Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
bfa26fd4
Commit
bfa26fd4
authored
Dec 07, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
refactoring
parent
883d691c
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
91 additions
and
85 deletions
+91
-85
config.hpp
apps/sft/include/sft/config.hpp
+16
-0
octave.hpp
apps/sft/include/sft/octave.hpp
+10
-5
octave.cpp
apps/sft/octave.cpp
+51
-53
sft.cpp
apps/sft/sft.cpp
+14
-27
No files found.
apps/sft/include/sft/config.hpp
View file @
bfa26fd4
...
...
@@ -57,6 +57,22 @@ struct Config
void
read
(
const
cv
::
FileNode
&
node
);
// Scaled and shrunk model size.
cv
::
Size
model
(
ivector
::
const_iterator
it
)
const
{
float
octave
=
powf
(
2
,
*
it
);
return
cv
::
Size
(
cvRound
(
modelWinSize
.
width
*
octave
)
/
shrinkage
,
cvRound
(
modelWinSize
.
height
*
octave
)
/
shrinkage
);
}
// Scaled but, not shrunk bounding box for object in sample image.
cv
::
Rect
bbox
(
ivector
::
const_iterator
it
)
const
{
float
octave
=
powf
(
2
,
*
it
);
return
cv
::
Rect
(
cvRound
(
offset
.
x
*
octave
),
cvRound
(
offset
.
y
*
octave
),
cvRound
(
modelWinSize
.
width
*
octave
),
cvRound
(
modelWinSize
.
height
*
octave
));
}
// Paths to a rescaled data
string
trainPath
;
string
testPath
;
...
...
apps/sft/include/sft/octave.hpp
View file @
bfa26fd4
...
...
@@ -76,12 +76,14 @@ struct ICF
float
operator
()
(
const
Mat
&
integrals
,
const
cv
::
Size
&
model
)
const
{
const
int
*
ptr
=
integrals
.
ptr
<
int
>
(
0
)
+
(
model
.
height
*
channel
+
bb
.
y
)
*
model
.
width
+
bb
.
x
;
int
step
=
model
.
width
+
1
;
const
int
*
ptr
=
integrals
.
ptr
<
int
>
(
0
)
+
(
model
.
height
*
channel
+
bb
.
y
)
*
step
+
bb
.
x
;
int
a
=
ptr
[
0
];
int
b
=
ptr
[
bb
.
width
];
ptr
+=
bb
.
height
*
model
.
width
;
ptr
+=
bb
.
height
*
step
;
int
c
=
ptr
[
bb
.
width
];
int
d
=
ptr
[
0
];
...
...
@@ -92,13 +94,17 @@ struct ICF
private
:
cv
::
Rect
bb
;
int
channel
;
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
ICF
&
m
);
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
ICF
&
m
);
class
FeaturePool
{
public
:
FeaturePool
(
cv
::
Size
model
,
int
nfeatures
);
~
FeaturePool
();
int
size
()
const
{
return
(
int
)
pool
.
size
();
}
float
apply
(
int
fi
,
int
si
,
const
Mat
&
integrals
)
const
;
...
...
@@ -122,7 +128,7 @@ public:
Octave
(
cv
::
Rect
boundingBox
,
int
npositives
,
int
nnegatives
,
int
logScale
,
int
shrinkage
);
virtual
~
Octave
();
virtual
bool
train
(
const
Dataset
&
dataset
,
const
FeaturePool
&
pool
);
virtual
bool
train
(
const
Dataset
&
dataset
,
const
FeaturePool
&
pool
,
int
weaks
,
int
treeDepth
);
int
logScale
;
...
...
@@ -144,7 +150,6 @@ private:
Mat
responses
;
CvBoostParams
params
;
};
}
...
...
apps/sft/octave.cpp
View file @
bfa26fd4
...
...
@@ -43,16 +43,6 @@
#include <sft/octave.hpp>
#include <sft/random.hpp>
#if defined VISUALIZE_GENERATION
# define show(a, b) \
do { \
cv::imshow(a,b); \
cv::waitkey(0); \
} while(0)
#else
# define show(a, b)
#endif
#include <glob.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
...
...
@@ -63,13 +53,7 @@ sft::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
{
int
maxSample
=
npositives
+
nnegatives
;
responses
.
create
(
maxSample
,
1
,
CV_32FC1
);
}
sft
::
Octave
::~
Octave
(){}
bool
sft
::
Octave
::
train
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
_responses
,
const
cv
::
Mat
&
varIdx
,
const
cv
::
Mat
&
sampleIdx
,
const
cv
::
Mat
&
varType
,
const
cv
::
Mat
&
missingDataMask
)
{
CvBoostParams
_params
;
{
// tree params
...
...
@@ -79,27 +63,35 @@ bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, co
_params
.
truncate_pruned_tree
=
false
;
_params
.
use_surrogates
=
false
;
_params
.
use_1se_rule
=
false
;
_params
.
regression_accuracy
=
0.0
;
_params
.
regression_accuracy
=
1.0e-6
;
// boost params
_params
.
boost_type
=
CvBoost
::
GENTLE
;
_params
.
split_criteria
=
CvBoost
::
SQERR
;
_params
.
weight_trim_rate
=
0.95
;
/// ToDo: move to params
// simple defaults
_params
.
min_sample_count
=
2
;
_params
.
weak_count
=
1
;
}
std
::
cout
<<
"WARNING: "
<<
sampleIdx
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
trainData
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
_responses
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
varIdx
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
varType
<<
std
::
endl
;
params
=
_params
;
}
sft
::
Octave
::~
Octave
(){}
bool
sft
::
Octave
::
train
(
const
cv
::
Mat
&
trainData
,
const
cv
::
Mat
&
_responses
,
const
cv
::
Mat
&
varIdx
,
const
cv
::
Mat
&
sampleIdx
,
const
cv
::
Mat
&
varType
,
const
cv
::
Mat
&
missingDataMask
)
{
std
::
cout
<<
"WARNING: sampleIdx "
<<
sampleIdx
<<
std
::
endl
;
std
::
cout
<<
"WARNING: trainData "
<<
trainData
<<
std
::
endl
;
std
::
cout
<<
"WARNING: _responses "
<<
_responses
<<
std
::
endl
;
std
::
cout
<<
"WARNING: varIdx"
<<
varIdx
<<
std
::
endl
;
std
::
cout
<<
"WARNING: varType"
<<
varType
<<
std
::
endl
;
bool
update
=
false
;
return
cv
::
Boost
::
train
(
trainData
,
CV_COL_SAMPLE
,
_responses
,
varIdx
,
sampleIdx
,
varType
,
missingDataMask
,
_
params
,
return
cv
::
Boost
::
train
(
trainData
,
CV_COL_SAMPLE
,
_responses
,
varIdx
,
sampleIdx
,
varType
,
missingDataMask
,
params
,
update
);
}
...
...
@@ -164,19 +156,18 @@ public:
};
}
// ToDo: parallelize it
// ToDo: parallelize it
, fix curring
// ToDo: sunch model size and shrinced model size usage/ Now model size mean already shrinked model
void
sft
::
Octave
::
processPositives
(
const
Dataset
&
dataset
,
const
FeaturePool
&
pool
)
{
Preprocessor
prepocessor
(
shrinkage
);
int
w
=
64
*
pow
(
2
,
logScale
)
/
shrinkage
;
int
h
=
128
*
pow
(
2
,
logScale
)
/
shrinkage
*
10
;
int
w
=
boundingBox
.
width
;
int
h
=
boundingBox
.
height
;
integrals
.
create
(
pool
.
size
(),
(
w
+
1
)
*
(
h
+
1
),
CV_32SC1
);
integrals
.
create
(
pool
.
size
(),
(
w
/
shrinkage
+
1
)
*
(
h
/
shrinkage
*
10
+
1
),
CV_32SC1
);
int
total
=
0
;
for
(
svector
::
const_iterator
it
=
dataset
.
pos
.
begin
();
it
!=
dataset
.
pos
.
end
();
++
it
)
{
const
string
&
curr
=
*
it
;
...
...
@@ -184,9 +175,11 @@ void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& po
dprintf
(
"Process candidate positive image %s
\n
"
,
curr
.
c_str
());
cv
::
Mat
sample
=
cv
::
imread
(
curr
);
cv
::
Mat
channels
=
integrals
.
row
(
total
).
reshape
(
0
,
h
+
1
);
prepocessor
.
apply
(
sample
,
channels
);
cv
::
Mat
channels
=
integrals
.
row
(
total
).
reshape
(
0
,
h
/
shrinkage
*
10
+
1
);
sample
=
sample
(
boundingBox
);
prepocessor
.
apply
(
sample
,
channels
);
responses
.
ptr
<
float
>
(
total
)[
0
]
=
1.
f
;
if
(
++
total
>=
npositives
)
break
;
...
...
@@ -204,8 +197,8 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
sft
::
Random
::
engine
eng
;
sft
::
Random
::
engine
idxEng
;
int
w
=
64
*
pow
(
2
,
logScale
)
/
shrinkage
;
int
h
=
128
*
pow
(
2
,
logScale
)
/
shrinkage
*
10
;
int
w
=
boundingBox
.
width
;
int
h
=
boundingBox
.
height
;
Preprocessor
prepocessor
(
shrinkage
);
...
...
@@ -222,15 +215,9 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
dprintf
(
"Process %s
\n
"
,
dataset
.
neg
[
curr
].
c_str
());
Mat
frame
=
cv
::
imread
(
dataset
.
neg
[
curr
]);
prepocessor
.
apply
(
frame
,
sum
);
std
::
cout
<<
"WARNING: "
<<
frame
.
cols
<<
" "
<<
frame
.
rows
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
frame
.
cols
/
shrinkage
<<
" "
<<
frame
.
rows
/
shrinkage
<<
std
::
endl
;
int
maxW
=
frame
.
cols
/
shrinkage
-
2
*
boundingBox
.
x
-
boundingBox
.
width
;
int
maxH
=
frame
.
rows
/
shrinkage
-
2
*
boundingBox
.
y
-
boundingBox
.
height
;
std
::
cout
<<
"WARNING: "
<<
maxW
<<
" "
<<
maxH
<<
std
::
endl
;
int
maxW
=
frame
.
cols
-
2
*
boundingBox
.
x
-
boundingBox
.
width
;
int
maxH
=
frame
.
rows
-
2
*
boundingBox
.
y
-
boundingBox
.
height
;
sft
::
Random
::
uniform
wRand
(
0
,
maxW
-
1
);
sft
::
Random
::
uniform
hRand
(
0
,
maxH
-
1
);
...
...
@@ -238,19 +225,16 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
int
dx
=
wRand
(
eng
);
int
dy
=
hRand
(
eng
);
std
::
cout
<<
"WARNING: "
<<
dx
<<
" "
<<
dy
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
dx
+
boundingBox
.
width
+
1
<<
" "
<<
dy
+
boundingBox
.
height
+
1
<<
std
::
endl
;
std
::
cout
<<
"WARNING: "
<<
sum
.
cols
<<
" "
<<
sum
.
rows
<<
std
::
endl
;
frame
=
frame
(
cv
::
Rect
(
dx
,
dy
,
boundingBox
.
width
,
boundingBox
.
height
));
sum
=
sum
(
cv
::
Rect
(
dx
,
dy
,
boundingBox
.
width
+
1
,
boundingBox
.
height
*
10
+
1
));
cv
::
Mat
channels
=
integrals
.
row
(
i
).
reshape
(
0
,
h
/
shrinkage
*
10
+
1
);
prepocessor
.
apply
(
frame
,
channels
);
dprintf
(
"generated %d %d
\n
"
,
dx
,
dy
);
// if (predict(sum))
//
//
if (predict(sum))
{
responses
.
ptr
<
float
>
(
i
)[
0
]
=
0.
f
;
// sum = sum.reshape(0, 1);
sum
.
copyTo
(
integrals
.
row
(
i
).
reshape
(
0
,
h
+
1
));
++
i
;
}
}
...
...
@@ -258,11 +242,18 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
dprintf
(
"Processing negatives finished:
\n\t
requested %d negatives, viewed %d samples.
\n
"
,
nnegatives
,
total
);
}
bool
sft
::
Octave
::
train
(
const
Dataset
&
dataset
,
const
FeaturePool
&
pool
)
bool
sft
::
Octave
::
train
(
const
Dataset
&
dataset
,
const
FeaturePool
&
pool
,
int
weaks
,
int
treeDepth
)
{
CV_Assert
(
treeDepth
==
2
);
CV_Assert
(
weaks
>
0
);
params
.
max_depth
=
treeDepth
;
params
.
weak_count
=
weaks
;
// 1. fill integrals and classes
processPositives
(
dataset
,
pool
);
generateNegatives
(
dataset
);
// exit(0);
// 2. only sumple case (all features used)
int
nfeatures
=
pool
.
size
();
...
...
@@ -313,8 +304,6 @@ sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n)
fill
(
nfeatures
);
}
sft
::
FeaturePool
::~
FeaturePool
(){}
float
sft
::
FeaturePool
::
apply
(
int
fi
,
int
si
,
const
Mat
&
integrals
)
const
{
return
pool
[
fi
](
integrals
.
row
(
si
),
model
);
...
...
@@ -323,13 +312,13 @@ float sft::FeaturePool::apply(int fi, int si, const Mat& integrals) const
void
sft
::
FeaturePool
::
fill
(
int
desired
)
{
int
mw
=
model
.
width
;
int
mh
=
model
.
height
;
int
maxPoolSize
=
(
mw
-
1
)
*
mw
/
2
*
(
mh
-
1
)
*
mh
/
2
*
N_CHANNELS
;
nfeatures
=
std
::
min
(
desired
,
maxPoolSize
);
dprintf
(
"Requeste feature pool %d max %d suggested %d
\n
"
,
desired
,
maxPoolSize
,
nfeatures
);
pool
.
reserve
(
nfeatures
);
...
...
@@ -363,8 +352,17 @@ void sft::FeaturePool::fill(int desired)
sft
::
ICF
f
(
x
,
y
,
w
,
h
,
ch
);
if
(
std
::
find
(
pool
.
begin
(),
pool
.
end
(),
f
)
==
pool
.
end
())
{
// std::cout << f << std::endl;
pool
.
push_back
(
f
);
}
}
}
std
::
ostream
&
sft
::
operator
<<
(
std
::
ostream
&
out
,
const
sft
::
ICF
&
m
)
{
out
<<
m
.
channel
<<
" "
<<
m
.
bb
;
return
out
;
}
// ============ Dataset ============ //
...
...
apps/sft/sft.cpp
View file @
bfa26fd4
...
...
@@ -106,47 +106,34 @@ int main(int argc, char** argv)
// 3. Train all octaves
for
(
ivector
::
const_iterator
it
=
cfg
.
octaves
.
begin
();
it
!=
cfg
.
octaves
.
end
();
++
it
)
{
// a. create rangom feature pool
int
nfeatures
=
cfg
.
poolSize
;
cv
::
Size
model
=
cfg
.
model
(
it
);
std
::
cout
<<
"Model "
<<
model
<<
std
::
endl
;
sft
::
FeaturePool
pool
(
model
,
nfeatures
);
nfeatures
=
pool
.
size
();
int
npositives
=
cfg
.
positives
;
int
nnegatives
=
cfg
.
negatives
;
int
shrinkage
=
cfg
.
shrinkage
;
int
octave
=
*
it
;
cv
::
Size
model
=
cv
::
Size
(
cfg
.
modelWinSize
.
width
/
cfg
.
shrinkage
,
cfg
.
modelWinSize
.
height
/
cfg
.
shrinkage
);
std
::
string
path
=
cfg
.
trainPath
;
cv
::
Rect
boundingBox
(
cfg
.
offset
.
x
/
cfg
.
shrinkage
,
cfg
.
offset
.
y
/
cfg
.
shrinkage
,
cfg
.
modelWinSize
.
width
/
cfg
.
shrinkage
,
cfg
.
modelWinSize
.
height
/
cfg
.
shrinkage
);
cv
::
Rect
boundingBox
=
cfg
.
bbox
(
it
);
std
::
cout
<<
"Object bounding box"
<<
boundingBox
<<
std
::
endl
;
sft
::
Octave
boost
(
boundingBox
,
npositives
,
nnegatives
,
octave
,
shrinkage
);
sft
::
Octave
boost
(
boundingBox
,
npositives
,
nnegatives
,
*
it
,
shrinkage
);
s
ft
::
FeaturePool
pool
(
model
,
nfeatures
)
;
s
td
::
string
path
=
cfg
.
trainPath
;
sft
::
Dataset
dataset
(
path
,
boost
.
logScale
);
if
(
boost
.
train
(
dataset
,
pool
))
if
(
boost
.
train
(
dataset
,
pool
,
cfg
.
weaks
,
cfg
.
treeDepth
))
{
}
std
::
cout
<<
"Octave "
<<
octave
<<
" was successfully trained..."
<<
std
::
endl
;
// // d. crain octave
// if (octave.train(pool, cfg.positives, cfg.negatives, cfg.weaks))
// {
std
::
cout
<<
"Octave "
<<
*
it
<<
" was successfully trained..."
<<
std
::
endl
;
// strong.push_back(octave);
//
}
}
}
// fso << "]" << "}";
// // 3. create Soft Cascade
// // sft::SCascade cascade(cfg.modelWinSize, cfg.octs, cfg.shrinkage);
// // // 4. Generate feature pool
// // std::vector<sft::ICF> pool;
// // sft::fillPool(pool, cfg.poolSize, cfg.modelWinSize / cfg.shrinkage, cfg.seed);
// // // 5. Train all octaves
// // cascade.train(cfg.trainPath);
// // // 6. Set thresolds
// // cascade.prune();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment