Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
c4974a25
Commit
c4974a25
authored
Jun 14, 2013
by
Roman Donchenko
Committed by
OpenCV Buildbot
Jun 14, 2013
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #1004 from jet47:fix-bug-3068
parents
fbc68140
a4750f49
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
36 additions
and
21 deletions
+36
-21
matmul.cpp
modules/core/src/matmul.cpp
+36
-21
No files found.
modules/core/src/matmul.cpp
View file @
c4974a25
...
...
@@ -2855,9 +2855,9 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
if
(
_mean
.
data
)
{
CV_Assert
(
_mean
.
size
()
==
mean_sz
);
CV_Assert
(
_mean
.
size
()
==
mean_sz
);
_mean
.
convertTo
(
mean
,
ctype
);
covar_flags
|=
CV_COVAR_USE_AVG
;
covar_flags
|=
CV_COVAR_USE_AVG
;
}
calcCovarMatrix
(
data
,
covar
,
mean
,
covar_flags
,
ctype
);
...
...
@@ -2901,6 +2901,36 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp
return
*
this
;
}
template
<
typename
T
>
int
computeCumulativeEnergy
(
const
Mat
&
eigenvalues
,
double
retainedVariance
)
{
CV_DbgAssert
(
eigenvalues
.
type
()
==
DataType
<
T
>::
type
);
Mat
g
(
eigenvalues
.
size
(),
DataType
<
T
>::
type
);
for
(
int
ig
=
0
;
ig
<
g
.
rows
;
ig
++
)
{
g
.
at
<
T
>
(
ig
,
0
)
=
0
;
for
(
int
im
=
0
;
im
<=
ig
;
im
++
)
{
g
.
at
<
T
>
(
ig
,
0
)
+=
eigenvalues
.
at
<
T
>
(
im
,
0
);
}
}
int
L
;
for
(
L
=
0
;
L
<
eigenvalues
.
rows
;
L
++
)
{
double
energy
=
g
.
at
<
T
>
(
L
,
0
)
/
g
.
at
<
T
>
(
g
.
rows
-
1
,
0
);
if
(
energy
>
retainedVariance
)
break
;
}
L
=
std
::
max
(
2
,
L
);
return
L
;
}
PCA
&
PCA
::
computeVar
(
InputArray
_data
,
InputArray
__mean
,
int
flags
,
double
retainedVariance
)
{
Mat
data
=
_data
.
getMat
(),
_mean
=
__mean
.
getMat
();
...
...
@@ -2977,26 +3007,11 @@ PCA& PCA::computeVar(InputArray _data, InputArray __mean, int flags, double reta
}
// compute the cumulative energy content for each eigenvector
Mat
g
(
eigenvalues
.
size
(),
ctype
);
for
(
int
ig
=
0
;
ig
<
g
.
rows
;
ig
++
)
{
g
.
at
<
float
>
(
ig
,
0
)
=
0
;
for
(
int
im
=
0
;
im
<=
ig
;
im
++
)
{
g
.
at
<
float
>
(
ig
,
0
)
+=
eigenvalues
.
at
<
float
>
(
im
,
0
);
}
}
int
L
;
for
(
L
=
0
;
L
<
eigenvalues
.
rows
;
L
++
)
{
double
energy
=
g
.
at
<
float
>
(
L
,
0
)
/
g
.
at
<
float
>
(
g
.
rows
-
1
,
0
);
if
(
energy
>
retainedVariance
)
break
;
}
L
=
std
::
max
(
2
,
L
);
if
(
ctype
==
CV_32F
)
L
=
computeCumulativeEnergy
<
float
>
(
eigenvalues
,
retainedVariance
);
else
L
=
computeCumulativeEnergy
<
double
>
(
eigenvalues
,
retainedVariance
);
// use clone() to physically copy the data and thus deallocate the original matrices
eigenvalues
=
eigenvalues
.
rowRange
(
0
,
L
).
clone
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment