Commit c470e15d authored by marina.kolpakova's avatar marina.kolpakova

integrate speprocessing strategy

parent d23a4f50
......@@ -1529,32 +1529,37 @@ public:
// ======================== GPU version for soft cascade ===================== //
// Implementation of soft (stageless) cascaded detector.
class CV_EXPORTS SCascade : public Algorithm
class CV_EXPORTS ChannelsProcessor
{
public:
enum { GENERIC = 1, SEPARABLE = 2};
class CV_EXPORTS Preprocessor
enum
{
public:
GENERIC = 1 << 4,
SEPARABLE = 2 << 4
};
// Appends specified number of HOG first-order features integrals into given vector.
// Param frame is an input 3-channel bgr image.
// Param channels is a GPU matrix of integrals.
// Param channels is a GPU matrix of optionally shrinked channels
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution.
virtual void apply(InputArray frame, OutputArray channels, Stream& stream = Stream::Null()) = 0;
// Creates a specific preprocessor implementation.
// Param shrinkage is a resizing factor. Resize is applied before the computing integral sum
// Param bins is a number of HOG-like channels.
// Param method is a channel computing method.
static cv::Ptr<Preprocessor> create(const int shrinkage, const int bins, const int method = GENERIC);
// Param flags is a channel computing extra flags.
static cv::Ptr<ChannelsProcessor> create(const int shrinkage, const int bins, const int flags = GENERIC);
virtual ~ChannelsProcessor();
protected:
Preprocessor();
};
protected:
ChannelsProcessor();
};
// Implementation of soft (stageless) cascaded detector.
class CV_EXPORTS SCascade : public Algorithm
{
public:
// Representation of detectors result.
struct CV_EXPORTS Detection
......@@ -1569,14 +1574,15 @@ public:
enum {PEDESTRIAN = 0};
};
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF};
// An empty cascade will be created.
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
// Param scales is a number of scales from minScale to maxScale.
// Param rejfactor is used for NMS.
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejCriteria = 1);
// Param flags is an extra tuning flags.
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55,
const int flags = NO_REJECT || ChannelsProcessor::GENERIC);
virtual ~SCascade();
......@@ -1598,13 +1604,6 @@ public:
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution
virtual void detect(InputArray image, InputArray rois, OutputArray objects, Stream& stream = Stream::Null()) const;
// Convert ROI matrix into the suitable for detect method.
// Param roi is an input matrix of the same size as the image.
// There non zero value mean that detector should be executed in this point.
// Param mask is an output mask
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution
virtual void genRoi(InputArray roi, OutputArray mask, Stream& stream = Stream::Null()) const;
private:
struct Fields;
......@@ -1612,9 +1611,9 @@ private:
double minScale;
double maxScale;
int scales;
int rejCriteria;
int flags;
};
CV_EXPORTS bool initModule_gpu(void);
......
......@@ -71,15 +71,14 @@ RUN_GPU(SCascadeTest, detect)
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1), trois;
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(1);
cascade.genRoi(rois, trois);
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
TEST_CYCLE()
{
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
}
SANITY_CHECK(sortDetections(objectBoxes));
......@@ -142,14 +141,11 @@ RUN_GPU(SCascadeTestRoi, detectInRoi)
sub.setTo(1);
}
cv::gpu::GpuMat trois;
cascade.genRoi(rois, trois);
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
TEST_CYCLE()
{
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
}
SANITY_CHECK(sortDetections(objectBoxes));
......@@ -186,14 +182,11 @@ RUN_GPU(SCascadeTestRoi, detectEachRoi)
cv::gpu::GpuMat sub(rois, r);
sub.setTo(1);
cv::gpu::GpuMat trois;
cascade.genRoi(rois, trois);
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
TEST_CYCLE()
{
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
}
SANITY_CHECK(sortDetections(objectBoxes));
......@@ -235,15 +228,14 @@ RUN_GPU(SCascadeTest, detectOnIntegral)
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(cv::Size(640, 480), CV_8UC1), trois;
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(cv::Size(640, 480), CV_8UC1);
rois.setTo(1);
cascade.genRoi(rois, trois);
cascade.detect(hogluv, trois, objectBoxes);
cascade.detect(hogluv, rois, objectBoxes);
TEST_CYCLE()
{
cascade.detect(hogluv, trois, objectBoxes);
cascade.detect(hogluv, rois, objectBoxes);
}
SANITY_CHECK(sortDetections(objectBoxes));
......@@ -270,18 +262,16 @@ RUN_GPU(SCascadeTest, detectStream)
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1), trois;
cv::gpu::GpuMat objectBoxes(1, 10000 * sizeof(cv::gpu::SCascade::Detection), CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(1);
cv::gpu::Stream s;
cascade.genRoi(rois, trois, s);
cascade.detect(colored, trois, objectBoxes, s);
cascade.detect(colored, rois, objectBoxes, s);
TEST_CYCLE()
{
cascade.detect(colored, trois, objectBoxes, s);
cascade.detect(colored, rois, objectBoxes, s);
}
#ifdef HAVE_CUDA
......
......@@ -48,8 +48,7 @@ namespace cv { namespace gpu
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
obj.info()->addParam(obj, "minScale", obj.minScale);
obj.info()->addParam(obj, "maxScale", obj.maxScale);
obj.info()->addParam(obj, "scales", obj.scales);
obj.info()->addParam(obj, "rejCriteria", obj.rejCriteria));
obj.info()->addParam(obj, "scales", obj.scales));
bool initModule_gpu(void)
{
......
......@@ -41,10 +41,8 @@
//M*/
#include <precomp.hpp>
#include <opencv2/highgui/highgui.hpp>
#if !defined (HAVE_CUDA)
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
cv::gpu::SCascade::~SCascade() { throw_nogpu(); }
......@@ -53,18 +51,16 @@ bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); }
void cv::gpu::SCascade::genRoi(InputArray, OutputArray, Stream&) const { throw_nogpu(); }
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
cv::gpu::SCascade::Preprocessor::Preprocessor() { throw_nogpu(); }
void cv::gpu::SCascade::Preprocessor::create(const int, const int, const int) { throw_nogpu(); }
cv::gpu::ChannelsProcessor::ChannelsProcessor() { throw_nogpu(); }
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { throw_nogpu(); }
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int, const int, const int)
{ throw_nogpu(); return cv::Ptr<cv::gpu::ChannelsProcessor>(0); }
#else
#include <icf.hpp>
# include <icf.hpp>
cv::gpu::device::icf::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), step(oct.stages), relScale(scale / oct.scale)
......@@ -96,23 +92,22 @@ namespace icf {
void bgr2Luv(const PtrStepSzb& bgr, PtrStepSzb luv);
void gray2hog(const PtrStepSzb& gray, PtrStepSzb mag, const int bins);
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk);
}
namespace imgproc {
void shfl_integral_gpu_buffered(PtrStepSzb, PtrStepSz<uint4>, PtrStepSz<unsigned int>, int, cudaStream_t);
// namespace imgproc {
// void shfl_integral_gpu_buffered(PtrStepSzb, PtrStepSz<uint4>, PtrStepSz<unsigned int>, int, cudaStream_t);
template <typename T>
void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy,
PtrStepSzb dst, int interpolation, cudaStream_t stream);
}
// template <typename T>
// void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy,
// PtrStepSzb dst, int interpolation, cudaStream_t stream);
// }
}}}
struct cv::gpu::SCascade::Fields
{
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals)
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals, const int method)
{
static const char *const SC_STAGE_TYPE = "stageType";
static const char *const SC_BOOST = "BOOST";
......@@ -253,9 +248,9 @@ struct cv::gpu::SCascade::Fields
CV_Assert(!hleaves.empty());
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0,
hoctaves, hstages, hnodes, hleaves);
hoctaves, hstages, hnodes, hleaves, method);
fields->voctaves = voctaves;
fields->createLevels(FRAME_HEIGHT, FRAME_WIDTH);
fields->createLevels(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH);
return fields;
}
......@@ -310,12 +305,6 @@ struct cv::gpu::SCascade::Fields
bool update(int fh, int fw, int shr)
{
if ((fh == luv.rows) && (fw == luv.cols)) return false;
plane.create(fh * (HOG_LUV_BINS + 1), fw, CV_8UC1);
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
luv.create(fh, fw, CV_8UC3);
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1);
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1);
......@@ -329,17 +318,19 @@ struct cv::gpu::SCascade::Fields
}
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds,
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves)
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, int method)
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
{
update(FRAME_HEIGHT, FRAME_WIDTH, shr);
update(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH, shr);
octaves.upload(hoctaves);
stages.upload(hstages);
nodes.upload(hnodes);
leaves.upload(hleaves);
preprocessor = ChannelsProcessor::create(shrinkage, 6, method);
}
void detect(const cv::gpu::GpuMat& roi, cv::gpu::GpuMat& objects, Stream& s) const
void detect(cv::gpu::GpuMat& objects, Stream& s) const
{
if (s)
s.enqueueMemSet(objects, 0);
......@@ -352,26 +343,7 @@ struct cv::gpu::SCascade::Fields
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, stages, nodes, leaves);
cudaStream_t stream = StreamAccessor::getStream(s);
invoker(roi, hogluv, objects, downscales, stream);
}
void preprocess(const cv::gpu::GpuMat& colored, Stream& s)
{
if (s)
s.enqueueMemSet(plane, 0);
else
cudaMemset(plane.data, 0, plane.step * plane.rows);
const int fw = colored.cols;
const int fh = colored.rows;
GpuMat gray(plane, cv::Rect(0, fh * Fields::HOG_LUV_BINS, fw, fh));
cv::gpu::cvtColor(colored, gray, CV_BGR2GRAY, s);
createHogBins(gray ,s);
createLuvBins(colored, s);
integrate(fh, fw, s);
invoker(mask, hogluv, objects, downscales, stream);
}
void suppress(GpuMat& objects, Stream& s)
......@@ -416,72 +388,10 @@ private:
return res;
}
void createHogBins(const cv::gpu::GpuMat& gray, Stream& s)
{
static const int fw = gray.cols;
static const int fh = gray.rows;
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s);
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, BORDER_DEFAULT, -1, s);
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh));
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh));
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s);
// normolize magnitude to uchar interval and angles to 6 bins
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh));
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh));
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2.0f))), nmag, 1, -1, s);
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s);
//create uchar magnitude
GpuMat cmag(plane, cv::Rect(0, fh * Fields::HOG_BINS, fw, fh));
if (s)
s.enqueueConvert(nmag, cmag, CV_8UC1);
else
nmag.convertTo(cmag, CV_8UC1);
cudaStream_t stream = StreamAccessor::getStream(s);
device::icf::fillBins(plane, nang, fw, fh, Fields::HOG_BINS, stream);
}
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s)
{
static const int fw = colored.cols;
static const int fh = colored.rows;
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s);
std::vector<GpuMat> splited;
for(int i = 0; i < Fields::LUV_BINS; ++i)
{
splited.push_back(GpuMat(plane, cv::Rect(0, fh * (7 + i), fw, fh)));
}
cv::gpu::split(luv, splited, s);
}
void integrate(const int fh, const int fw, Stream& s)
{
GpuMat channels(plane, cv::Rect(0, 0, fw, fh * Fields::HOG_LUV_BINS));
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s);
if (info.majorVersion() < 3)
cv::gpu::integralBuffered(shrunk, hogluv, integralBuffer, s);
else
{
cudaStream_t stream = StreamAccessor::getStream(s);
device::imgproc::shfl_integral_gpu_buffered(shrunk, integralBuffer, hogluv, 12, stream);
}
}
public:
cv::Ptr<ChannelsProcessor> preprocessor;
// scales range
float minScale;
float maxScale;
......@@ -494,14 +404,6 @@ public:
const int shrinkage;
int downscales;
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray
GpuMat plane;
// preallocated buffer for floating point operations
GpuMat fplane;
// temporial mat for cvtColor
GpuMat luv;
// 160x120x10
GpuMat shrunk;
......@@ -512,11 +414,12 @@ public:
// 161x121x10
GpuMat hogluv;
// used for area overlap computing during
GpuMat overlaps;
// used for suppression
GpuMat suppressed;
// used for area overlap computing during
GpuMat overlaps;
// Cascade from xml
GpuMat octaves;
......@@ -525,36 +428,36 @@ public:
GpuMat leaves;
GpuMat levels;
GpuMat sobelBuf;
GpuMat collected;
// For ROI
GpuMat mask;
GpuMat genRoiTmp;
// GpuMat collected;
cv::gpu::GpuMat genRoiTmp;
std::vector<device::icf::Octave> voctaves;
DeviceInfo info;
// DeviceInfo info;
enum { BOOST = 0 };
enum
{
FRAME_WIDTH = 640,
FRAME_HEIGHT = 480,
HOG_BINS = 6,
LUV_BINS = 3,
DEFAULT_FRAME_WIDTH = 640,
DEFAULT_FRAME_HEIGHT = 480,
HOG_LUV_BINS = 10
};
};
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int rjf)
: fields(0), minScale(mins), maxScale(maxs), scales(sc), rejCriteria(rjf) {}
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int fl)
: fields(0), minScale(mins), maxScale(maxs), scales(sc), flags(fl) {}
cv::gpu::SCascade::~SCascade() { delete fields; }
bool cv::gpu::SCascade::load(const FileNode& fn)
{
if (fields) delete fields;
fields = Fields::parseCascade(fn, minScale, maxScale, scales);
fields = Fields::parseCascade(fn, minScale, maxScale, scales, flags);
return fields != 0;
}
......@@ -572,12 +475,24 @@ void cv::gpu::SCascade::detect(InputArray _image, InputArray _rois, OutputArray
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
/// roi
Fields& flds = *fields;
int shr = flds.shrinkage;
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());
cv::gpu::resize(rois, flds.genRoiTmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, s);
cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);
if (type == CV_8UC3)
{
if (!flds.update(image.rows, image.cols, flds.shrinkage) || flds.check(minScale, maxScale, scales))
flds.update(image.rows, image.cols, flds.shrinkage);
if (flds.check(minScale, maxScale, scales))
flds.createLevels(image.rows, image.cols);
flds.preprocess(image, s);
flds.preprocessor->apply(image, flds.shrunk);
cv::gpu::integralBuffered(flds.shrunk, flds.hogluv, flds.integralBuffer, s);
}
else
{
......@@ -587,9 +502,9 @@ void cv::gpu::SCascade::detect(InputArray _image, InputArray _rois, OutputArray
image.copyTo(flds.hogluv);
}
flds.detect(rois, objects, s);
flds.detect(objects, s);
if (rejCriteria != NO_REJECT)
if ( (flags && NMS_MASK) != NO_REJECT)
{
GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows));
flds.suppress(objects, s);
......@@ -597,79 +512,122 @@ void cv::gpu::SCascade::detect(InputArray _image, InputArray _rois, OutputArray
}
}
void cv::gpu::SCascade::genRoi(InputArray _roi, OutputArray _mask, Stream& stream) const
void cv::gpu::SCascade::read(const FileNode& fn)
{
CV_Assert(fields);
int shr = (*fields).shrinkage;
Algorithm::read(fn);
}
const GpuMat roi = _roi.getGpuMat();
_mask.create( roi.cols / shr, roi.rows / shr, roi.type());
GpuMat mask = _mask.getGpuMat();
namespace {
GpuMat& tmp = (*fields).genRoiTmp;
cv::gpu::resize(roi, tmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, stream);
cv::gpu::transpose(tmp, mask, stream);
}
using cv::InputArray;
using cv::OutputArray;
using cv::gpu::Stream;
using cv::gpu::GpuMat;
void cv::gpu::SCascade::read(const FileNode& fn)
inline void setZero(cv::gpu::GpuMat& m, Stream& s)
{
Algorithm::read(fn);
if (s)
s.enqueueMemSet(m, 0);
else
m.setTo(0);
}
// namespace {
struct GenricPreprocessor : public cv::gpu::ChannelsProcessor
{
GenricPreprocessor(const int s, const int b) : cv::gpu::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~GenricPreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, Stream& s = Stream::Null())
{
const GpuMat frame = _frame.getGpuMat();
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
GpuMat shrunk = _shrunk.getGpuMat();
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
setZero(channels, s);
// void bgr2Luv(const cv::gpu::GpuMat& input, cv::gpu::GpuMat& luv /*integral*/)
// {
// cv::gpu::GpuMat bgr;
// cv::gpu::GaussianBlur(input, bgr, cv::Size(3, 3), -1);
cv::gpu::cvtColor(frame, gray, CV_BGR2GRAY, s);
createHogBins(s);
// cv::gpu::GpuMat gray, /*luv,*/ shrunk, buffer;
// luv.create(bgr.rows * 10, bgr.cols, CV_8UC1);
// luv.setTo(0);
createLuvBins(frame, s);
// cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY);
// cv::gpu::device::icf::magnitude(gray, luv(cv::Rect(0, 0, bgr.cols, bgr.rows * 7)));
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s);
}
// cv::gpu::GpuMat __luv(luv, cv::Rect(0, bgr.rows * 7, bgr.cols, bgr.rows * 3));
// cv::gpu::device::icf::bgr2Luv(bgr, __luv);
private:
// // cv::gpu::resize(luv, shrunk, cv::Size(), 0.25f, 0.25f, CV_INTER_AREA);
// // cv::gpu::integralBuffered(shrunk, integral, buffer);
// }
// }
void createHogBins(Stream& s)
{
static const int fw = gray.cols;
static const int fh = gray.rows;
namespace {
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
using cv::InputArray;
using cv::OutputArray;
using cv::gpu::Stream;
using cv::gpu::GpuMat;
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
struct GenricPreprocessor : public cv::gpu::SCascade::Preprocessor
{
GenricPreprocessor(const int s, const int b) : cv::gpu::SCascade::Preprocessor(), shrinkage(s), bins(b) {}
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh));
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh));
virtual void apply(InputArray /*frame*/, OutputArray /*channels*/, Stream& /*s*/ = Stream::Null())
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s);
// normolize magnitude to uchar interval and angles to 6 bins
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh));
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh));
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2.0f))), nmag, 1, -1, s);
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s);
//create uchar magnitude
GpuMat cmag(channels, cv::Rect(0, fh * HOG_BINS, fw, fh));
if (s)
s.enqueueConvert(nmag, cmag, CV_8UC1);
else
nmag.convertTo(cmag, CV_8UC1);
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
cv::gpu::device::icf::fillBins(channels, nang, fw, fh, HOG_BINS, stream);
}
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s)
{
static const int fw = colored.cols;
static const int fh = colored.rows;
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s);
std::vector<GpuMat> splited;
for(int i = 0; i < LUV_BINS; ++i)
{
splited.push_back(GpuMat(channels, cv::Rect(0, fh * (7 + i), fw, fh)));
}
cv::gpu::split(luv, splited, s);
}
private:
enum {HOG_BINS = 6, LUV_BINS = 3};
const int shrinkage;
const int bins;
GpuMat gray;
GpuMat luv;
GpuMat channels;
// preallocated buffer for floating point operations
GpuMat fplane;
GpuMat sobelBuf;
};
inline void setZero(cv::gpu::GpuMat& m, Stream& s)
{
if (s)
s.enqueueMemSet(m, 0);
else
m.setTo(0);
}
struct SeparablePreprocessor : public cv::gpu::SCascade::Preprocessor
struct SeparablePreprocessor : public cv::gpu::ChannelsProcessor
{
SeparablePreprocessor(const int s, const int b) : cv::gpu::SCascade::Preprocessor(), shrinkage(s), bins(b) {}
SeparablePreprocessor(const int s, const int b) : cv::gpu::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~SeparablePreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, Stream& s = Stream::Null())
{
......@@ -701,16 +659,17 @@ private:
}
cv::gpu::SCascade::Preprocessor::Preprocessor(){}
cv::Ptr<cv::gpu::SCascade::Preprocessor> cv::gpu::SCascade::Preprocessor::create(const int s, const int b, const int m)
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int s, const int b, const int m)
{
CV_Assert(m == SEPARABLE || m == GENERIC);
CV_Assert((m && SEPARABLE) || (m && GENERIC));
if (m == GENERIC)
return cv::Ptr<cv::gpu::SCascade::Preprocessor>(new GenricPreprocessor(s, b));
if (m && GENERIC)
return cv::Ptr<cv::gpu::ChannelsProcessor>(new GenricPreprocessor(s, b));
return cv::Ptr<cv::gpu::SCascade::Preprocessor>(new SeparablePreprocessor(s, b));
return cv::Ptr<cv::gpu::ChannelsProcessor>(new SeparablePreprocessor(s, b));
}
cv::gpu::ChannelsProcessor::ChannelsProcessor() { }
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { }
#endif
\ No newline at end of file
......@@ -169,7 +169,7 @@ GPU_TEST_P(SCascadeTestRoi, detect,
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(colored.size(), CV_8UC1), trois;
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(colored.size(), CV_8UC1);
rois.setTo(0);
int nroi = GET_PARAM(3);
......@@ -183,8 +183,8 @@ GPU_TEST_P(SCascadeTestRoi, detect,
cv::rectangle(result, r, cv::Scalar(0, 0, 255, 255), 1);
}
objectBoxes.setTo(0);
cascade.genRoi(rois, trois);
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
cv::Mat dt(objectBoxes);
typedef cv::gpu::SCascade::Detection Detection;
......@@ -239,10 +239,8 @@ GPU_TEST_P(SCascadeTestAll, detect,
GpuMat sub(rois, cv::Rect(rois.cols / 4, rois.rows / 4,rois.cols / 2, rois.rows / 2));
sub.setTo(cv::Scalar::all(1));
cv::gpu::GpuMat trois;
cascade.genRoi(rois, trois);
objectBoxes.setTo(0);
cascade.detect(colored, trois, objectBoxes);
cascade.detect(colored, rois, objectBoxes);
typedef cv::gpu::SCascade::Detection Detection;
cv::Mat detections(objectBoxes);
......@@ -279,10 +277,8 @@ GPU_TEST_P(SCascadeTestAll, detectOnIntegral,
GpuMat objectBoxes(1, 100000, CV_8UC1), rois(cv::Size(640, 480), CV_8UC1);
rois.setTo(1);
cv::gpu::GpuMat trois;
cascade.genRoi(rois, trois);
objectBoxes.setTo(0);
cascade.detect(hogluv, trois, objectBoxes);
cascade.detect(hogluv, rois, objectBoxes);
typedef cv::gpu::SCascade::Detection Detection;
cv::Mat detections(objectBoxes);
......@@ -315,12 +311,9 @@ GPU_TEST_P(SCascadeTestAll, detectStream,
cv::gpu::Stream s;
cv::gpu::GpuMat trois;
cascade.genRoi(rois, trois, s);
objectBoxes.setTo(0);
cascade.detect(colored, trois, objectBoxes, s);
cudaDeviceSynchronize();
cascade.detect(colored, rois, objectBoxes, s);
s.waitForCompletion();
typedef cv::gpu::SCascade::Detection Detection;
cv::Mat detections(objectBoxes);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment