Commit b90f82e6 authored by Cosmin Boaca's avatar Cosmin Boaca

Merge branch 'add_prob_result_bayes_classifier', remote-tracking branch…

Merge branch 'add_prob_result_bayes_classifier', remote-tracking branch 'upstream/master' into add_prob_result_bayes_classifier
parents 2cd22a3c 77bbd65f
......@@ -22,6 +22,15 @@
fflush(stdout); \
} \
}
#elif defined CV_OPENCL_RUN_ASSERT
#define CV_OCL_RUN_(condition, func, ...) \
{ \
if (cv::ocl::useOpenCL() && (condition)) \
{ \
CV_Assert(func); \
return; \
} \
}
#else
#define CV_OCL_RUN_(condition, func, ...) \
if (cv::ocl::useOpenCL() && (condition) && func) \
......
......@@ -1650,6 +1650,16 @@ int _InputArray::dims(int i) const
return vv[i].dims;
}
if( k == STD_VECTOR_UMAT )
{
const std::vector<UMat>& vv = *(const std::vector<UMat>*)obj;
if( i < 0 )
return 1;
CV_Assert( i < (int)vv.size() );
return vv[i].dims;
}
if( k == OPENGL_BUFFER )
{
CV_Assert( i < 0 );
......@@ -1701,6 +1711,16 @@ size_t _InputArray::total(int i) const
return vv[i].total();
}
if( k == STD_VECTOR_UMAT )
{
const std::vector<UMat>& vv = *(const std::vector<UMat>*)obj;
if( i < 0 )
return vv.size();
CV_Assert( i < (int)vv.size() );
return vv[i].total();
}
return size(i).area();
}
......@@ -1723,6 +1743,18 @@ int _InputArray::type(int i) const
if( k == NONE )
return -1;
if( k == STD_VECTOR_UMAT )
{
const std::vector<UMat>& vv = *(const std::vector<UMat>*)obj;
if( vv.empty() )
{
CV_Assert((flags & FIXED_TYPE) != 0);
return CV_MAT_TYPE(flags);
}
CV_Assert( i < (int)vv.size() );
return vv[i >= 0 ? i : 0].type();
}
if( k == STD_VECTOR_MAT )
{
const std::vector<Mat>& vv = *(const std::vector<Mat>*)obj;
......@@ -1793,6 +1825,12 @@ bool _InputArray::empty() const
return vv.empty();
}
if( k == STD_VECTOR_UMAT )
{
const std::vector<UMat>& vv = *(const std::vector<UMat>*)obj;
return vv.empty();
}
if( k == OPENGL_BUFFER )
return ((const ogl::Buffer*)obj)->empty();
......
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#include "opencv2/ts/ocl_perf.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
/////////////////////////////////// Accumulate ///////////////////////////////////
typedef Size_MatType AccumulateFixture;
OCL_PERF_TEST_P(AccumulateFixture, Accumulate,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
UMat src(srcSize, srcType), dst(srcSize, dstType);
declare.in(src, dst, WARMUP_RNG).out(dst);
OCL_TEST_CYCLE() cv::accumulate(src, dst);
SANITY_CHECK_NOTHING();
}
/////////////////////////////////// AccumulateSquare ///////////////////////////////////
typedef Size_MatType AccumulateSquareFixture;
OCL_PERF_TEST_P(AccumulateSquareFixture, AccumulateSquare,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
UMat src(srcSize, srcType), dst(srcSize, dstType);
declare.in(src, dst, WARMUP_RNG);
OCL_TEST_CYCLE() cv::accumulateSquare(src, dst);
SANITY_CHECK_NOTHING();
}
/////////////////////////////////// AccumulateProduct ///////////////////////////////////
typedef Size_MatType AccumulateProductFixture;
OCL_PERF_TEST_P(AccumulateProductFixture, AccumulateProduct,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
UMat src1(srcSize, srcType), src2(srcSize, srcType), dst(srcSize, dstType);
declare.in(src1, src2, dst, WARMUP_RNG);
OCL_TEST_CYCLE() cv::accumulateProduct(src1, src2, dst);
SANITY_CHECK_NOTHING();
}
/////////////////////////////////// AccumulateWeighted ///////////////////////////////////
typedef Size_MatType AccumulateWeightedFixture;
OCL_PERF_TEST_P(AccumulateWeightedFixture, AccumulateWeighted,
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
{
Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int srcType = get<1>(params), cn = CV_MAT_CN(srcType), dstType = CV_32FC(cn);
checkDeviceMaxMemoryAllocSize(srcSize, dstType);
UMat src(srcSize, srcType), dst(srcSize, dstType);
declare.in(src, dst, WARMUP_RNG);
OCL_TEST_CYCLE() cv::accumulateWeighted(src, dst, 2.0);
SANITY_CHECK_NOTHING();
}
} } // namespace cvtest::ocl
#endif
......@@ -61,6 +61,8 @@ OCL_PERF_TEST_P(EqualizeHistFixture, EqualizeHist, OCL_TEST_SIZES)
const Size srcSize = GetParam();
const double eps = 1;
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
declare.in(src, WARMUP_RNG).out(dst);
......@@ -69,6 +71,30 @@ OCL_PERF_TEST_P(EqualizeHistFixture, EqualizeHist, OCL_TEST_SIZES)
SANITY_CHECK(dst, eps);
}
///////////// calcHist ////////////////////////
typedef TestBaseWithParam<Size> CalcHistFixture;
OCL_PERF_TEST_P(CalcHistFixture, CalcHist, OCL_TEST_SIZES)
{
const Size srcSize = GetParam();
const std::vector<int> channels(1, 0);
std::vector<float> ranges(2);
std::vector<int> histSize(1, 256);
ranges[0] = 0;
ranges[1] = 256;
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
UMat src(srcSize, CV_8UC1), hist(256, 1, CV_32FC1);
declare.in(src, WARMUP_RNG).out(hist);
OCL_TEST_CYCLE() cv::calcHist(std::vector<UMat>(1, src), channels, noArray(), hist, histSize, ranges, false);
SANITY_CHECK(hist);
}
/////////// CopyMakeBorder //////////////////////
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101)
......@@ -83,6 +109,8 @@ OCL_PERF_TEST_P(CopyMakeBorderFixture, CopyMakeBorder,
const Size srcSize = get<0>(params);
const int type = get<1>(params), borderType = get<2>(params);
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst;
const Size dstSize = srcSize + Size(12, 12);
dst.create(dstSize, type);
......@@ -105,6 +133,8 @@ OCL_PERF_TEST_P(CornerMinEigenValFixture, CornerMinEigenVal,
const int type = get<1>(params), borderType = BORDER_REFLECT;
const int blockSize = 7, apertureSize = 1 + 2 * 3;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, CV_32FC1);
declare.in(src, WARMUP_RNG).out(dst);
......@@ -124,6 +154,8 @@ OCL_PERF_TEST_P(CornerHarrisFixture, CornerHarris,
const Size srcSize = get<0>(params);
const int type = get<1>(params), borderType = BORDER_REFLECT;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, CV_32FC1);
declare.in(src, WARMUP_RNG).out(dst);
......@@ -143,6 +175,8 @@ OCL_PERF_TEST_P(PreCornerDetectFixture, PreCornerDetect,
const Size srcSize = get<0>(params);
const int type = get<1>(params), borderType = BORDER_REFLECT;
checkDeviceMaxMemoryAllocSize(srcSize, type);
UMat src(srcSize, type), dst(srcSize, CV_32FC1);
declare.in(src, WARMUP_RNG).out(dst);
......@@ -162,6 +196,8 @@ OCL_PERF_TEST_P(IntegralFixture, Integral1, ::testing::Combine(OCL_TEST_SIZES, O
const Size srcSize = get<0>(params);
const int ddepth = get<1>(params);
checkDeviceMaxMemoryAllocSize(srcSize, ddepth);
UMat src(srcSize, CV_8UC1), dst(srcSize + Size(1, 1), ddepth);
declare.in(src, WARMUP_RNG).out(dst);
......@@ -186,6 +222,8 @@ OCL_PERF_TEST_P(ThreshFixture, Threshold,
const int threshType = get<2>(params);
const double maxValue = 220.0, threshold = 50;
checkDeviceMaxMemoryAllocSize(srcSize, srcType);
UMat src(srcSize, srcType), dst(srcSize, srcType);
declare.in(src, WARMUP_RNG).out(dst);
......@@ -202,6 +240,8 @@ OCL_PERF_TEST_P(CLAHEFixture, CLAHE, OCL_TEST_SIZES)
{
const Size srcSize = GetParam();
checkDeviceMaxMemoryAllocSize(srcSize, CV_8UC1);
UMat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
const double clipLimit = 40.0;
declare.in(src, WARMUP_RNG).out(dst);
......
......@@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
namespace cv
{
......@@ -352,15 +353,83 @@ inline int getAccTabIdx(int sdepth, int ddepth)
sdepth == CV_64F && ddepth == CV_64F ? 6 : -1;
}
#ifdef HAVE_OPENCL
enum
{
ACCUMULATE = 0,
ACCUMULATE_SQUARE = 1,
ACCUMULATE_PRODUCT = 2,
ACCUMULATE_WEIGHTED = 3
};
static bool ocl_accumulate( InputArray _src, InputArray _src2, InputOutputArray _dst, double alpha,
InputArray _mask, int op_type )
{
CV_Assert(op_type == ACCUMULATE || op_type == ACCUMULATE_SQUARE ||
op_type == ACCUMULATE_PRODUCT || op_type == ACCUMULATE_WEIGHTED);
int stype = _src.type(), cn = CV_MAT_CN(stype);
int sdepth = CV_MAT_DEPTH(stype), ddepth = _dst.depth();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
haveMask = !_mask.empty();
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
return false;
const char * const opMap[4] = { "ACCUMULATE", "ACCUMULATE_SQUARE", "ACCUMULATE_PRODUCT",
"ACCUMULATE_WEIGHTED" };
ocl::Kernel k("accumulate", ocl::imgproc::accumulate_oclsrc,
format("-D %s%s -D srcT=%s -D cn=%d -D dstT=%s%s",
opMap[op_type], haveMask ? " -D HAVE_MASK" : "",
ocl::typeToStr(sdepth), cn, ocl::typeToStr(ddepth),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat src = _src.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat(), mask = _mask.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
dstarg = ocl::KernelArg::ReadWrite(dst),
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
int argidx = k.set(0, srcarg);
if (op_type == ACCUMULATE_PRODUCT)
argidx = k.set(argidx, src2arg);
argidx = k.set(argidx, dstarg);
if (op_type == ACCUMULATE_WEIGHTED)
{
if (ddepth == CV_32F)
argidx = k.set(argidx, (float)alpha);
else
argidx = k.set(argidx, alpha);
}
if (haveMask)
argidx = k.set(argidx, maskarg);
size_t globalsize[2] = { src.cols, src.rows };
return k.run(2, globalsize, NULL, false);
}
#endif
}
void cv::accumulate( InputArray _src, InputOutputArray _dst, InputArray _mask )
{
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels();
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
CV_Assert( _src.sameSize(_dst) && dcn == scn );
CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) );
CV_Assert( dst.size == src.size && dst.channels() == cn );
CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) );
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
ocl_accumulate(_src, noArray(), _dst, 0.0, _mask, ACCUMULATE))
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int fidx = getAccTabIdx(sdepth, ddepth);
AccFunc func = fidx >= 0 ? accTab[fidx] : 0;
......@@ -372,17 +441,21 @@ void cv::accumulate( InputArray _src, InputOutputArray _dst, InputArray _mask )
int len = (int)it.size;
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], ptrs[1], ptrs[2], len, cn);
func(ptrs[0], ptrs[1], ptrs[2], len, scn);
}
void cv::accumulateSquare( InputArray _src, InputOutputArray _dst, InputArray _mask )
{
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels();
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
CV_Assert( _src.sameSize(_dst) && dcn == scn );
CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) );
CV_Assert( dst.size == src.size && dst.channels() == cn );
CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) );
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
ocl_accumulate(_src, noArray(), _dst, 0.0, _mask, ACCUMULATE_SQUARE))
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int fidx = getAccTabIdx(sdepth, ddepth);
AccFunc func = fidx >= 0 ? accSqrTab[fidx] : 0;
......@@ -394,18 +467,23 @@ void cv::accumulateSquare( InputArray _src, InputOutputArray _dst, InputArray _m
int len = (int)it.size;
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], ptrs[1], ptrs[2], len, cn);
func(ptrs[0], ptrs[1], ptrs[2], len, scn);
}
void cv::accumulateProduct( InputArray _src1, InputArray _src2,
InputOutputArray _dst, InputArray _mask )
{
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int sdepth = src1.depth(), ddepth = dst.depth(), cn = src1.channels();
int stype = _src1.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
CV_Assert( _src1.sameSize(_src2) && stype == _src2.type() );
CV_Assert( _src1.sameSize(_dst) && dcn == scn );
CV_Assert( _mask.empty() || (_src1.sameSize(_mask) && _mask.type() == CV_8U) );
CV_Assert( src2.size && src1.size && src2.type() == src1.type() );
CV_Assert( dst.size == src1.size && dst.channels() == cn );
CV_Assert( mask.empty() || (mask.size == src1.size && mask.type() == CV_8U) );
CV_OCL_RUN(_src1.dims() <= 2 && _dst.isUMat(),
ocl_accumulate(_src1, _src2, _dst, 0.0, _mask, ACCUMULATE_PRODUCT))
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int fidx = getAccTabIdx(sdepth, ddepth);
AccProdFunc func = fidx >= 0 ? accProdTab[fidx] : 0;
......@@ -417,18 +495,22 @@ void cv::accumulateProduct( InputArray _src1, InputArray _src2,
int len = (int)it.size;
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], ptrs[1], ptrs[2], ptrs[3], len, cn);
func(ptrs[0], ptrs[1], ptrs[2], ptrs[3], len, scn);
}
void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst,
double alpha, InputArray _mask )
{
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int sdepth = src.depth(), ddepth = dst.depth(), cn = src.channels();
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
CV_Assert( _src.sameSize(_dst) && dcn == scn );
CV_Assert( _mask.empty() || (_src.sameSize(_mask) && _mask.type() == CV_8U) );
CV_Assert( dst.size == src.size && dst.channels() == cn );
CV_Assert( mask.empty() || (mask.size == src.size && mask.type() == CV_8U) );
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
ocl_accumulate(_src, noArray(), _dst, alpha, _mask, ACCUMULATE_WEIGHTED))
Mat src = _src.getMat(), dst = _dst.getMat(), mask = _mask.getMat();
int fidx = getAccTabIdx(sdepth, ddepth);
AccWFunc func = fidx >= 0 ? accWTab[fidx] : 0;
......@@ -440,7 +522,7 @@ void cv::accumulateWeighted( InputArray _src, InputOutputArray _dst,
int len = (int)it.size;
for( size_t i = 0; i < it.nplanes; i++, ++it )
func(ptrs[0], ptrs[1], ptrs[2], len, cn, alpha);
func(ptrs[0], ptrs[1], ptrs[2], len, scn, alpha);
}
......
......@@ -1399,6 +1399,61 @@ static void calcHist( const Mat* images, int nimages, const int* channels,
}
}
#ifdef HAVE_OPENCL
enum
{
BINS = 256
};
static bool ocl_calcHist1(InputArray _src, OutputArray _hist, int ddepth = CV_32S)
{
int compunits = ocl::Device::getDefault().maxComputeUnits();
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
ocl::Kernel k1("calculate_histogram", ocl::imgproc::histogram_oclsrc,
format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d", BINS, compunits, wgs));
if (k1.empty())
return false;
_hist.create(BINS, 1, ddepth);
UMat src = _src.getUMat(), ghist(1, BINS * compunits, CV_32SC1),
hist = ddepth == CV_32S ? _hist.getUMat() : UMat(BINS, 1, CV_32SC1);
k1.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::PtrWriteOnly(ghist),
(int)src.total());
size_t globalsize = compunits * wgs;
if (!k1.run(1, &globalsize, &wgs, false))
return false;
ocl::Kernel k2("merge_histogram", ocl::imgproc::histogram_oclsrc,
format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d", BINS, compunits, (int)wgs));
if (k2.empty())
return false;
k2.args(ocl::KernelArg::PtrReadOnly(ghist), ocl::KernelArg::PtrWriteOnly(hist));
if (!k2.run(1, &wgs, &wgs, false))
return false;
if (hist.depth() != ddepth)
hist.convertTo(_hist, ddepth);
else
_hist.getUMatRef() = hist;
return true;
}
static bool ocl_calcHist(InputArrayOfArrays images, OutputArray hist)
{
std::vector<UMat> v;
images.getUMatVector(v);
return ocl_calcHist1(v[0], hist, CV_32F);
}
#endif
}
void cv::calcHist( const Mat* images, int nimages, const int* channels,
......@@ -1417,6 +1472,12 @@ void cv::calcHist( InputArrayOfArrays images, const std::vector<int>& channels,
const std::vector<float>& ranges,
bool accumulate )
{
CV_OCL_RUN(images.total() == 1 && channels.size() == 1 && images.channels(0) == 1 &&
channels[0] == 0 && images.isUMatVector() && mask.empty() && !accumulate &&
histSize.size() == 1 && histSize[0] == BINS && ranges.size() == 2 &&
ranges[0] == 0 && ranges[1] == 256,
ocl_calcHist(images, hist))
int i, dims = (int)histSize.size(), rsz = (int)ranges.size(), csz = (int)channels.size();
int nimages = (int)images.total();
......@@ -3290,47 +3351,13 @@ CV_IMPL void cvEqualizeHist( const CvArr* srcarr, CvArr* dstarr )
namespace cv {
enum
{
BINS = 256
};
static bool ocl_calcHist(InputArray _src, OutputArray _hist)
{
int compunits = ocl::Device::getDefault().maxComputeUnits();
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
ocl::Kernel k1("calculate_histogram", ocl::imgproc::histogram_oclsrc,
format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d", BINS, compunits, wgs));
if (k1.empty())
return false;
_hist.create(1, BINS, CV_32SC1);
UMat src = _src.getUMat(), hist = _hist.getUMat(), ghist(1, BINS * compunits, CV_32SC1);
k1.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::PtrWriteOnly(ghist),
(int)src.total());
size_t globalsize = compunits * wgs;
if (!k1.run(1, &globalsize, &wgs, false))
return false;
ocl::Kernel k2("merge_histogram", ocl::imgproc::histogram_oclsrc,
format("-D BINS=%d -D HISTS_COUNT=%d -D WGS=%d", BINS, compunits, (int)wgs));
if (k2.empty())
return false;
k2.args(ocl::KernelArg::PtrReadOnly(ghist), ocl::KernelArg::PtrWriteOnly(hist));
return k2.run(1, &wgs, &wgs, false);
}
static bool ocl_equalizeHist(InputArray _src, OutputArray _dst)
{
size_t wgs = std::min<size_t>(ocl::Device::getDefault().maxWorkGroupSize(), BINS);
// calculation of histogram
UMat hist;
if (!ocl_calcHist(_src, hist))
if (!ocl_calcHist1(_src, hist))
return false;
UMat lut(1, 256, CV_8UC1);
......
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
__kernel void accumulate(__global const uchar * srcptr, int src_step, int src_offset,
#ifdef ACCUMULATE_PRODUCT
__global const uchar * src2ptr, int src2_step, int src2_offset,
#endif
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols
#ifdef ACCUMULATE_WEIGHTED
, dstT alpha
#endif
#ifdef HAVE_MASK
, __global const uchar * mask, int mask_step, int mask_offset
#endif
)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int src_index = mad24(y, src_step, src_offset + x * cn * (int)sizeof(srcT));
#ifdef HAVE_MASK
int mask_index = mad24(y, mask_step, mask_offset + x);
mask += mask_index;
#endif
int dst_index = mad24(y, dst_step, dst_offset + x * cn * (int)sizeof(dstT));
__global const srcT * src = (__global const srcT *)(srcptr + src_index);
#ifdef ACCUMULATE_PRODUCT
int src2_index = mad24(y, src2_step, src2_offset + x * cn * (int)sizeof(srcT));
__global const srcT * src2 = (__global const srcT *)(src2ptr + src2_index);
#endif
__global dstT * dst = (__global dstT *)(dstptr + dst_index);
#pragma unroll
for (int c = 0; c < cn; ++c)
#ifdef HAVE_MASK
if (mask[0])
#endif
#ifdef ACCUMULATE
dst[c] += src[c];
#elif defined ACCUMULATE_SQUARE
dst[c] += src[c] * src[c];
#elif defined ACCUMULATE_PRODUCT
dst[c] += src[c] * src2[c];
#elif defined ACCUMULATE_WEIGHTED
dst[c] = (1 - alpha) * dst[c] + src[c] * alpha;
#else
#error "Unknown accumulation type"
#endif
}
}
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "cvconfig.h"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
PARAM_TEST_CASE(AccumulateBase, std::pair<MatDepth, MatDepth>, Channels, bool)
{
int sdepth, ddepth, channels;
bool useRoi;
double alpha;
TEST_DECLARE_INPUT_PARAMETER(src)
TEST_DECLARE_INPUT_PARAMETER(mask)
TEST_DECLARE_INPUT_PARAMETER(src2)
TEST_DECLARE_OUTPUT_PARAMETER(dst)
virtual void SetUp()
{
const std::pair<MatDepth, MatDepth> depths = GET_PARAM(0);
sdepth = depths.first, ddepth = depths.second;
channels = GET_PARAM(1);
useRoi = GET_PARAM(2);
}
void random_roi()
{
const int stype = CV_MAKE_TYPE(sdepth, channels),
dtype = CV_MAKE_TYPE(ddepth, channels);
Size roiSize = randomSize(1, 10);
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, stype, -MAX_VALUE, MAX_VALUE);
Border maskBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(mask, mask_roi, roiSize, maskBorder, CV_8UC1, -MAX_VALUE, MAX_VALUE);
threshold(mask, mask, 80, 255, THRESH_BINARY);
Border src2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src2, src2_roi, roiSize, src2Border, stype, -MAX_VALUE, MAX_VALUE);
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, roiSize, dstBorder, dtype, -MAX_VALUE, MAX_VALUE);
UMAT_UPLOAD_INPUT_PARAMETER(src)
UMAT_UPLOAD_INPUT_PARAMETER(mask)
UMAT_UPLOAD_INPUT_PARAMETER(src2)
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
alpha = randomDouble(-5, 5);
}
};
/////////////////////////////////// Accumulate ///////////////////////////////////
typedef AccumulateBase Accumulate;
OCL_TEST_P(Accumulate, Mat)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulate(src_roi, dst_roi));
OCL_ON(cv::accumulate(usrc_roi, udst_roi));
OCL_EXPECT_MATS_NEAR(dst, 1e-6);
}
}
OCL_TEST_P(Accumulate, Mask)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulate(src_roi, dst_roi, mask_roi));
OCL_ON(cv::accumulate(usrc_roi, udst_roi, umask_roi));
OCL_EXPECT_MATS_NEAR(dst, 1e-6);
}
}
/////////////////////////////////// AccumulateSquare ///////////////////////////////////
typedef AccumulateBase AccumulateSquare;
OCL_TEST_P(AccumulateSquare, Mat)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulateSquare(src_roi, dst_roi));
OCL_ON(cv::accumulateSquare(usrc_roi, udst_roi));
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
}
}
OCL_TEST_P(AccumulateSquare, Mask)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulateSquare(src_roi, dst_roi, mask_roi));
OCL_ON(cv::accumulateSquare(usrc_roi, udst_roi, umask_roi));
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
}
}
/////////////////////////////////// AccumulateProduct ///////////////////////////////////
typedef AccumulateBase AccumulateProduct;
OCL_TEST_P(AccumulateProduct, Mat)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulateProduct(src_roi, src2_roi, dst_roi));
OCL_ON(cv::accumulateProduct(usrc_roi, usrc2_roi, udst_roi));
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
}
}
OCL_TEST_P(AccumulateProduct, Mask)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulateProduct(src_roi, src2_roi, dst_roi, mask_roi));
OCL_ON(cv::accumulateProduct(usrc_roi, usrc2_roi, udst_roi, umask_roi));
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
}
}
/////////////////////////////////// AccumulateWeighted ///////////////////////////////////
typedef AccumulateBase AccumulateWeighted;
OCL_TEST_P(AccumulateWeighted, Mat)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulateWeighted(src_roi, dst_roi, alpha));
OCL_ON(cv::accumulateWeighted(usrc_roi, udst_roi, alpha));
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
}
}
OCL_TEST_P(AccumulateWeighted, Mask)
{
for (int i = 0; i < test_loop_times; ++i)
{
random_roi();
OCL_OFF(cv::accumulateWeighted(src_roi, dst_roi, alpha));
OCL_ON(cv::accumulateWeighted(usrc_roi, udst_roi, alpha));
OCL_EXPECT_MATS_NEAR(dst, 1e-2);
}
}
/////////////////////////////////// Instantiation ///////////////////////////////////
#define OCL_DEPTH_ALL_COMBINATIONS \
testing::Values(std::make_pair<MatDepth, MatDepth>(CV_8U, CV_32F), \
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_32F), \
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_32F), \
std::make_pair<MatDepth, MatDepth>(CV_8U, CV_64F), \
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_64F), \
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_64F), \
std::make_pair<MatDepth, MatDepth>(CV_64F, CV_64F))
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, Accumulate, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, AccumulateSquare, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, AccumulateProduct, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, AccumulateWeighted, Combine(OCL_DEPTH_ALL_COMBINATIONS, OCL_ALL_CHANNELS, Bool()));
} } // namespace cvtest::ocl
#endif
......@@ -75,7 +75,7 @@ PARAM_TEST_CASE(BlendLinear, MatDepth, Channels, bool)
const int type = CV_MAKE_TYPE(depth, channels);
const double upValue = 256;
Size roiSize = randomSize(1, 20);
Size roiSize = randomSize(1, MAX_VALUE);
Border src1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src1, src1_roi, roiSize, src1Border, type, -upValue, upValue);
......@@ -104,8 +104,7 @@ PARAM_TEST_CASE(BlendLinear, MatDepth, Channels, bool)
void Near(double eps = 0.0)
{
EXPECT_MAT_NEAR(dst, udst, eps);
EXPECT_MAT_NEAR(dst_roi, udst_roi, eps);
OCL_EXPECT_MATS_NEAR(dst, eps)
}
};
......
......@@ -144,11 +144,6 @@ PARAM_TEST_CASE(CalcBackProject, MatDepth, int, bool)
scale = randomDouble(0.1, 1);
}
void Near()
{
OCL_EXPECT_MATS_NEAR(dst, 0.0)
}
};
//////////////////////////////// CalcBackProject //////////////////////////////////////////////
......@@ -162,13 +157,62 @@ OCL_TEST_P(CalcBackProject, Mat)
OCL_OFF(cv::calcBackProject(images_roi, channels, hist_roi, dst_roi, ranges, scale));
OCL_ON(cv::calcBackProject(uimages_roi, channels, uhist_roi, udst_roi, ranges, scale));
Near();
OCL_EXPECT_MATS_NEAR(dst, 0.0)
}
}
//////////////////////////////// CalcHist //////////////////////////////////////////////
PARAM_TEST_CASE(CalcHist, bool)
{
bool useRoi;
TEST_DECLARE_INPUT_PARAMETER(src)
TEST_DECLARE_OUTPUT_PARAMETER(hist)
virtual void SetUp()
{
useRoi = GET_PARAM(0);
}
virtual void random_roi()
{
Size roiSize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, CV_8UC1, 0, 256);
Border histBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(hist, hist_roi, Size(1, 256), histBorder, CV_32SC1, 0, MAX_VALUE);
UMAT_UPLOAD_INPUT_PARAMETER(src)
UMAT_UPLOAD_OUTPUT_PARAMETER(hist)
}
};
OCL_TEST_P(CalcHist, Mat)
{
const std::vector<int> channels(1, 0);
std::vector<float> ranges(2);
std::vector<int> histSize(1, 256);
ranges[0] = 0;
ranges[1] = 256;
for (int j = 0; j < test_loop_times; j++)
{
random_roi();
OCL_OFF(cv::calcHist(std::vector<Mat>(1, src_roi), channels, noArray(), hist_roi, histSize, ranges, false));
OCL_ON(cv::calcHist(std::vector<UMat>(1, usrc_roi), channels, noArray(), uhist_roi, histSize, ranges, false));
OCL_EXPECT_MATS_NEAR(hist, 0.0)
}
}
/////////////////////////////////////////////////////////////////////////////////////
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, CalcBackProject, Combine(Values((MatDepth)CV_8U), Values(1, 2), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, CalcHist, Values(true, false));
} } // namespace cvtest::ocl
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment