Commit be7d060e authored by Vitaly Tuzov's avatar Vitaly Tuzov Committed by Alexander Alekhin

Merge pull request #7802 from terfendail:ovxhal_wrappers_migration

* OpenVX HAL updated to use generic OpenVX wrappers

* vxErr class from OpenVX HAL replaced with ivx::WrapperError

* reduced usage of vxImage class from OpenVX HAL replaced with ivx::Image

* vxImage class rewritten as ivx::Image subclass that calls swapHandle prior release

* Fix OpenVX HAL build

* Fix for review comments
parent a4db9833
#include "openvx_hal.hpp"
vxContext * vxContext::getContext()
#define IVX_HIDE_INFO_WARNINGS
#include "ivx.hpp"
#include <string>
#include <vector>
#include <algorithm>
#include <cfloat>
#include <climits>
#include <cmath>
//==================================================================================================
// utility
// ...
#if 0
#include <cstdio>
#define PRINT(...) printf(__VA_ARGS__)
#define PRINT_HALERR_MSG(type) PRINT("OpenVX HAL impl "#type" error: %s\n", e.what())
#else
#define PRINT(...)
#define PRINT_HALERR_MSG(type) (void)e
#endif
#if __cplusplus >= 201103L
#include <chrono>
struct Tick
{
typedef std::chrono::time_point<std::chrono::steady_clock> point_t;
point_t start;
point_t point;
Tick()
{
start = std::chrono::steady_clock::now();
point = std::chrono::steady_clock::now();
}
inline int one()
{
point_t old = point;
point = std::chrono::steady_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(point - old).count();
}
inline int total()
{
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
}
};
#endif
inline ivx::Context& getOpenVXHALContext()
{
// not thread safe
static vxContext instance;
return &instance;
static ivx::Context instance = ivx::Context::create();
return instance;
}
inline bool dimTooBig(int size)
{
static vx_uint16 current_vendor = getOpenVXHALContext().vendorID();
if (current_vendor == VX_ID_KHRONOS || current_vendor == VX_ID_DEFAULT)
{
//OpenVX use uint32_t for image addressing
return ((unsigned)size > (UINT_MAX / VX_SCALE_UNITY));
}
else
return false;
}
inline void setConstantBorder(ivx::border_t &border, vx_uint8 val)
{
border.mode = VX_BORDER_CONSTANT;
#if VX_VERSION > VX_VERSION_1_0
border.constant_value.U8 = val;
#else
border.constant_value = val;
#endif
}
inline void refineStep(int w, int h, int imgType, size_t& step)
{
if (h == 1)
step = w * ((imgType == VX_DF_IMAGE_RGBX ||
imgType == VX_DF_IMAGE_U32 || imgType == VX_DF_IMAGE_S32) ? 4 :
imgType == VX_DF_IMAGE_RGB ? 3 :
(imgType == VX_DF_IMAGE_U16 || imgType == VX_DF_IMAGE_S16 ||
imgType == VX_DF_IMAGE_UYVY || imgType == VX_DF_IMAGE_YUYV) ? 2 : 1);
}
//==================================================================================================
// ivx::Image wrapped to simplify call to swapHandle prior to release
// TODO update ivx::Image to handle swapHandle prior to release on the own
class vxImage: public ivx::Image
{
public:
vxImage(const ivx::Image &_img) : ivx::Image(_img) {}
~vxImage()
{
#if VX_VERSION > VX_VERSION_1_0
swapHandle();
#endif
}
};
//==================================================================================================
// real code starts here
// ...
#define OVX_BINARY_OP(hal_func, ovx_call) \
template <typename T> \
int ovx_hal_##hal_func(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h) \
{ \
if(dimTooBig(w) || dimTooBig(h)) \
return CV_HAL_ERROR_NOT_IMPLEMENTED; \
refineStep(w, h, ivx::TypeToEnum<T>::imgType, astep); \
refineStep(w, h, ivx::TypeToEnum<T>::imgType, bstep); \
refineStep(w, h, ivx::TypeToEnum<T>::imgType, cstep); \
try \
{ \
ivx::Context ctx = getOpenVXHALContext(); \
vxImage \
ia = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum<T>::imgType, \
ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(astep)), (void*)a), \
ib = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum<T>::imgType, \
ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(bstep)), (void*)b), \
ic = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum<T>::imgType, \
ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(cstep)), (void*)c); \
ovx_call \
} \
catch (ivx::RuntimeError & e) \
{ \
PRINT_HALERR_MSG(runtime); \
return CV_HAL_ERROR_UNKNOWN; \
} \
catch (ivx::WrapperError & e) \
{ \
PRINT_HALERR_MSG(wrapper); \
return CV_HAL_ERROR_UNKNOWN; \
} \
return CV_HAL_ERROR_OK; \
}
OVX_BINARY_OP(add, { ivx::IVX_CHECK_STATUS(vxuAdd(ctx, ia, ib, VX_CONVERT_POLICY_SATURATE, ic)); })
OVX_BINARY_OP(sub, { ivx::IVX_CHECK_STATUS(vxuSubtract(ctx, ia, ib, VX_CONVERT_POLICY_SATURATE, ic)); })
OVX_BINARY_OP(absdiff, { ivx::IVX_CHECK_STATUS(vxuAbsDiff(ctx, ia, ib, ic)); })
OVX_BINARY_OP(and, { ivx::IVX_CHECK_STATUS(vxuAnd(ctx, ia, ib, ic)); })
OVX_BINARY_OP(or , { ivx::IVX_CHECK_STATUS(vxuOr(ctx, ia, ib, ic)); })
OVX_BINARY_OP(xor, { ivx::IVX_CHECK_STATUS(vxuXor(ctx, ia, ib, ic)); })
template <typename T>
int ovx_hal_mul(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h, double scale)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, ivx::TypeToEnum<T>::imgType, astep);
refineStep(w, h, ivx::TypeToEnum<T>::imgType, bstep);
refineStep(w, h, ivx::TypeToEnum<T>::imgType, cstep);
#ifdef _MSC_VER
const float MAGIC_SCALE = 0x0.01010102;
#else
const float MAGIC_SCALE = 0x1.010102p-8;
#endif
try
{
int rounding_policy = VX_ROUND_POLICY_TO_ZERO;
float fscale = (float)scale;
if (fabs(fscale - MAGIC_SCALE) > FLT_EPSILON)
{
int exp = 0;
double significand = frexp(fscale, &exp);
if ((significand != 0.5) || (exp > 1) || (exp < -14))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
else
{
fscale = MAGIC_SCALE;
rounding_policy = VX_ROUND_POLICY_TO_NEAREST_EVEN;// That's the only rounding that MUST be supported for 1/255 scale
}
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum<T>::imgType,
ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(astep)), (void*)a),
ib = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum<T>::imgType,
ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(bstep)), (void*)b),
ic = ivx::Image::createFromHandle(ctx, ivx::TypeToEnum<T>::imgType,
ivx::Image::createAddressing(w, h, sizeof(T), (vx_int32)(cstep)), (void*)c);
ivx::IVX_CHECK_STATUS(vxuMultiply(ctx, ia, ib, fscale, VX_CONVERT_POLICY_SATURATE, rounding_policy, ic));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
template int ovx_hal_add<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h);
template int ovx_hal_add<short>(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h);
template int ovx_hal_sub<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h);
template int ovx_hal_sub<short>(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h);
template int ovx_hal_absdiff<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h);
template int ovx_hal_absdiff<short>(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h);
template int ovx_hal_and<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h);
template int ovx_hal_or<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h);
template int ovx_hal_xor<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h);
template int ovx_hal_mul<uchar>(const uchar *a, size_t astep, const uchar *b, size_t bstep, uchar *c, size_t cstep, int w, int h, double scale);
template int ovx_hal_mul<short>(const short *a, size_t astep, const short *b, size_t bstep, short *c, size_t cstep, int w, int h, double scale);
int ovx_hal_not(const uchar *a, size_t astep, uchar *c, size_t cstep, int w, int h)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, VX_DF_IMAGE_U8, astep);
refineStep(w, h, VX_DF_IMAGE_U8, cstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)(astep)), (void*)a),
ic = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)(cstep)), (void*)c);
ivx::IVX_CHECK_STATUS(vxuNot(ctx, ia, ic));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_merge8u(const uchar **src_data, uchar *dst_data, int len, int cn)
{
if (dimTooBig(len))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (cn != 3 && cn != 4)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[0]),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[1]),
ic = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[2]),
id = ivx::Image::createFromHandle(ctx, cn == 4 ? VX_DF_IMAGE_RGBX : VX_DF_IMAGE_RGB,
ivx::Image::createAddressing(len, 1, cn, (vx_int32)(len*cn)), (void*)dst_data);
ivx::IVX_CHECK_STATUS(vxuChannelCombine(ctx, ia, ib, ic,
cn == 4 ? (vx_image)(ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(len, 1, 1, (vx_int32)(len)), (void*)src_data[3])) : NULL,
id));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_resize(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, double inv_scale_x, double inv_scale_y, int interpolation)
{
if (dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(aw, ah, VX_DF_IMAGE_U8, astep);
refineStep(bw, bh, VX_DF_IMAGE_U8, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(aw, ah, 1, (vx_int32)(astep)), (void*)a),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(bw, bh, 1, (vx_int32)(bstep)), (void*)b);
if (!((atype == CV_8UC1 || atype == CV_8SC1) &&
inv_scale_x > 0 && inv_scale_y > 0 &&
(bw - 0.5) / inv_scale_x - 0.5 < aw && (bh - 0.5) / inv_scale_y - 0.5 < ah &&
(bw + 0.5) / inv_scale_x + 0.5 >= aw && (bh + 0.5) / inv_scale_y + 0.5 >= ah &&
std::abs(bw / inv_scale_x - aw) < 0.1 && std::abs(bh / inv_scale_y - ah) < 0.1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
{
mode = VX_INTERPOLATION_BILINEAR;
if (inv_scale_x > 1 || inv_scale_y > 1)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
else if (interpolation == CV_HAL_INTER_AREA)
return CV_HAL_ERROR_NOT_IMPLEMENTED; //mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
return CV_HAL_ERROR_NOT_IMPLEMENTED; //mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
ivx::IVX_CHECK_STATUS(vxuScaleImage(ctx, ia, ib, mode));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_warpAffine(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[6], int interpolation, int borderType, const double borderValue[4])
{
if (dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(aw, ah, VX_DF_IMAGE_U8, astep);
refineStep(bw, bh, VX_DF_IMAGE_U8, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(aw, ah, 1, (vx_int32)(astep)), (void*)a),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(bw, bh, 1, (vx_int32)(bstep)), (void*)b);
if (!(atype == CV_8UC1 || atype == CV_8SC1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if(borderType != CV_HAL_BORDER_CONSTANT) // Neither 1.0 nor 1.1 OpenVX support BORDER_REPLICATE for warpings
return CV_HAL_ERROR_NOT_IMPLEMENTED;
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
//AREA interpolation is unsupported
//else if (interpolation == CV_HAL_INTER_AREA)
// mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<float> data;
data.reserve(6);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 2; ++i)
data.push_back((float)(M[i * 3 + j]));
ivx::Matrix mtx = ivx::Matrix::create(ctx, VX_TYPE_FLOAT32, 2, 3);
mtx.copyFrom(data);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(VX_BORDER_CONSTANT, (vx_uint8)borderValue[0]);
ivx::IVX_CHECK_STATUS(vxuWarpAffine(ctx, ia, mtx, mode, ib));
ctx.setImmediateBorder(prevBorder);
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_warpPerspectve(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[9], int interpolation, int borderType, const double borderValue[4])
{
if (dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(aw, ah, VX_DF_IMAGE_U8, astep);
refineStep(bw, bh, VX_DF_IMAGE_U8, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(aw, ah, 1, (vx_int32)(astep)), (void*)a),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(bw, bh, 1, (vx_int32)(bstep)), (void*)b);
if (!(atype == CV_8UC1 || atype == CV_8SC1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (borderType != CV_HAL_BORDER_CONSTANT) // Neither 1.0 nor 1.1 OpenVX support BORDER_REPLICATE for warpings
return CV_HAL_ERROR_NOT_IMPLEMENTED;
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
//AREA interpolation is unsupported
//else if (interpolation == CV_HAL_INTER_AREA)
// mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<float> data;
data.reserve(9);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
data.push_back((float)(M[i * 3 + j]));
ivx::Matrix mtx = ivx::Matrix::create(ctx, VX_TYPE_FLOAT32, 3, 3);
mtx.copyFrom(data);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(VX_BORDER_CONSTANT, (vx_uint8)borderValue[0]);
ivx::IVX_CHECK_STATUS(vxuWarpPerspective(ctx, ia, mtx, mode, ib));
ctx.setImmediateBorder(prevBorder);
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
struct cvhalFilter2D;
struct FilterCtx
{
ivx::Convolution cnv;
int dst_type;
ivx::border_t border;
FilterCtx(ivx::Context &ctx, const std::vector<short> data, int w, int h, int _dst_type, ivx::border_t & _border) :
cnv(ivx::Convolution::create(ctx, w, h)), dst_type(_dst_type), border(_border) {
cnv.copyFrom(data);
}
};
int ovx_hal_filterInit(cvhalFilter2D **filter_context, uchar *kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height,
int, int, int src_type, int dst_type, int borderType, double delta, int anchor_x, int anchor_y, bool allowSubmatrix, bool allowInplace)
{
if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || delta != 0 ||
src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) ||
kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
ivx::border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
setConstantBorder(border, 0);
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
ivx::Context ctx = getOpenVXHALContext();
std::vector<short> data;
data.reserve(kernel_width*kernel_height);
switch (kernel_type)
{
case CV_8UC1:
for (int j = 0; j < kernel_height; ++j)
{
uchar * row = (uchar*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
break;
case CV_8SC1:
for (int j = 0; j < kernel_height; ++j)
{
schar * row = (schar*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
break;
case CV_16SC1:
for (int j = 0; j < kernel_height; ++j)
{
short * row = (short*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
FilterCtx* cnv = new FilterCtx(ctx, data, kernel_width, kernel_height, dst_type, border);
if (!cnv)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(cnv);
return CV_HAL_ERROR_OK;
}
int ovx_hal_filterFree(cvhalFilter2D *filter_context)
{
if (filter_context)
{
delete (FilterCtx*)filter_context;
return CV_HAL_ERROR_OK;
}
else
{
return CV_HAL_ERROR_UNKNOWN;
}
}
int ovx_hal_filter(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int, int, int, int)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
FilterCtx* cnv = (FilterCtx*)filter_context;
if (!cnv)
throw ivx::WrapperError("Bad HAL context");
refineStep(w, h, VX_DF_IMAGE_U8, astep);
refineStep(w, h, cnv->dst_type == CV_16SC1 ? VX_DF_IMAGE_S16 : VX_DF_IMAGE_U8, bstep);
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)(astep)), (void*)a),
ib = ivx::Image::createFromHandle(ctx, cnv->dst_type == CV_16SC1 ? VX_DF_IMAGE_S16 : VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, cnv->dst_type == CV_16SC1 ? 2 : 1, (vx_int32)(bstep)), (void*)b);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(cnv->border);
ivx::IVX_CHECK_STATUS(vxuConvolve(ctx, ia, cnv->cnv, ib));
ctx.setImmediateBorder(prevBorder);
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_sepFilterInit(cvhalFilter2D **filter_context, int src_type, int dst_type,
int kernel_type, uchar *kernelx_data, int kernelx_length, uchar *kernely_data, int kernely_length,
int anchor_x, int anchor_y, double delta, int borderType)
{
if (!filter_context || !kernelx_data || !kernely_data || delta != 0 ||
src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) ||
kernelx_length % 2 == 0 || kernely_length % 2 == 0 || anchor_x != kernelx_length / 2 || anchor_y != kernely_length / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
ivx::border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
setConstantBorder(border, 0);
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
ivx::Context ctx = getOpenVXHALContext();
//At the moment OpenVX doesn't support separable filters natively so combine kernels to generic convolution
std::vector<short> data;
data.reserve(kernelx_length*kernely_length);
switch (kernel_type)
{
case CV_8UC1:
for (int j = 0; j < kernely_length; ++j)
for (int i = 0; i < kernelx_length; ++i)
data.push_back((short)(kernely_data[j]) * kernelx_data[i]);
break;
case CV_8SC1:
for (int j = 0; j < kernely_length; ++j)
for (int i = 0; i < kernelx_length; ++i)
data.push_back((short)(((schar*)kernely_data)[j]) * ((schar*)kernelx_data)[i]);
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
FilterCtx* cnv = new FilterCtx(ctx, data, kernelx_length, kernely_length, dst_type, border);
if (!cnv)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(cnv);
return CV_HAL_ERROR_OK;
}
#if VX_VERSION > VX_VERSION_1_0
struct MorphCtx
{
ivx::Matrix mask;
int operation;
ivx::border_t border;
MorphCtx(ivx::Context &ctx, const std::vector<vx_uint8> data, int w, int h, int _operation, ivx::border_t & _border) :
mask(ivx::Matrix::create(ctx, ivx::TypeToEnum<vx_uint8>::value, w, h)), operation(_operation), border(_border) {
mask.copyFrom(data);
}
};
int ovx_hal_morphInit(cvhalFilter2D **filter_context, int operation, int src_type, int dst_type, int, int,
int kernel_type, uchar *kernel_data, size_t kernel_step, int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool allowSubmatrix, bool allowInplace)
{
if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || iterations != 1 ||
src_type != CV_8UC1 || dst_type != CV_8UC1 ||
kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
ivx::border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
if (borderValue[0] == DBL_MAX && borderValue[1] == DBL_MAX && borderValue[2] == DBL_MAX && borderValue[3] == DBL_MAX)
{
if (operation == MORPH_ERODE)
setConstantBorder(border, UCHAR_MAX);
else
setConstantBorder(border, 0);
}
else
{
int rounded = (int)round(borderValue[0]);
setConstantBorder(border, (vx_uint8)((unsigned)rounded <= UCHAR_MAX ? rounded : rounded > 0 ? UCHAR_MAX : 0));
}
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
ivx::Context ctx = getOpenVXHALContext();
vx_size maxKernelDim = ctx.nonlinearMaxDimension();
if ((vx_size)kernel_width > maxKernelDim || (vx_size)kernel_height > maxKernelDim)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<vx_uint8> kernel_mat;
kernel_mat.reserve(kernel_width * kernel_height);
switch (CV_MAT_DEPTH(kernel_type))
{
case CV_8U:
case CV_8S:
for (int j = 0; j < kernel_height; ++j)
{
uchar * kernel_row = kernel_data + j * kernel_step;
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_16U:
case CV_16S:
for (int j = 0; j < kernel_height; ++j)
{
short * kernel_row = (short*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_32S:
for (int j = 0; j < kernel_height; ++j)
{
int * kernel_row = (int*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_32F:
for (int j = 0; j < kernel_height; ++j)
{
float * kernel_row = (float*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_64F:
for (int j = 0; j < kernel_height; ++j)
{
double * kernel_row = (double*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
MorphCtx* mat;
switch (operation)
{
case MORPH_ERODE:
mat = new MorphCtx(ctx, kernel_mat, kernel_width, kernel_height, VX_NONLINEAR_FILTER_MIN, border);
break;
case MORPH_DILATE:
mat = new MorphCtx(ctx, kernel_mat, kernel_width, kernel_height, VX_NONLINEAR_FILTER_MAX, border);
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
if (!mat)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(mat);
return CV_HAL_ERROR_OK;
}
int ovx_hal_morphFree(cvhalFilter2D *filter_context)
{
if (filter_context)
{
delete (MorphCtx*)filter_context;
return CV_HAL_ERROR_OK;
}
else
{
return CV_HAL_ERROR_UNKNOWN;
}
}
int ovx_hal_morph(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int, int, int, int, int, int, int, int)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, VX_DF_IMAGE_U8, astep);
refineStep(w, h, VX_DF_IMAGE_U8, bstep);
try
{
MorphCtx* mat = (MorphCtx*)filter_context;
if (!mat)
throw ivx::WrapperError("Bad HAL context");
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)(astep)), (void*)a),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)(bstep)), (void*)b);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(mat->border);
ivx::IVX_CHECK_STATUS(vxuNonLinearFilter(ctx, mat->operation, ia, mat->mask, ib));
ctx.setImmediateBorder(prevBorder);
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
#endif // 1.0 guard
int ovx_hal_cvtBGRtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int acn, int bcn, bool swapBlue)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (depth != CV_8U || swapBlue || acn == bcn || (acn != 3 && acn != 4) || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's strange but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, astep);
refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, acn, (vx_int32)astep), (void*)a),
ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b);
ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_cvtGraytoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int bcn)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (depth != CV_8U || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, VX_DF_IMAGE_U8, astep);
refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
ivx::Image
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)astep), const_cast<uchar*>(a)),
ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b);
ivx::IVX_CHECK_STATUS(vxuChannelCombine(ctx, ia, ia, ia,
bcn == 4 ? (vx_image)(ivx::Image::createUniform(ctx, w, h, VX_DF_IMAGE_U8, vx_uint8(255))) : NULL,
ib));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_cvtTwoPlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, uIdx ? VX_DF_IMAGE_NV21 : VX_DF_IMAGE_NV12, astep);
refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
std::vector<vx_imagepatch_addressing_t> addr;
std::vector<void *> ptrs;
addr.push_back(ivx::Image::createAddressing(w, h, 1, (vx_int32)astep));
ptrs.push_back((void*)a);
addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 2, (vx_int32)astep));
ptrs.push_back((void*)(a + h * astep));
vxImage
ia = ivx::Image::createFromHandle(ctx, uIdx ? VX_DF_IMAGE_NV21 : VX_DF_IMAGE_NV12, addr, ptrs);
if (ia.range() == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage
ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b);
ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_cvtThreePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx || (size_t)w / 2 != astep - (size_t)w / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, VX_DF_IMAGE_IYUV, astep);
refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
std::vector<vx_imagepatch_addressing_t> addr;
std::vector<void *> ptrs;
addr.push_back(ivx::Image::createAddressing(w, h, 1, (vx_int32)astep));
ptrs.push_back((void*)a);
addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2));
ptrs.push_back((void*)(a + h * astep));
if (addr[1].dim_x != (astep - addr[1].dim_x))
throw ivx::WrapperError("UV planes use variable stride");
addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2));
ptrs.push_back((void*)(a + h * astep + addr[1].dim_y * addr[1].stride_y));
vxImage
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_IYUV, addr, ptrs);
if (ia.range() == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage
ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b);
ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_cvtBGRtoThreePlaneYUV(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int acn, bool swapBlue, int uIdx)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (acn != 3 && acn != 4) || uIdx || (size_t)w / 2 != bstep - (size_t)w / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, astep);
refineStep(w, h, VX_DF_IMAGE_IYUV, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, acn, (vx_int32)astep), (void*)a);
std::vector<vx_imagepatch_addressing_t> addr;
std::vector<void *> ptrs;
addr.push_back(ivx::Image::createAddressing(w, h, 1, (vx_int32)bstep));
ptrs.push_back((void*)b);
addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2));
ptrs.push_back((void*)(b + h * bstep));
if (addr[1].dim_x != (bstep - addr[1].dim_x))
throw ivx::WrapperError("UV planes use variable stride");
addr.push_back(ivx::Image::createAddressing(w / 2, h / 2, 1, w / 2));
ptrs.push_back((void*)(b + h * bstep + addr[1].dim_y * addr[1].stride_y));
vxImage
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_IYUV, addr, ptrs);
ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_cvtOnePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx, int ycn)
{
if (dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, ycn ? VX_DF_IMAGE_UYVY : VX_DF_IMAGE_YUYV, astep);
refineStep(w, h, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, bstep);
try
{
ivx::Context ctx = getOpenVXHALContext();
vxImage
ia = ivx::Image::createFromHandle(ctx, ycn ? VX_DF_IMAGE_UYVY : VX_DF_IMAGE_YUYV,
ivx::Image::createAddressing(w, h, 2, (vx_int32)astep), (void*)a);
if (ia.range() == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage
ib = ivx::Image::createFromHandle(ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX,
ivx::Image::createAddressing(w, h, bcn, (vx_int32)bstep), b);
ivx::IVX_CHECK_STATUS(vxuColorConvert(ctx, ia, ib));
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_integral(int depth, int sdepth, int, const uchar * a, size_t astep, uchar * b, size_t bstep, uchar * c, size_t, uchar * d, size_t, int w, int h, int cn)
{
if (depth != CV_8U || sdepth != CV_32S || c != NULL || d != NULL || cn != 1)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
refineStep(w, h, VX_DF_IMAGE_U8, astep);
try
{
ivx::Context ctx = getOpenVXHALContext();
ivx::Image
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
ivx::Image::createAddressing(w, h, 1, (vx_int32)astep), const_cast<uchar*>(a)),
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U32,
ivx::Image::createAddressing(w, h, 1, (vx_int32)bstep), (unsigned int *)(b + bstep + sizeof(unsigned int)));
ivx::IVX_CHECK_STATUS(vxuIntegralImage(ctx, ia, ib));
memset(b, 0, (w + 1) * sizeof(unsigned int));
b += bstep;
for (int i = 0; i < h; i++, b += bstep)
{
*((unsigned int*)b) = 0;
}
}
catch (ivx::RuntimeError & e)
{
PRINT_HALERR_MSG(runtime);
return CV_HAL_ERROR_UNKNOWN;
}
catch (ivx::WrapperError & e)
{
PRINT_HALERR_MSG(wrapper);
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
......@@ -5,1185 +5,55 @@
#include "opencv2/imgproc/hal/interface.h"
#include "VX/vx.h"
#include "VX/vxu.h"
#include <string>
#include <vector>
#include <algorithm>
#include <cfloat>
#include <climits>
#include <cmath>
#ifndef VX_VENDOR_ID
#define VX_VENDOR_ID VX_ID_DEFAULT
#endif
#if VX_VERSION == VX_VERSION_1_0
static const vx_enum VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST;
static const vx_enum VX_INTERPOLATION_BILINEAR = VX_INTERPOLATION_TYPE_BILINEAR;
static const vx_enum VX_INTERPOLATION_AREA = VX_INTERPOLATION_TYPE_AREA;
static const vx_enum VX_INTERPOLATION_NEAREST_NEIGHBOR = VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR;
static const vx_enum VX_IMAGE_RANGE = VX_IMAGE_ATTRIBUTE_RANGE;
static const vx_enum VX_IMAGE_SPACE = VX_IMAGE_ATTRIBUTE_SPACE;
typedef vx_border_mode_t vx_border_t;
static const vx_enum VX_BORDER_CONSTANT = VX_BORDER_MODE_CONSTANT;
static const vx_enum VX_BORDER_REPLICATE = VX_BORDER_MODE_REPLICATE;
static const vx_enum VX_CONTEXT_IMMEDIATE_BORDER = VX_CONTEXT_ATTRIBUTE_IMMEDIATE_BORDER_MODE;
#endif
//==================================================================================================
// utility
// ...
#if 0
#include <cstdio>
#define PRINT(...) printf(__VA_ARGS__)
#else
#define PRINT(...)
#endif
#if __cplusplus >= 201103L
#include <chrono>
struct Tick
{
typedef std::chrono::time_point<std::chrono::steady_clock> point_t;
point_t start;
point_t point;
Tick()
{
start = std::chrono::steady_clock::now();
point = std::chrono::steady_clock::now();
}
inline int one()
{
point_t old = point;
point = std::chrono::steady_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(point - old).count();
}
inline int total()
{
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
}
};
#endif
inline bool dimTooBig(int size)
{
if (VX_VENDOR_ID == VX_ID_KHRONOS || VX_VENDOR_ID == VX_ID_DEFAULT)
{
//OpenVX use uint32_t for image addressing
return ((unsigned)size > (UINT_MAX / VX_SCALE_UNITY));
}
else
return false;
}
//==================================================================================================
// One more OpenVX C++ binding :-)
// ...
template <typename T>
struct VX_Traits
{
enum {
ImgType = 0,
DataType = 0
};
};
template <>
struct VX_Traits<uchar>
{
enum {
ImgType = VX_DF_IMAGE_U8,
DataType = VX_TYPE_UINT8
};
};
template <>
struct VX_Traits<ushort>
{
enum {
ImgType = VX_DF_IMAGE_U16,
DataType = VX_TYPE_UINT16
};
};
template <>
struct VX_Traits<short>
{
enum {
ImgType = VX_DF_IMAGE_S16,
DataType = VX_TYPE_INT16
};
};
template <>
struct VX_Traits<uint>
{
enum {
ImgType = VX_DF_IMAGE_U32,
DataType = VX_TYPE_UINT32
};
};
template <>
struct VX_Traits<int>
{
enum {
ImgType = VX_DF_IMAGE_S32,
DataType = VX_TYPE_INT32
};
};
template <>
struct VX_Traits<float>
{
enum {
ImgType = 0,
DataType = VX_TYPE_FLOAT32
};
};
struct vxContext;
struct vxImage;
struct vxErr;
struct vxErr
{
vx_status status;
std::string msg;
vxErr(vx_status status_, const std::string & msg_) : status(status_), msg(msg_) {}
void check()
{
if (status != VX_SUCCESS)
throw *this;
}
void print()
{
PRINT("OpenVX HAL impl error: %d (%s)\n", status, msg.c_str());
}
static void check(vx_context ctx)
{
vxErr(vxGetStatus((vx_reference)ctx), "context check").check();
}
static void check(vx_image img)
{
vxErr(vxGetStatus((vx_reference)img), "image check").check();
}
static void check(vx_matrix mtx)
{
vxErr(vxGetStatus((vx_reference)mtx), "matrix check").check();
}
static void check(vx_convolution cnv)
{
vxErr(vxGetStatus((vx_reference)cnv), "convolution check").check();
}
static void check(vx_status s)
{
vxErr(s, "status check").check();
}
};
struct vxContext
{
vx_context ctx;
static vxContext * getContext();
private:
vxContext()
{
ctx = vxCreateContext();
vxErr::check(ctx);
}
~vxContext()
{
vxReleaseContext(&ctx);
}
};
struct vxImage
{
vx_image img;
template <typename T>
vxImage(vxContext &ctx, const T *data, size_t step, int w, int h)
{
if (h == 1)
step = w * sizeof(T);
vx_imagepatch_addressing_t addr;
addr.dim_x = w;
addr.dim_y = h;
addr.stride_x = sizeof(T);
addr.stride_y = (vx_int32)step;
void *ptrs[] = { (void*)data };
img = vxCreateImageFromHandle(ctx.ctx, VX_Traits<T>::ImgType, &addr, ptrs, VX_MEMORY_TYPE_HOST);
vxErr::check(img);
swapMemory = true;
}
template <typename T>
vxImage(vxContext &ctx, T value, int w, int h)
{
#if VX_VERSION > VX_VERSION_1_0
vx_pixel_value_t pixel;
switch ((int)(VX_Traits<T>::DataType))
{
case VX_TYPE_UINT8:pixel.U8 = value; break;
case VX_TYPE_UINT16:pixel.U16 = value; break;
case VX_TYPE_INT16:pixel.S16 = value; break;
default:vxErr(VX_ERROR_INVALID_PARAMETERS, "uniform image creation").check();
}
img = vxCreateUniformImage(ctx.ctx, w, h, VX_Traits<T>::ImgType, &pixel);
#else
img = vxCreateUniformImage(ctx.ctx, w, h, VX_Traits<T>::ImgType, &value);
#endif
vxErr::check(img);
swapMemory = false;
}
vxImage(vxContext &ctx, int imgType, const uchar *data, size_t step, int w, int h)
{
if (h == 1)
step = w * ((imgType == VX_DF_IMAGE_RGBX ||
imgType == VX_DF_IMAGE_U32 || imgType == VX_DF_IMAGE_S32) ? 4 :
imgType == VX_DF_IMAGE_RGB ? 3 :
(imgType == VX_DF_IMAGE_U16 || imgType == VX_DF_IMAGE_S16 ||
imgType == VX_DF_IMAGE_UYVY || imgType == VX_DF_IMAGE_YUYV) ? 2 : 1);
vx_imagepatch_addressing_t addr[4];
void *ptrs[4];
switch (imgType)
{
case VX_DF_IMAGE_U8:
case VX_DF_IMAGE_U16:
case VX_DF_IMAGE_S16:
case VX_DF_IMAGE_U32:
case VX_DF_IMAGE_S32:
case VX_DF_IMAGE_RGB:
case VX_DF_IMAGE_RGBX:
case VX_DF_IMAGE_UYVY:
case VX_DF_IMAGE_YUYV:
addr[0].dim_x = w;
addr[0].dim_y = h;
addr[0].stride_x = imgType == VX_DF_IMAGE_U8 ? 1 :
imgType == VX_DF_IMAGE_RGB ? 3 :
(imgType == VX_DF_IMAGE_U16 || imgType == VX_DF_IMAGE_S16 ||
imgType == VX_DF_IMAGE_UYVY || imgType == VX_DF_IMAGE_YUYV) ? 2 : 4;
addr[0].stride_y = (vx_int32)step;
ptrs[0] = (void*)data;
break;
case VX_DF_IMAGE_NV12:
case VX_DF_IMAGE_NV21:
addr[0].dim_x = w;
addr[0].dim_y = h;
addr[0].stride_x = 1;
addr[0].stride_y = (vx_int32)step;
ptrs[0] = (void*)data;
addr[1].dim_x = w / 2;
addr[1].dim_y = h / 2;
addr[1].stride_x = 2;
addr[1].stride_y = (vx_int32)step;
ptrs[1] = (void*)(data + h * step);
break;
case VX_DF_IMAGE_IYUV:
case VX_DF_IMAGE_YUV4:
addr[0].dim_x = w;
addr[0].dim_y = h;
addr[0].stride_x = 1;
addr[0].stride_y = (vx_int32)step;
ptrs[0] = (void*)data;
addr[1].dim_x = imgType == VX_DF_IMAGE_YUV4 ? w : w / 2;
addr[1].dim_y = imgType == VX_DF_IMAGE_YUV4 ? h : h / 2;
if (addr[1].dim_x != (step - addr[1].dim_x))
vxErr(VX_ERROR_INVALID_PARAMETERS, "UV planes use variable stride").check();
addr[1].stride_x = 1;
addr[1].stride_y = (vx_int32)addr[1].dim_x;
ptrs[1] = (void*)(data + h * step);
addr[2].dim_x = addr[1].dim_x;
addr[2].dim_y = addr[1].dim_y;
addr[2].stride_x = 1;
addr[2].stride_y = addr[1].stride_y;
ptrs[2] = (void*)(data + h * step + addr[1].dim_y * addr[1].stride_y);
break;
default:
vxErr(VX_ERROR_INVALID_PARAMETERS, "Bad image format").check();
}
img = vxCreateImageFromHandle(ctx.ctx, imgType, addr, ptrs, VX_MEMORY_TYPE_HOST);
vxErr::check(img);
swapMemory = true;
}
~vxImage()
{
#if VX_VERSION > VX_VERSION_1_0
if (swapMemory)
vxErr::check(vxSwapImageHandle(img, NULL, NULL, 1));
#endif
vxReleaseImage(&img);
}
private:
bool swapMemory;
};
struct vxMatrix
{
vx_matrix mtx;
template <typename T>
vxMatrix(vxContext &ctx, const T *data, int w, int h)
{
mtx = vxCreateMatrix(ctx.ctx, VX_Traits<T>::DataType, w, h);
vxErr::check(mtx);
#if VX_VERSION > VX_VERSION_1_0
vxErr::check(vxCopyMatrix(mtx, const_cast<T*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
vxErr::check(vxWriteMatrix(mtx, const_cast<T*>(data)));
#endif
}
~vxMatrix()
{
vxReleaseMatrix(&mtx);
}
};
struct vxConvolution
{
vx_convolution cnv;
vxConvolution(vxContext &ctx, const short *data, int w, int h)
{
cnv = vxCreateConvolution(ctx.ctx, w, h);
vxErr::check(cnv);
#if VX_VERSION > VX_VERSION_1_0
vxErr::check(vxCopyConvolutionCoefficients(cnv, const_cast<short*>(data), VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST));
#else
vxErr::check(vxWriteConvolutionCoefficients(cnv, const_cast<short*>(data)));
#endif
}
~vxConvolution()
{
vxReleaseConvolution(&cnv);
}
};
inline void setConstantBorder(vx_border_t &border, vx_uint8 val)
{
border.mode = VX_BORDER_CONSTANT;
#if VX_VERSION > VX_VERSION_1_0
border.constant_value.U8 = val;
#else
border.constant_value = val;
#endif
}
//==================================================================================================
// real code starts here
// ...
#define OVX_BINARY_OP(hal_func, ovx_call) \
template <typename T> \
inline int ovx_hal_##hal_func(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h) \
{ \
if(dimTooBig(w) || dimTooBig(h)) \
return CV_HAL_ERROR_NOT_IMPLEMENTED; \
try \
{ \
vxContext * ctx = vxContext::getContext(); \
vxImage ia(*ctx, a, astep, w, h); \
vxImage ib(*ctx, b, bstep, w, h); \
vxImage ic(*ctx, c, cstep, w, h); \
ovx_call \
} \
catch (vxErr & e) \
{ \
e.print(); \
return CV_HAL_ERROR_UNKNOWN; \
} \
return CV_HAL_ERROR_OK; \
}
OVX_BINARY_OP(add, {vxErr::check(vxuAdd(ctx->ctx, ia.img, ib.img, VX_CONVERT_POLICY_SATURATE, ic.img));})
OVX_BINARY_OP(sub, {vxErr::check(vxuSubtract(ctx->ctx, ia.img, ib.img, VX_CONVERT_POLICY_SATURATE, ic.img));})
OVX_BINARY_OP(absdiff, {vxErr::check(vxuAbsDiff(ctx->ctx, ia.img, ib.img, ic.img));})
OVX_BINARY_OP(and, {vxErr::check(vxuAnd(ctx->ctx, ia.img, ib.img, ic.img));})
OVX_BINARY_OP(or, {vxErr::check(vxuOr(ctx->ctx, ia.img, ib.img, ic.img));})
OVX_BINARY_OP(xor, {vxErr::check(vxuXor(ctx->ctx, ia.img, ib.img, ic.img));})
int ovx_hal_add(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h);
template <typename T>
inline int ovx_hal_mul(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h, double scale)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
#ifdef _MSC_VER
const float MAGIC_SCALE = 0x0.01010102;
#else
const float MAGIC_SCALE = 0x1.010102p-8;
#endif
try
{
int rounding_policy = VX_ROUND_POLICY_TO_ZERO;
float fscale = (float)scale;
if (fabs(fscale - MAGIC_SCALE) > FLT_EPSILON)
{
int exp = 0;
double significand = frexp(fscale, &exp);
if((significand != 0.5) || (exp > 1) || (exp < -14))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
else
{
fscale = MAGIC_SCALE;
rounding_policy = VX_ROUND_POLICY_TO_NEAREST_EVEN;// That's the only rounding that MUST be supported for 1/255 scale
}
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ib(*ctx, b, bstep, w, h);
vxImage ic(*ctx, c, cstep, w, h);
vxErr::check(vxuMultiply(ctx->ctx, ia.img, ib.img, fscale, VX_CONVERT_POLICY_SATURATE, rounding_policy, ic.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_not(const uchar *a, size_t astep, uchar *c, size_t cstep, int w, int h)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ic(*ctx, c, cstep, w, h);
vxErr::check(vxuNot(ctx->ctx, ia.img, ic.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_merge8u(const uchar **src_data, uchar *dst_data, int len, int cn)
{
if(dimTooBig(len))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (cn != 3 && cn != 4)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, src_data[0], len, len, 1);
vxImage ib(*ctx, src_data[1], len, len, 1);
vxImage ic(*ctx, src_data[2], len, len, 1);
vxImage id(*ctx, cn == 4 ? VX_DF_IMAGE_RGBX : VX_DF_IMAGE_RGB, dst_data, len, len, 1);
vxErr::check(vxuChannelCombine(ctx->ctx, ia.img, ib.img, ic.img,
cn == 4 ? vxImage(*ctx, src_data[3], len, len, 1).img : NULL,
id.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_resize(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, double inv_scale_x, double inv_scale_y, int interpolation)
{
if(dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, aw, ah);
vxImage ib(*ctx, b, bstep, bw, bh);
if(!((atype == CV_8UC1 || atype == CV_8SC1) &&
inv_scale_x > 0 && inv_scale_y > 0 &&
(bw - 0.5) / inv_scale_x - 0.5 < aw && (bh - 0.5) / inv_scale_y - 0.5 < ah &&
(bw + 0.5) / inv_scale_x + 0.5 >= aw && (bh + 0.5) / inv_scale_y + 0.5 >= ah &&
std::abs(bw / inv_scale_x - aw) < 0.1 && std::abs(bh / inv_scale_y - ah) < 0.1 ))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
int ovx_hal_sub(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h);
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
{
mode = VX_INTERPOLATION_BILINEAR;
if (inv_scale_x > 1 || inv_scale_y > 1)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
else if (interpolation == CV_HAL_INTER_AREA)
return CV_HAL_ERROR_NOT_IMPLEMENTED; //mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
return CV_HAL_ERROR_NOT_IMPLEMENTED; //mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vxErr::check( vxuScaleImage(ctx->ctx, ia.img, ib.img, mode));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_warpAffine(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[6], int interpolation, int borderType, const double borderValue[4])
{
if(dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, aw, ah);
vxImage ib(*ctx, b, bstep, bw, bh);
if (!(atype == CV_8UC1 || atype == CV_8SC1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
setConstantBorder(border, (vx_uint8)borderValue[0]);
break;
case CV_HAL_BORDER_REPLICATE:
// Neither 1.0 nor 1.1 OpenVX support BORDER_REPLICATE for warpings
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
//AREA interpolation is unsupported
//else if (interpolation == CV_HAL_INTER_AREA)
// mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<float> data;
data.reserve(6);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 2; ++i)
data.push_back((float)(M[i*3+j]));
vxMatrix mtx(*ctx, data.data(), 2, 3);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &border, sizeof(border)));
vxErr::check(vxuWarpAffine(ctx->ctx, ia.img, mtx.mtx, mode, ib.img));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_warpPerspectve(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[9], int interpolation, int borderType, const double borderValue[4])
{
if(dimTooBig(aw) || dimTooBig(ah) || dimTooBig(bw) || dimTooBig(bh))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, aw, ah);
vxImage ib(*ctx, b, bstep, bw, bh);
if (!(atype == CV_8UC1 || atype == CV_8SC1))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
setConstantBorder(border, (vx_uint8)borderValue[0]);
break;
case CV_HAL_BORDER_REPLICATE:
// Neither 1.0 nor 1.1 OpenVX support BORDER_REPLICATE for warpings
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
template <typename T>
int ovx_hal_absdiff(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h);
int mode;
if (interpolation == CV_HAL_INTER_LINEAR)
mode = VX_INTERPOLATION_BILINEAR;
//AREA interpolation is unsupported
//else if (interpolation == CV_HAL_INTER_AREA)
// mode = VX_INTERPOLATION_AREA;
else if (interpolation == CV_HAL_INTER_NEAREST)
mode = VX_INTERPOLATION_NEAREST_NEIGHBOR;
else
return CV_HAL_ERROR_NOT_IMPLEMENTED;
template <typename T>
int ovx_hal_and(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h);
template <typename T>
int ovx_hal_or(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h);
template <typename T>
int ovx_hal_xor(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h);
int ovx_hal_not(const uchar *a, size_t astep, uchar *c, size_t cstep, int w, int h);
std::vector<float> data;
data.reserve(9);
for (int j = 0; j < 3; ++j)
for (int i = 0; i < 3; ++i)
data.push_back((float)(M[i * 3 + j]));
template <typename T>
int ovx_hal_mul(const T *a, size_t astep, const T *b, size_t bstep, T *c, size_t cstep, int w, int h, double scale);
vxMatrix mtx(*ctx, data.data(), 3, 3);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &border, sizeof(border)));
vxErr::check(vxuWarpPerspective(ctx->ctx, ia.img, mtx.mtx, mode, ib.img));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_merge8u(const uchar **src_data, uchar *dst_data, int len, int cn);
int ovx_hal_resize(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, double inv_scale_x, double inv_scale_y, int interpolation);
int ovx_hal_warpAffine(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[6], int interpolation, int borderType, const double borderValue[4]);
int ovx_hal_warpPerspectve(int atype, const uchar *a, size_t astep, int aw, int ah, uchar *b, size_t bstep, int bw, int bh, const double M[9], int interpolation, int borderType, const double borderValue[4]);
struct cvhalFilter2D;
struct FilterCtx
{
vxConvolution cnv;
int dst_type;
vx_border_t border;
FilterCtx(vxContext &ctx, const short *data, int w, int h, int _dst_type, vx_border_t & _border) :
cnv(ctx, data, w, h), dst_type(_dst_type), border(_border) {}
};
inline int ovx_hal_filterInit(cvhalFilter2D **filter_context, uchar *kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height,
int , int , int src_type, int dst_type, int borderType, double delta, int anchor_x, int anchor_y, bool allowSubmatrix, bool allowInplace)
{
if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || delta != 0 ||
src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) ||
kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
setConstantBorder(border, 0);
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
vxContext * ctx = vxContext::getContext();
std::vector<short> data;
data.reserve(kernel_width*kernel_height);
switch (kernel_type)
{
case CV_8UC1:
for (int j = 0; j < kernel_height; ++j)
{
uchar * row = (uchar*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
break;
case CV_8SC1:
for (int j = 0; j < kernel_height; ++j)
{
schar * row = (schar*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
break;
case CV_16SC1:
for (int j = 0; j < kernel_height; ++j)
{
short * row = (short*)(kernel_data + kernel_step*j);
for (int i = 0; i < kernel_width; ++i)
data.push_back(row[i]);
}
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
FilterCtx* cnv = new FilterCtx(*ctx, data.data(), kernel_width, kernel_height, dst_type, border);
if (!cnv)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(cnv);
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_filterFree(cvhalFilter2D *filter_context)
{
if (filter_context)
{
delete (FilterCtx*)filter_context;
return CV_HAL_ERROR_OK;
}
else
{
return CV_HAL_ERROR_UNKNOWN;
}
}
inline int ovx_hal_filter(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int , int , int , int )
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
FilterCtx* cnv = (FilterCtx*)filter_context;
if(!cnv)
vxErr(VX_ERROR_INVALID_PARAMETERS, "Bad HAL context").check();
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &(cnv->border), sizeof(cnv->border)));
if (cnv->dst_type == CV_16SC1)
{
vxImage ib(*ctx, (short*)b, bstep, w, h);
vxErr::check(vxuConvolve(ctx->ctx, ia.img, cnv->cnv.cnv, ib.img));
}
else
{
vxImage ib(*ctx, b, bstep, w, h);
vxErr::check(vxuConvolve(ctx->ctx, ia.img, cnv->cnv.cnv, ib.img));
}
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_sepFilterInit(cvhalFilter2D **filter_context, int src_type, int dst_type,
int kernel_type, uchar *kernelx_data, int kernelx_length, uchar *kernely_data, int kernely_length,
int anchor_x, int anchor_y, double delta, int borderType)
{
if (!filter_context || !kernelx_data || !kernely_data || delta != 0 ||
src_type != CV_8UC1 || (dst_type != CV_8UC1 && dst_type != CV_16SC1) ||
kernelx_length % 2 == 0 || kernely_length % 2 == 0 || anchor_x != kernelx_length / 2 || anchor_y != kernely_length / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
setConstantBorder(border, 0);
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
vxContext * ctx = vxContext::getContext();
//At the moment OpenVX doesn't support separable filters natively so combine kernels to generic convolution
std::vector<short> data;
data.reserve(kernelx_length*kernely_length);
switch (kernel_type)
{
case CV_8UC1:
for (int j = 0; j < kernely_length; ++j)
for (int i = 0; i < kernelx_length; ++i)
data.push_back((short)(kernely_data[j]) * kernelx_data[i]);
break;
case CV_8SC1:
for (int j = 0; j < kernely_length; ++j)
for (int i = 0; i < kernelx_length; ++i)
data.push_back((short)(((schar*)kernely_data)[j]) * ((schar*)kernelx_data)[i]);
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
FilterCtx* cnv = new FilterCtx(*ctx, data.data(), kernelx_length, kernely_length, dst_type, border);
if (!cnv)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(cnv);
return CV_HAL_ERROR_OK;
}
int ovx_hal_filterInit(cvhalFilter2D **filter_context, uchar *kernel_data, size_t kernel_step, int kernel_type, int kernel_width, int kernel_height,
int, int, int src_type, int dst_type, int borderType, double delta, int anchor_x, int anchor_y, bool allowSubmatrix, bool allowInplace);
int ovx_hal_filterFree(cvhalFilter2D *filter_context);
int ovx_hal_filter(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int, int, int, int);
int ovx_hal_sepFilterInit(cvhalFilter2D **filter_context, int src_type, int dst_type,
int kernel_type, uchar *kernelx_data, int kernelx_length, uchar *kernely_data, int kernely_length,
int anchor_x, int anchor_y, double delta, int borderType);
#if VX_VERSION > VX_VERSION_1_0
struct MorphCtx
{
vxMatrix mask;
int operation;
vx_border_t border;
MorphCtx(vxContext &ctx, const uchar *data, int w, int h, int _operation, vx_border_t & _border) :
mask(ctx, data, w, h), operation(_operation), border(_border) {}
};
inline int ovx_hal_morphInit(cvhalFilter2D **filter_context, int operation, int src_type, int dst_type, int , int ,
int kernel_type, uchar *kernel_data, size_t kernel_step, int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool allowSubmatrix, bool allowInplace)
{
if (!filter_context || !kernel_data || allowSubmatrix || allowInplace || iterations != 1 ||
src_type != CV_8UC1 || dst_type != CV_8UC1 ||
kernel_width % 2 == 0 || kernel_height % 2 == 0 || anchor_x != kernel_width / 2 || anchor_y != kernel_height / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
vx_border_t border;
switch (borderType)
{
case CV_HAL_BORDER_CONSTANT:
if (borderValue[0] == DBL_MAX && borderValue[1] == DBL_MAX && borderValue[2] == DBL_MAX && borderValue[3] == DBL_MAX)
{
if (operation == MORPH_ERODE)
setConstantBorder(border, UCHAR_MAX);
else
setConstantBorder(border, 0);
}
else
{
int rounded = (int)round(borderValue[0]);
setConstantBorder(border, (vx_uint8)((unsigned)rounded <= UCHAR_MAX ? rounded : rounded > 0 ? UCHAR_MAX : 0));
}
break;
case CV_HAL_BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
vxContext * ctx = vxContext::getContext();
vx_size maxKernelDim;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_NONLINEAR_MAX_DIMENSION, &maxKernelDim, sizeof(maxKernelDim)));
if ((vx_size)kernel_width > maxKernelDim || (vx_size)kernel_height > maxKernelDim)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
std::vector<uchar> kernel_mat;
kernel_mat.reserve(kernel_width * kernel_height);
switch (CV_MAT_DEPTH(kernel_type))
{
case CV_8U:
case CV_8S:
for (int j = 0; j < kernel_height; ++j)
{
uchar * kernel_row = kernel_data + j * kernel_step;
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_16U:
case CV_16S:
for (int j = 0; j < kernel_height; ++j)
{
short * kernel_row = (short*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_32S:
for (int j = 0; j < kernel_height; ++j)
{
int * kernel_row = (int*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_32F:
for (int j = 0; j < kernel_height; ++j)
{
float * kernel_row = (float*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
case CV_64F:
for (int j = 0; j < kernel_height; ++j)
{
double * kernel_row = (double*)(kernel_data + j * kernel_step);
for (int i = 0; i < kernel_width; ++i)
kernel_mat.push_back(kernel_row[i] ? 255 : 0);
}
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
MorphCtx* mat;
switch (operation)
{
case MORPH_ERODE:
mat = new MorphCtx(*ctx, kernel_mat.data(), kernel_width, kernel_height, VX_NONLINEAR_FILTER_MIN, border);
break;
case MORPH_DILATE:
mat = new MorphCtx(*ctx, kernel_mat.data(), kernel_width, kernel_height, VX_NONLINEAR_FILTER_MAX, border);
break;
default:
return CV_HAL_ERROR_NOT_IMPLEMENTED;
}
if (!mat)
return CV_HAL_ERROR_UNKNOWN;
*filter_context = (cvhalFilter2D*)(mat);
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_morphFree(cvhalFilter2D *filter_context)
{
if (filter_context)
{
delete (MorphCtx*)filter_context;
return CV_HAL_ERROR_OK;
}
else
{
return CV_HAL_ERROR_UNKNOWN;
}
}
inline int ovx_hal_morph(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int , int , int , int , int , int , int , int )
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
MorphCtx* mat = (MorphCtx*)filter_context;
if (!mat)
vxErr(VX_ERROR_INVALID_PARAMETERS, "Bad HAL context").check();
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ib(*ctx, b, bstep, w, h);
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder;
vxErr::check(vxQueryContext(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &(mat->border), sizeof(mat->border)));
vxErr::check(vxuNonLinearFilter(ctx->ctx, mat->operation, ia.img, mat->mask.mtx, ib.img));
vxErr::check(vxSetContextAttribute(ctx->ctx, VX_CONTEXT_IMMEDIATE_BORDER, &prevBorder, sizeof(prevBorder)));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_morphInit(cvhalFilter2D **filter_context, int operation, int src_type, int dst_type, int , int ,
int kernel_type, uchar *kernel_data, size_t kernel_step, int kernel_width, int kernel_height, int anchor_x, int anchor_y,
int borderType, const double borderValue[4], int iterations, bool allowSubmatrix, bool allowInplace);
int ovx_hal_morphFree(cvhalFilter2D *filter_context);
int ovx_hal_morph(cvhalFilter2D *filter_context, uchar *a, size_t astep, uchar *b, size_t bstep, int w, int h, int , int , int , int , int , int , int , int );
#endif // 1.0 guard
inline int ovx_hal_cvtBGRtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int acn, int bcn, bool swapBlue)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (depth != CV_8U || swapBlue || acn == bcn || (acn != 3 && acn != 4) || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's strange but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, a, astep, w, h);
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtGraytoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int bcn)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (depth != CV_8U || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuChannelCombine(ctx->ctx, ia.img, ia.img, ia.img,
bcn == 4 ? vxImage(*ctx, uchar(255), w, h).img : NULL,
ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtTwoPlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (bcn != 3 && bcn != 4))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, uIdx ? VX_DF_IMAGE_NV21 : VX_DF_IMAGE_NV12, a, astep, w, h);
vx_channel_range_e cRange;
vxErr::check(vxQueryImage(ia.img, VX_IMAGE_RANGE, &cRange, sizeof(cRange)));
if (cRange == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtThreePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx || (size_t)w / 2 != astep - (size_t)w / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, VX_DF_IMAGE_IYUV, a, astep, w, h);
vx_channel_range_e cRange;
vxErr::check(vxQueryImage(ia.img, VX_IMAGE_RANGE, &cRange, sizeof(cRange)));
if (cRange == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtBGRtoThreePlaneYUV(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int acn, bool swapBlue, int uIdx)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (acn != 3 && acn != 4) || uIdx || (size_t)w / 2 != bstep - (size_t)w / 2)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1 || h & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, acn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, a, astep, w, h);
vxImage ib(*ctx, VX_DF_IMAGE_IYUV, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_cvtOnePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx, int ycn)
{
if(dimTooBig(w) || dimTooBig(h))
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (!swapBlue || (bcn != 3 && bcn != 4) || uIdx)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
if (w & 1) // It's not described in spec but sample implementation unable to convert odd sized images
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, ycn ? VX_DF_IMAGE_UYVY : VX_DF_IMAGE_YUYV, a, astep, w, h);
vx_channel_range_e cRange;
vxErr::check(vxQueryImage(ia.img, VX_IMAGE_RANGE, &cRange, sizeof(cRange)));
if (cRange == VX_CHANNEL_RANGE_FULL)
return CV_HAL_ERROR_NOT_IMPLEMENTED; // OpenCV store NV12/NV21 as RANGE_RESTRICTED while OpenVX expect RANGE_FULL
vxImage ib(*ctx, bcn == 3 ? VX_DF_IMAGE_RGB : VX_DF_IMAGE_RGBX, b, bstep, w, h);
vxErr::check(vxuColorConvert(ctx->ctx, ia.img, ib.img));
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
inline int ovx_hal_integral(int depth, int sdepth, int , const uchar * a, size_t astep, uchar * b, size_t bstep, uchar * c, size_t , uchar * d, size_t , int w, int h, int cn)
{
if (depth != CV_8U || sdepth != CV_32S || c != NULL || d != NULL || cn != 1)
return CV_HAL_ERROR_NOT_IMPLEMENTED;
try
{
vxContext * ctx = vxContext::getContext();
vxImage ia(*ctx, a, astep, w, h);
vxImage ib(*ctx, (unsigned int *)(b+bstep+sizeof(unsigned int)), bstep, w, h);
vxErr::check(vxuIntegralImage(ctx->ctx, ia.img, ib.img));
memset(b, 0, (w+1)*sizeof(unsigned int));
b += bstep;
for (int i = 0; i < h; i++, b += bstep)
{
*((unsigned int*)b) = 0;
}
}
catch (vxErr & e)
{
e.print();
return CV_HAL_ERROR_UNKNOWN;
}
return CV_HAL_ERROR_OK;
}
int ovx_hal_cvtBGRtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int acn, int bcn, bool swapBlue);
int ovx_hal_cvtGraytoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int depth, int bcn);
int ovx_hal_cvtTwoPlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx);
int ovx_hal_cvtThreePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx);
int ovx_hal_cvtBGRtoThreePlaneYUV(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int acn, bool swapBlue, int uIdx);
int ovx_hal_cvtOnePlaneYUVtoBGR(const uchar * a, size_t astep, uchar * b, size_t bstep, int w, int h, int bcn, bool swapBlue, int uIdx, int ycn);
int ovx_hal_integral(int depth, int sdepth, int, const uchar * a, size_t astep, uchar * b, size_t bstep, uchar * c, size_t, uchar * d, size_t, int w, int h, int cn);
//==================================================================================================
// functions redefinition
......
......@@ -22,6 +22,18 @@ Details: TBD
#include <VX/vx.h>
#include <VX/vxu.h>
#ifndef VX_VERSION_1_1
// 1.1 to 1.0 backward compatibility defines
static const vx_enum VX_INTERPOLATION_BILINEAR = VX_INTERPOLATION_TYPE_BILINEAR;
static const vx_enum VX_INTERPOLATION_AREA = VX_INTERPOLATION_TYPE_AREA;
static const vx_enum VX_INTERPOLATION_NEAREST_NEIGHBOR = VX_INTERPOLATION_TYPE_NEAREST_NEIGHBOR;
static const vx_enum VX_BORDER_CONSTANT = VX_BORDER_MODE_CONSTANT;
static const vx_enum VX_BORDER_REPLICATE = VX_BORDER_MODE_REPLICATE;
#endif
#ifndef IVX_USE_CXX98
// checking compiler
#if __cplusplus < 201103L && (!defined(_MSC_VER) || _MSC_VER < 1800)
......@@ -56,6 +68,7 @@ Details: TBD
#include <utility>
#include <string>
#include <vector>
#include <cstdlib>
#ifndef IVX_USE_CXX98
#include <type_traits>
......@@ -190,14 +203,14 @@ inline vx_size enumToTypeSize(vx_enum type)
template<typename T> struct TypeToEnum {};
template<> struct TypeToEnum<vx_char> { static const vx_enum value = VX_TYPE_CHAR; };
template<> struct TypeToEnum<vx_int8> { static const vx_enum value = VX_TYPE_INT8; };
template<> struct TypeToEnum<vx_uint8> { static const vx_enum value = VX_TYPE_UINT8; };
template<> struct TypeToEnum<vx_int16> { static const vx_enum value = VX_TYPE_INT16; };
template<> struct TypeToEnum<vx_uint16> { static const vx_enum value = VX_TYPE_UINT16; };
template<> struct TypeToEnum<vx_int32> { static const vx_enum value = VX_TYPE_INT32; };
template<> struct TypeToEnum<vx_uint32> { static const vx_enum value = VX_TYPE_UINT32; };
template<> struct TypeToEnum<vx_uint8> { static const vx_enum value = VX_TYPE_UINT8, imgType = VX_DF_IMAGE_U8; };
template<> struct TypeToEnum<vx_int16> { static const vx_enum value = VX_TYPE_INT16, imgType = VX_DF_IMAGE_S16; };
template<> struct TypeToEnum<vx_uint16> { static const vx_enum value = VX_TYPE_UINT16, imgType = VX_DF_IMAGE_U16; };
template<> struct TypeToEnum<vx_int32> { static const vx_enum value = VX_TYPE_INT32, imgType = VX_DF_IMAGE_S32; };
template<> struct TypeToEnum<vx_uint32> { static const vx_enum value = VX_TYPE_UINT32, imgType = VX_DF_IMAGE_U32; };
template<> struct TypeToEnum<vx_int64> { static const vx_enum value = VX_TYPE_INT64; };
template<> struct TypeToEnum<vx_uint64> { static const vx_enum value = VX_TYPE_UINT64; };
template<> struct TypeToEnum<vx_float32> { static const vx_enum value = VX_TYPE_FLOAT32; };
template<> struct TypeToEnum<vx_float32> { static const vx_enum value = VX_TYPE_FLOAT32, imgType = VX_DF_IMAGE('F', '0', '3', '2'); };
template<> struct TypeToEnum<vx_float64> { static const vx_enum value = VX_TYPE_FLOAT64; };
template<> struct TypeToEnum<vx_bool> { static const vx_enum value = VX_TYPE_BOOL; };
template<> struct TypeToEnum<vx_keypoint_t> {static const vx_enum value = VX_TYPE_KEYPOINT; };
......@@ -1376,6 +1389,25 @@ public:
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const void* value)
{ return Image(vxCreateUniformImage(context, width, height, format, value)); }
#endif
template <typename T>
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const T value)
{
#if VX_VERSION > VX_VERSION_1_0
vx_pixel_value_t pixel;
switch (format)
{
case VX_DF_IMAGE_U8:pixel.U8 = (vx_uint8)value; break;
case VX_DF_IMAGE_S16:pixel.S16 = (vx_int16)value; break;
case VX_DF_IMAGE_U16:pixel.U16 = (vx_uint16)value; break;
case VX_DF_IMAGE_S32:pixel.S32 = (vx_int32)value; break;
case VX_DF_IMAGE_U32:pixel.U32 = (vx_uint32)value; break;
default:throw ivx::WrapperError("uniform image type unsupported by this call");
}
return Image(vxCreateUniformImage(context, width, height, format, &pixel));
#else
return Image(vxCreateUniformImage(context, width, height, format, &value));
#endif
}
/// Planes number for the specified image format (fourcc)
/// \return 0 for unknown formats
......@@ -1887,7 +1919,9 @@ public:
swap(_planeIdx, p._planeIdx);
#endif
swap(_img, p._img);
#ifdef IVX_USE_OPENCV
swap(_m, p._m);
#endif
}
#endif
......
......@@ -221,19 +221,14 @@ namespace cv
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
return false; //Process isolated borders only
vx_border_t border;
vx_enum border;
switch (borderType & ~BORDER_ISOLATED)
{
case BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
#if VX_VERSION > VX_VERSION_1_0
border.constant_value.U8 = (vx_uint8)(0);
#else
border.constant_value = (vx_uint32)(0);
#endif
border = VX_BORDER_CONSTANT;
break;
case BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
border = VX_BORDER_REPLICATE;
break;
default:
return false;
......@@ -259,8 +254,8 @@ namespace cv
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
vx_border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(border);
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(border, (vx_uint8)(0));
if (dtype == CV_16SC1 && ksize == 3 && ((dx | dy) == 1) && (dx + dy) == 1)
{
if(dx)
......
......@@ -1278,7 +1278,7 @@ static bool openvx_pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz,
// The only border mode which is supported by both cv::pyrDown() and OpenVX
// and produces predictable results
vx_border_t borderMode;
ivx::border_t borderMode;
borderMode.mode = VX_BORDER_REPLICATE;
_dst.create( acceptableSize, srcMat.type() );
......
......@@ -1662,19 +1662,14 @@ namespace cv
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
return false; //Process isolated borders only
vx_border_t border;
vx_enum border;
switch (borderType & ~BORDER_ISOLATED)
{
case BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
#if VX_VERSION > VX_VERSION_1_0
border.constant_value.U8 = (vx_uint8)(0);
#else
border.constant_value = (vx_uint32)(0);
#endif
border = VX_BORDER_CONSTANT;
break;
case BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
border = VX_BORDER_REPLICATE;
break;
default:
return false;
......@@ -1701,7 +1696,7 @@ namespace cv
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(border);
ctx.setImmediateBorder(border, (vx_uint8)(0));
if (ddepth == CV_8U && ksize.width == 3 && ksize.height == 3 && normalize)
{
ivx::IVX_CHECK_STATUS(vxuBox3x3(ctx, ia, ib));
......@@ -2229,19 +2224,14 @@ static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
return false; //Process isolated borders only
vx_border_t border;
vx_enum border;
switch (borderType & ~BORDER_ISOLATED)
{
case BORDER_CONSTANT:
border.mode = VX_BORDER_CONSTANT;
#if VX_VERSION > VX_VERSION_1_0
border.constant_value.U8 = (vx_uint8)(0);
#else
border.constant_value = (vx_uint32)(0);
#endif
border = VX_BORDER_CONSTANT;
break;
case BORDER_REPLICATE:
border.mode = VX_BORDER_REPLICATE;
border = VX_BORDER_REPLICATE;
break;
default:
return false;
......@@ -2268,7 +2258,7 @@ static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(border);
ctx.setImmediateBorder(border, (vx_uint8)(0));
if (ksize.width == 3 && ksize.height == 3 && (sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) && (sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON))
{
ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib));
......@@ -3369,9 +3359,6 @@ namespace cv
Mat src = _src.getMat();
Mat dst = _dst.getMat();
vx_border_t border;
border.mode = VX_BORDER_REPLICATE;
try
{
ivx::Context ctx = ivx::Context::create();
......@@ -3395,7 +3382,7 @@ namespace cv
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments
//since OpenVX standart says nothing about thread-safety for now
ivx::border_t prevBorder = ctx.immediateBorder();
ctx.setImmediateBorder(border);
ctx.setImmediateBorder(VX_BORDER_REPLICATE);
#ifdef VX_VERSION_1_1
if (ksize == 3)
#endif
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment