Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
ba27d891
Commit
ba27d891
authored
Sep 14, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add feature rescaling according to Dollal's paper FPDW
parent
8d90b973
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
134 additions
and
62 deletions
+134
-62
softcascade.cpp
modules/objdetect/src/softcascade.cpp
+134
-62
No files found.
modules/objdetect/src/softcascade.cpp
View file @
ba27d891
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
By downloading, copying, installing or using the software you agree to this license.
//
If you do not agree to this license, do not download, install,
//
copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
License Agreement
//
For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-201
1
, Willow Garage Inc., all rights reserved.
// Copyright (C) 2008-201
2
, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//
* Redistribution
s of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
* Redistribution'
s of source code must retain the above copyright notice,
//
this list of conditions and the following disclaimer.
//
//
* Redistribution
s in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
* Redistribution'
s in binary form must reproduce the above copyright notice,
//
this list of conditions and the following disclaimer in the documentation
//
and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
* The name of the copyright holders may not be used to endorse or promote products
//
derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
...
...
@@ -37,6 +37,7 @@
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <precomp.hpp>
...
...
@@ -137,6 +138,43 @@ struct Level
workRect
(
cv
::
Size
(
cvRound
(
w
/
(
float
)
shrinkage
),
cvRound
(
h
/
(
float
)
shrinkage
))),
objSize
(
cv
::
Size
(
cvRound
(
oct
.
size
.
width
*
relScale
),
cvRound
(
oct
.
size
.
height
*
relScale
)))
{}
void
markDetection
(
const
int
x
,
const
int
dx
,
std
::
vector
<
cv
::
Rect
>&
detections
)
const
{
}
};
struct
CascadeIntrinsics
{
static
const
float
lambda
=
1.099
f
,
a
=
0.89
f
;
static
float
getFor
(
int
channel
,
float
scaling
)
{
CV_Assert
(
channel
<
10
);
if
((
scaling
-
1.
f
)
<
FLT_EPSILON
)
return
1.
f
;
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
static
const
float
A
[
2
][
2
]
=
{
//channel <= 6, otherwise
{
0.89
f
,
1.
f
},
// down
{
1.00
f
,
1.
f
}
// up
};
static
const
float
B
[
2
][
2
]
=
{
//channel <= 6, otherwise
{
1.099
f
/
log
(
2
),
2.
f
},
// down
{
2.
f
,
2.
f
}
// up
};
float
a
=
A
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>=
6
)];
float
b
=
B
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>=
6
)];
return
a
*
pow
(
scaling
,
b
);
}
};
// Feature rescale(float relScale)
...
...
@@ -148,42 +186,6 @@ struct Level
// return res;
// }
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
// struct CascadeIntrinsics
// {
// static const float lambda = 1.099f, a = 0.89f;
// static const float intrinsics[10][4];
// static float getFor(int channel, float scaling)
// {
// CV_Assert(channel < 10);
// if ((scaling - 1.f) < FLT_EPSILON)
// return 1.f;
// int ud = (int)(scaling < 1.f);
// return intrinsics[channel][(ud << 1)] * pow(scaling, intrinsics[channel][(ud << 1) + 1]);
// }
// };
// const float CascadeIntrinsics::intrinsics[10][4] =
// { //da, db, ua, ub
// // hog-like orientation bins
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// {a, lambda / log(2), 1, 2},
// // gradient magnitude
// {a, lambda / log(2), 1, 2},
// // luv color channels
// {1, 2, 1, 2},
// {1, 2, 1, 2},
// {1, 2, 1, 2}
// };
void
calcHistBins
(
const
cv
::
Mat
&
grey
,
cv
::
Mat
&
magIntegral
,
std
::
vector
<
cv
::
Mat
>&
histInts
,
const
int
bins
,
int
shrinkage
)
...
...
@@ -236,6 +238,7 @@ void calcHistBins(const cv::Mat& grey, cv::Mat& magIntegral, std::vector<cv::Mat
cv
::
resize
(
mag
,
shrMag
,
cv
::
Size
(),
scale
,
scale
,
cv
::
INTER_AREA
);
cv
::
integral
(
shrMag
,
magIntegral
,
mag
.
depth
());
histInts
.
push_back
(
magIntegral
);
}
struct
ChannelStorage
...
...
@@ -246,25 +249,40 @@ struct ChannelStorage
int
shrinkage
;
enum
{
HOG_BINS
=
6
};
enum
{
HOG_BINS
=
6
,
HOG_LUV_BINS
=
10
};
ChannelStorage
()
{}
ChannelStorage
(
const
cv
::
Mat
&
colored
,
int
shr
)
:
shrinkage
(
shr
)
{
cv
::
Mat
_luv
;
cv
::
Mat
_luv
,
shrLuv
;
cv
::
cvtColor
(
colored
,
_luv
,
CV_BGR2Luv
);
cv
::
resize
(
_luv
,
shrLuv
,
cv
::
Size
(),
1.
f
/
shr
,
1.
f
/
shr
,
cv
::
INTER_AREA
);
cv
::
integral
(
shrLuv
,
luv
);
cv
::
integral
(
luv
,
luv
);
std
::
vector
<
cv
::
Mat
>
splited
;
split
(
luv
,
splited
);
cv
::
Mat
grey
;
cv
::
cvtColor
(
colored
,
grey
,
CV_RGB2GRAY
);
calcHistBins
(
grey
,
magnitude
,
hog
,
HOG_BINS
,
shrinkage
);
hog
.
insert
(
hog
.
end
(),
splited
.
begin
(),
splited
.
end
());
}
float
get
(
int
chennel
,
cv
::
Rect
area
)
const
float
get
(
const
int
x
,
const
int
y
,
const
int
channel
,
const
cv
::
Rect
&
area
)
const
{
return
1.
f
;
CV_Assert
(
channel
<
HOG_LUV_BINS
);
const
cv
::
Mat
m
=
hog
[
channel
];
float
a
=
m
.
ptr
(
y
+
area
.
y
)[
x
+
area
.
x
];
float
b
=
m
.
ptr
(
y
+
area
.
y
)[
x
+
area
.
width
];
float
c
=
m
.
ptr
(
y
+
area
.
height
)[
x
+
area
.
width
];
float
d
=
m
.
ptr
(
y
+
area
.
height
)[
x
+
area
.
x
];
return
(
a
-
b
+
c
-
d
);
}
};
}
...
...
@@ -291,33 +309,87 @@ struct cv::SoftCascade::Filds
typedef
std
::
vector
<
Octave
>::
iterator
octIt_t
;
void
detectAt
(
const
Level
&
level
,
const
int
dx
,
const
int
dy
,
const
ChannelStorage
&
storage
,
const
std
::
vector
<
cv
::
Rect
>&
detections
)
const
std
::
vector
<
cv
::
Rect
>&
detections
)
const
{
float
detectionScore
=
0.
f
;
const
Octave
&
octave
=
*
(
level
.
octave
);
int
stBegin
=
octave
.
index
()
*
octave
.
stages
,
stEnd
=
stBegin
+
octave
.
stages
;
for
(
int
st
=
stBegin
;
st
<
stEnd
;
++
st
)
int
st
=
stBegin
;
for
(;
st
<
stEnd
;
++
st
)
{
const
Stage
&
stage
=
stages
[
st
];
if
(
detectionScore
>
stage
.
threshold
)
{
int
nId
=
st
*
3
;
// work with root node
const
Node
&
node
=
nodes
[
nId
];
const
Feature
&
feature
=
features
[
node
.
feature
];
float
sum
=
storage
.
get
(
feature
.
channel
,
feature
.
rect
);
int
next
=
(
sum
>=
node
.
threshold
)
?
2
:
1
;
// rescaling
float
scaling
=
CascadeIntrinsics
::
getFor
(
feature
.
channel
,
level
.
relScale
);
cv
::
Rect
scaledRect
=
feature
.
rect
;
float
farea
=
(
scaledRect
.
width
-
scaledRect
.
x
)
*
(
scaledRect
.
height
-
scaledRect
.
y
);
// rescale
scaledRect
.
x
=
cvRound
(
scaling
*
scaledRect
.
x
);
scaledRect
.
y
=
cvRound
(
scaling
*
scaledRect
.
y
);
scaledRect
.
width
=
cvRound
(
scaling
*
scaledRect
.
width
);
scaledRect
.
height
=
cvRound
(
scaling
*
scaledRect
.
height
);
float
sarea
=
(
scaledRect
.
width
-
scaledRect
.
x
)
*
(
scaledRect
.
height
-
scaledRect
.
y
);
float
approx
=
1.
f
;
if
((
farea
-
0.
f
)
>
FLT_EPSILON
&&
(
farea
-
0.
f
)
>
FLT_EPSILON
)
{
const
float
expected_new_area
=
farea
*
level
.
relScale
*
level
.
relScale
;
approx
=
expected_new_area
/
sarea
;
}
float
rootThreshold
=
node
.
threshold
/
approx
;
// ToDo check
rootThreshold
*=
scaling
;
// use rescaled
float
sum
=
storage
.
get
(
dx
,
dy
,
feature
.
channel
,
scaledRect
);
int
next
=
(
sum
>=
rootThreshold
)
?
2
:
1
;
// leaces
const
Node
&
leaf
=
nodes
[
nId
+
next
];
const
Feature
&
fLeaf
=
features
[
node
.
feature
];
sum
=
storage
.
get
(
feature
.
channel
,
feature
.
rect
);
int
lShift
=
(
next
-
1
)
*
2
+
(
sum
>=
leaf
.
threshold
)
?
1
:
0
;
// rescaling
scaling
=
CascadeIntrinsics
::
getFor
(
fLeaf
.
channel
,
level
.
relScale
);
scaledRect
=
fLeaf
.
rect
;
farea
=
(
scaledRect
.
width
-
scaledRect
.
x
)
*
(
scaledRect
.
height
-
scaledRect
.
y
);
// rescale
scaledRect
.
x
=
cvRound
(
scaling
*
scaledRect
.
x
);
scaledRect
.
y
=
cvRound
(
scaling
*
scaledRect
.
y
);
scaledRect
.
width
=
cvRound
(
scaling
*
scaledRect
.
width
);
scaledRect
.
height
=
cvRound
(
scaling
*
scaledRect
.
height
);
sarea
=
(
scaledRect
.
width
-
scaledRect
.
x
)
*
(
scaledRect
.
height
-
scaledRect
.
y
);
approx
=
1.
f
;
if
((
farea
-
0.
f
)
>
FLT_EPSILON
&&
(
farea
-
0.
f
)
>
FLT_EPSILON
)
{
const
float
expected_new_area
=
farea
*
level
.
relScale
*
level
.
relScale
;
approx
=
expected_new_area
/
sarea
;
}
rootThreshold
=
leaf
.
threshold
/
approx
;
// ToDo check
rootThreshold
*=
scaling
;
sum
=
storage
.
get
(
dx
,
dy
,
feature
.
channel
,
scaledRect
);
int
lShift
=
(
next
-
1
)
*
2
+
(
sum
>=
rootThreshold
)
?
1
:
0
;
float
impact
=
leaves
[
nId
+
lShift
];
detectionScore
+=
impact
;
}
if
(
detectionScore
<=
stage
.
threshold
)
break
;
}
if
(
st
==
octave
.
stages
-
1
)
level
.
markDetection
(
dx
,
dy
,
detections
);
}
octIt_t
fitOctave
(
const
float
&
logFactor
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment