
xdiff.y
+
xdiff.z
;
xdiff
=
diff*
*Dy
;
*b2
+=
xdiff.x
+
xdiff.y
+
xdiff.z
;
}
inline
void
GetError4
(
image2d_t
J,
const
float
x,
const
float
y,
const
float4*
Pch,
float*
errval
)
{
float4
diff
=
read_imagef
(
J,
sampler,
(
float2
)(
x,y
))
-*Pch
;
*errval
+=
fabs
(
diff.x
)
+
fabs
(
diff.y
)
+
fabs
(
diff.z
)
;
}
#
define
GRIDSIZE
3
__kernel
void
lkSparse
(
image2d_t
I,
image2d_t
J,
__global
const
float2*
prevPts,
int
prevPtsStep,
__global
float2*
nextPts,
int
nextPtsStep,
__global
uchar*
status,
__global
float*
err,
const
int
level,
const
int
rows,
const
int
cols,
int
PATCH_X,
int
PATCH_Y,
int
c_winSize_x,
int
c_winSize_y,
int
c_iters,
char
calcErr
)
{
__local
float
smem1[BUFFER]
;
__local
float
smem2[BUFFER]
;
__local
float
smem3[BUFFER]
;
unsigned
int
xid=get_local_id
(
0
)
;
unsigned
int
yid=get_local_id
(
1
)
;
unsigned
int
gid=get_group_id
(
0
)
;
unsigned
int
xsize=get_local_size
(
0
)
;
unsigned
int
ysize=get_local_size
(
1
)
;
int
xBase,
yBase,
k
;
float2
c_halfWin
=
(
float2
)((
c_winSize_x
-
1
)
>>1,
(
c_winSize_y
-
1
)
>>1
)
;
const
int
tid
=
mad24
(
yid,
xsize,
xid
)
;
float2
prevPt
=
prevPts[gid]
/
(
float2
)(
1
<<
level
)
;
if
(
prevPt.x
<
0
|
| prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{
if (tid == 0 && level == 0)
{
status[gid] = 0;
}
return;
}
prevPt -= c_halfWin;
// extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0;
float A12 = 0;
float A22 = 0;
float I_patch[GRIDSIZE][GRIDSIZE];
float dIdx_patch[GRIDSIZE][GRIDSIZE];
float dIdy_patch[GRIDSIZE][GRIDSIZE];
yBase=yid;
{
xBase=xid;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][0], &dIdx_patch[0][0], &dIdy_patch[0][0],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][1], &dIdx_patch[0][1], &dIdy_patch[0][1],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[0][2], &dIdx_patch[0][2], &dIdy_patch[0][2],
&A11, &A12, &A22);
}
yBase+=ysize;
{
xBase=xid;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][0], &dIdx_patch[1][0], &dIdy_patch[1][0],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][1], &dIdx_patch[1][1], &dIdy_patch[1][1],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[1][2], &dIdx_patch[1][2], &dIdy_patch[1][2],
&A11, &A12, &A22);
}
yBase+=ysize;
if(yBase<c_winSize_y)
{
xBase=xid;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][0], &dIdx_patch[2][0], &dIdy_patch[2][0],
&A11, &A12, &A22);
xBase+=xsize;
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][1], &dIdx_patch[2][1], &dIdy_patch[2][1],
&A11, &A12, &A22);
xBase+=xsize;
if(xBase<c_winSize_x)
SetPatch(I, prevPt.x + xBase + 0.5f, prevPt.y + yBase + 0.5f,
&I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
&A11, &A12, &A22);
}
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
A11 = smem1[0];
A12 = smem2[0];
A22 = smem3[0];
barrier(CLK_LOCAL_MEM_FENCE);
float D = A11 * A22 - A12 * A12;
if (D < 1.192092896e-07f)
{
if (tid == 0 && level == 0)
status[gid] = 0;
return;
}
A11 /= D;
A12 /= D;
A22 /= D;
prevPt = nextPts[gid] * 2.0f - c_halfWin;
for (k = 0; k < c_iters; ++k)
{
if (prevPt.x < -c_halfWin.x || prevPt.x >= cols || prevPt.y < -c_halfWin.y |
|
prevPt.y
>=
rows
)
{
if
(
tid
==
0
&&
level
==
0
)
status[gid]
=
0
;
return
;
}
float
b1
=
0
;
float
b2
=
0
;
yBase=yid
;
{
xBase=xid
;
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[0][0],
&dIdx_patch[0][0],
&dIdy_patch[0][0],
&b1,
&b2
)
;
xBase+=xsize
;
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[0][1],
&dIdx_patch[0][1],
&dIdy_patch[0][1],
&b1,
&b2
)
;
xBase+=xsize
;
if
(
xBase<c_winSize_x
)
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[0][2],
&dIdx_patch[0][2],
&dIdy_patch[0][2],
&b1,
&b2
)
;
}
yBase+=ysize
;
{
xBase=xid
;
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[1][0],
&dIdx_patch[1][0],
&dIdy_patch[1][0],
&b1,
&b2
)
;
xBase+=xsize
;
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[1][1],
&dIdx_patch[1][1],
&dIdy_patch[1][1],
&b1,
&b2
)
;
xBase+=xsize
;
if
(
xBase<c_winSize_x
)
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[1][2],
&dIdx_patch[1][2],
&dIdy_patch[1][2],
&b1,
&b2
)
;
}
yBase+=ysize
;
if
(
yBase<c_winSize_y
)
{
xBase=xid
;
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[2][0],
&dIdx_patch[2][0],
&dIdy_patch[2][0],
&b1,
&b2
)
;
xBase+=xsize
;
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[2][1],
&dIdx_patch[2][1],
&dIdy_patch[2][1],
&b1,
&b2
)
;
xBase+=xsize
;
if
(
xBase<c_winSize_x
)
GetPatch
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[2][2],
&dIdx_patch[2][2],
&dIdy_patch[2][2],
&b1,
&b2
)
;
}
reduce2
(
b1,
b2,
smem1,
smem2,
tid
)
;
b1
=
smem1[0]
;
b2
=
smem2[0]
;
barrier
(
CLK_LOCAL_MEM_FENCE
)
;
float2
delta
;
delta.x
=
A12
*
b2
-
A22
*
b1
;
delta.y
=
A12
*
b1
-
A11
*
b2
;
prevPt
+=
delta
;
if
(
fabs
(
delta.x
)
<
THRESHOLD
&&
fabs
(
delta.y
)
<
THRESHOLD
)
break
;
}
D
=
0.0f
;
if
(
calcErr
)
{
yBase=yid
;
{
xBase=xid
;
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[0][0],
&D
)
;
xBase+=xsize
;
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[0][1],
&D
)
;
xBase+=xsize
;
if
(
xBase<c_winSize_x
)
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[0][2],
&D
)
;
}
yBase+=ysize
;
{
xBase=xid
;
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[1][0],
&D
)
;
xBase+=xsize
;
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[1][1],
&D
)
;
xBase+=xsize
;
if
(
xBase<c_winSize_x
)
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[1][2],
&D
)
;
}
yBase+=ysize
;
if
(
yBase<c_winSize_y
)
{
xBase=xid
;
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[2][0],
&D
)
;
xBase+=xsize
;
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[2][1],
&D
)
;
xBase+=xsize
;
if
(
xBase<c_winSize_x
)
GetError
(
J,
prevPt.x
+
xBase
+
0.5f,
prevPt.y
+
yBase
+
0.5f,
&I_patch[2][2],
&D
)
;
}
reduce1
(
D,
smem1,
tid
)
;
}
if
(
tid
==
0
)
{
prevPt
+=
c_halfWin
;
nextPts[gid]
=
prevPt
;
if
(
calcErr
)
err[gid]
=
smem1[0]
/
(
float
)(
c_winSize_x
*
c_winSize_y
)
;
}
}
\ No newline at end of file
modules/video/test/ocl/test_optflowpyrlk.cpp
0 → 100644
View file @
c57e427f
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace
cvtest
{
namespace
ocl
{
/////////////////////////////////////////////////////////////////////////////////////////////////
// PyrLKOpticalFlow
PARAM_TEST_CASE
(
PyrLKOpticalFlow
,
int
,
int
)
{
Size
winSize
;
int
maxLevel
;
TermCriteria
criteria
;
int
flags
;
double
minEigThreshold
;
virtual
void
SetUp
()
{
winSize
=
Size
(
GET_PARAM
(
0
),
GET_PARAM
(
0
));
maxLevel
=
GET_PARAM
(
1
);
criteria
=
TermCriteria
(
TermCriteria
::
COUNT
+
TermCriteria
::
EPS
,
30
,
0.01
);
flags
=
0
;
minEigThreshold
=
1e-4
f
;
}
};
OCL_TEST_P
(
PyrLKOpticalFlow
,
Mat
)
{
cv
::
Mat
frame0
=
readImage
(
"optflow/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame0
.
empty
());
UMat
umatFrame0
;
frame0
.
copyTo
(
umatFrame0
);
cv
::
Mat
frame1
=
readImage
(
"optflow/rubberwhale1.png"
,
cv
::
IMREAD_GRAYSCALE
);
ASSERT_FALSE
(
frame1
.
empty
());
UMat
umatFrame1
;
frame1
.
copyTo
(
umatFrame1
);
std
::
vector
<
cv
::
Point2f
>
pts
;
cv
::
goodFeaturesToTrack
(
frame0
,
pts
,
1000
,
0.01
,
0.0
);
std
::
vector
<
cv
::
Point2f
>
nextPtsCPU
;
std
::
vector
<
unsigned
char
>
statusCPU
;
std
::
vector
<
float
>
errCPU
;
OCL_OFF
(
cv
::
calcOpticalFlowPyrLK
(
frame0
,
frame1
,
pts
,
nextPtsCPU
,
statusCPU
,
errCPU
,
winSize
,
maxLevel
,
criteria
,
flags
,
minEigThreshold
));
UMat
umatNextPts
,
umatStatus
,
umatErr
;
OCL_ON
(
cv
::
calcOpticalFlowPyrLK
(
umatFrame0
,
umatFrame1
,
pts
,
umatNextPts
,
umatStatus
,
umatErr
,
winSize
,
maxLevel
,
criteria
,
flags
,
minEigThreshold
));
std
::
vector
<
cv
::
Point2f
>
nextPts
(
umatNextPts
.
cols
);
umatNextPts
.
copyTo
(
nextPts
);
std
::
vector
<
unsigned
char
>
status
;
umatStatus
.
copyTo
(
status
);
std
::
vector
<
float
>
err
;
umatErr
.
copyTo
(
err
);
ASSERT_EQ
(
nextPtsCPU
.
size
(),
nextPts
.
size
());
ASSERT_EQ
(
statusCPU
.
size
(),
status
.
size
());
size_t
mistmatch
=
0
;
for
(
size_t
i
=
0
;
i
<
nextPts
.
size
();
++
i
)
{
if
(
status
[
i
]
!=
statusCPU
[
i
])
{
++
mistmatch
;
continue
;
}
if
(
status
[
i
])
{
cv
::
Point2i
a
=
nextPts
[
i
];
cv
::
Point2i
b
=
nextPtsCPU
[
i
];
bool
eq
=
std
::
abs
(
a
.
x
-
b
.
x
)
<
1
&&
std
::
abs
(
a
.
y
-
b
.
y
)
<
1
;
float
errdiff
=
0.0
f
;
if
(
!
eq
||
errdiff
>
1e-1
)
++
mistmatch
;
}
}
double
bad_ratio
=
static_cast
<
double
>
(
mistmatch
)
/
(
nextPts
.
size
());
ASSERT_LE
(
bad_ratio
,
0.02
f
);
}
OCL_INSTANTIATE_TEST_CASE_P
(
Video
,
PyrLKOpticalFlow
,
Combine
(
Values
(
21
,
25
),
Values
(
3
,
5
)
)
);
}
}
// namespace cvtest::ocl
#endif // HAVE_OPENCL
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment