Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
b83d4add
Commit
b83d4add
authored
Sep 26, 2012
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
memory optimization
parent
4d9c7c10
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
360 additions
and
333 deletions
+360
-333
isf-sc.cu
modules/gpu/src/cuda/isf-sc.cu
+54
-2
icf.hpp
modules/gpu/src/icf.hpp
+63
-65
softcascade.cpp
modules/gpu/src/softcascade.cpp
+243
-266
No files found.
modules/gpu/src/cuda/isf-sc.cu
View file @
b83d4add
...
...
@@ -41,9 +41,9 @@
//M*/
#include <opencv2/gpu/device/common.hpp>
//
#include <icf.hpp>
#include <icf.hpp>
// #include <opencv2/gpu/device/saturate_cast.hpp>
//
#include <stdio.h>
#include <stdio.h>
// #include <float.h>
// //#define LOG_CUDA_CASCADE
...
...
@@ -93,6 +93,58 @@ namespace icf {
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
texture<float2, cudaTextureType1D, cudaReadModeElementType> tnode;
__global__ void test_kernel(const Level* levels, const Octave* octaves, const float* stages,
const Node* nodes,
PtrStepSz<uchar4> objects)
{
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * blockDim.x + threadIdx.x;
Level level = levels[blockIdx.z];
if(x >= level.workRect.x || y >= level.workRect.y) return;
Octave octave = octaves[level.octave];
int st = octave.index * octave.stages;
const int stEnd = st + 1000;//octave.stages;
float confidence = 0.f;
#pragma unroll 8
for(; st < stEnd; ++st)
{
const int nId = st * 3;
const Node node = nodes[nId];
const float stage = stages[st];
confidence += node.rect.x * stage;
}
uchar4 val;
val.x = (int)confidence;
if (x == y) objects(0, threadIdx.x) = val;
}
void detect(const PtrStepSzb& levels, const PtrStepSzb& octaves, const PtrStepSzf& stages,
const PtrStepSzb& nodes, const PtrStepSzb& features,
PtrStepSz<uchar4> objects)
{
int fw = 160;
int fh = 120;
dim3 block(32, 8);
dim3 grid(fw / 32, fh / 8, 47);
const Level* l = (const Level*)levels.ptr();
const Octave* oct = ((const Octave*)octaves.ptr());
const float* st = (const float*)stages.ptr();
const Node* nd = (const Node*)nodes.ptr();
// cudaSafeCall( cudaBindTexture(0, tnode, nodes.data, rgb.cols / size) );
test_kernel<<<grid, block>>>(l, oct, st, nd, objects);
cudaSafeCall( cudaGetLastError());
cudaSafeCall( cudaDeviceSynchronize());
}
}
}}}
...
...
modules/gpu/src/icf.hpp
View file @
b83d4add
/
*
M///////////////////////////////////////////////////////////////////////////////////////
/
/
M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
...
...
@@ -38,12 +38,12 @@
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M
*/
//M
//
#include <opencv2/gpu/device/common.hpp>
#include <opencv2/gpu/device/common.hpp>
//
#ifndef __OPENCV_ICF_HPP__
//
#define __OPENCV_ICF_HPP__
#ifndef __OPENCV_ICF_HPP__
#define __OPENCV_ICF_HPP__
// #if defined __CUDACC__
// # define __device __device__ __forceinline__
...
...
@@ -52,49 +52,62 @@
// #endif
// namespace cv { namespace gpu { namespace icf {
// using cv::gpu::PtrStepSzb;
// using cv::gpu::PtrStepSzf;
// typedef unsigned char uchar;
// struct __align__(16) Octave
// {
// ushort index;
// ushort stages;
// ushort shrinkage;
// ushort2 size;
// float scale;
// Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
// : index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
// };
// struct __align__(8) Level //is actually 24 bytes
// {
// int octave;
// // float origScale; //not actually used
// float relScale;
// float shrScale; // used for marking detection
// float scaling[2]; // calculated according to Dollal paper
// // for 640x480 we can not get overflow
// uchar2 workRect;
// uchar2 objSize;
// Level(int idx, const Octave& oct, const float scale, const int w, const int h)
// : octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
// {
// workRect.x = round(w / (float)oct.shrinkage);
// workRect.y = round(h / (float)oct.shrinkage);
// objSize.x = round(oct.size.x * relScale);
// objSize.y = round(oct.size.y * relScale);
// }
// };
namespace
cv
{
namespace
gpu
{
namespace
device
{
namespace
icf
{
struct
__align__
(
16
)
Octave
{
ushort
index
;
ushort
stages
;
ushort
shrinkage
;
ushort2
size
;
float
scale
;
Octave
(
const
ushort
i
,
const
ushort
s
,
const
ushort
sh
,
const
ushort2
sz
,
const
float
sc
)
:
index
(
i
),
stages
(
s
),
shrinkage
(
sh
),
size
(
sz
),
scale
(
sc
)
{}
};
struct
__align__
(
8
)
Level
//is actually 24 bytes
{
int
octave
;
float
relScale
;
float
shrScale
;
// used for marking detection
float
scaling
[
2
];
// calculated according to Dollal paper
// for 640x480 we can not get overflow
uchar2
workRect
;
uchar2
objSize
;
Level
(
int
idx
,
const
Octave
&
oct
,
const
float
scale
,
const
int
w
,
const
int
h
)
:
octave
(
idx
),
relScale
(
scale
/
oct
.
scale
),
shrScale
(
relScale
/
(
float
)
oct
.
shrinkage
)
{
workRect
.
x
=
round
(
w
/
(
float
)
oct
.
shrinkage
);
workRect
.
y
=
round
(
h
/
(
float
)
oct
.
shrinkage
);
objSize
.
x
=
round
(
oct
.
size
.
x
*
relScale
);
objSize
.
y
=
round
(
oct
.
size
.
y
*
relScale
);
}
};
struct
__align__
(
8
)
Node
{
// int feature;
uchar4
rect
;
float
threshold
;
Node
(
const
uchar4
c
,
const
int
t
)
:
rect
(
c
),
threshold
(
t
)
{}
};
struct
__align__
(
8
)
Feature
{
int
channel
;
uchar4
rect
;
Feature
(
const
int
c
,
const
uchar4
r
)
:
channel
(
c
),
rect
(
r
)
{}
};
}
}}}
// struct Cascade
// {
// Cascade() {}
...
...
@@ -146,21 +159,6 @@
// static const float magnitudeScaling = 1.f ;// / sqrt(2);
// };
// struct __align__(8) Node
// {
// int feature;
// float threshold;
// Node(const int f, const float t) : feature(f), threshold(t) {}
// };
// struct __align__(8) Feature
// {
// int channel;
// uchar4 rect;
// Feature(const int c, const uchar4 r) : channel(c), rect(r) {}
// };
// }}}
// #endif
\ No newline at end of file
#endif
\ No newline at end of file
modules/gpu/src/softcascade.cpp
View file @
b83d4add
...
...
@@ -53,12 +53,15 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat
#else
//
#include <icf.hpp>
#include <icf.hpp>
namespace
cv
{
namespace
gpu
{
namespace
device
{
namespace
icf
{
void
fillBins
(
cv
::
gpu
::
PtrStepSzb
hogluv
,
const
cv
::
gpu
::
PtrStepSzf
&
nangle
,
const
int
fw
,
const
int
fh
,
const
int
bins
);
void
detect
(
const
PtrStepSzb
&
levels
,
const
PtrStepSzb
&
octaves
,
const
PtrStepSzf
&
stages
,
const
PtrStepSzb
&
nodes
,
const
PtrStepSzb
&
features
,
PtrStepSz
<
uchar4
>
objects
);
}
}}}
...
...
@@ -82,19 +85,20 @@ struct cv::gpu::SoftCascade::Filds
integralBuffer
.
create
(
shrunk
.
rows
+
1
*
HOG_LUV_BINS
,
shrunk
.
cols
+
1
,
CV_32SC1
);
hogluv
.
create
((
FRAME_HEIGHT
/
4
+
1
)
*
HOG_LUV_BINS
,
FRAME_WIDTH
/
4
+
1
,
CV_32SC1
);
}
// // scales range
// float minScale;
// float maxScale;
// int origObjWidth;
// int origObjHeight;
// scales range
float
minScale
;
float
maxScale
;
// GpuMat octaves;
// GpuMat stages;
// GpuMat nodes;
// GpuMat leaves;
// GpuMat features;
// GpuMat levels;
int
origObjWidth
;
int
origObjHeight
;
GpuMat
octaves
;
GpuMat
stages
;
GpuMat
nodes
;
GpuMat
leaves
;
GpuMat
features
;
GpuMat
levels
;
// preallocated buffer 640x480x10 for hogluv + 640x480 got gray
GpuMat
plane
;
...
...
@@ -114,312 +118,285 @@ struct cv::gpu::SoftCascade::Filds
// 161x121x10
GpuMat
hogluv
;
// // will be removed in final version
// // temp matrix for sobel and cartToPolar
// GpuMat dfdx, dfdy, angle, mag, nmag, nangle;
// std::vector<float> scales;
// icf::Cascade cascade;
// icf::ChannelStorage storage;
std
::
vector
<
float
>
scales
;
//
enum { BOOST = 0 };
enum
{
BOOST
=
0
};
enum
{
FRAME_WIDTH
=
640
,
FRAME_HEIGHT
=
480
,
//
TOTAL_SCALES = 55,
TOTAL_SCALES
=
55
,
// CLASSIFIERS = 5,
//
ORIG_OBJECT_WIDTH = 64,
//
ORIG_OBJECT_HEIGHT = 128,
ORIG_OBJECT_WIDTH
=
64
,
ORIG_OBJECT_HEIGHT
=
128
,
HOG_BINS
=
6
,
LUV_BINS
=
3
,
HOG_LUV_BINS
=
10
};
//
bool fill(const FileNode &root, const float mins, const float maxs);
//
void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const
//
{
// cascade.detect(hogluv, objects, stream
);
//
}
bool
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
);
void
detect
(
cv
::
gpu
::
GpuMat
objects
,
cudaStream_t
stream
)
const
{
device
::
icf
::
detect
(
levels
,
octaves
,
stages
,
nodes
,
features
,
objects
);
}
//
private:
// void calcLevels(const std::vector<
icf::Octave>& octs,
//
int frameW, int frameH, int nscales);
private
:
void
calcLevels
(
const
std
::
vector
<
device
::
icf
::
Octave
>&
octs
,
int
frameW
,
int
frameH
,
int
nscales
);
// typedef std::vector<
icf::Octave>::const_iterator octIt_t;
// int fitOctave(const std::vector<
icf::Octave>& octs, const float& logFactor) const
//
{
//
float minAbsLog = FLT_MAX;
//
int res = 0;
//
for (int oct = 0; oct < (int)octs.size(); ++oct)
//
{
// const
icf::Octave& octave =octs[oct];
//
float logOctave = ::log(octave.scale);
//
float logAbsScale = ::fabs(logFactor - logOctave);
typedef
std
::
vector
<
device
::
icf
::
Octave
>::
const_iterator
octIt_t
;
int
fitOctave
(
const
std
::
vector
<
device
::
icf
::
Octave
>&
octs
,
const
float
&
logFactor
)
const
{
float
minAbsLog
=
FLT_MAX
;
int
res
=
0
;
for
(
int
oct
=
0
;
oct
<
(
int
)
octs
.
size
();
++
oct
)
{
const
device
::
icf
::
Octave
&
octave
=
octs
[
oct
];
float
logOctave
=
::
log
(
octave
.
scale
);
float
logAbsScale
=
::
fabs
(
logFactor
-
logOctave
);
//
if(logAbsScale < minAbsLog)
//
{
//
res = oct;
//
minAbsLog = logAbsScale;
//
}
//
}
//
return res;
//
}
if
(
logAbsScale
<
minAbsLog
)
{
res
=
oct
;
minAbsLog
=
logAbsScale
;
}
}
return
res
;
}
};
// inline bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs)
// {
// minScale = mins;
// maxScale = maxs;
// // cascade properties
// static const char *const SC_STAGE_TYPE = "stageType";
// static const char *const SC_BOOST = "BOOST";
// static const char *const SC_FEATURE_TYPE = "featureType";
// static const char *const SC_ICF = "ICF";
inline
bool
cv
::
gpu
::
SoftCascade
::
Filds
::
fill
(
const
FileNode
&
root
,
const
float
mins
,
const
float
maxs
)
{
using
namespace
device
::
icf
;
minScale
=
mins
;
maxScale
=
maxs
;
// static const char *const SC_ORIG_W = "width";
// static const char *const SC_ORIG_H = "height";
// cascade properties
static
const
char
*
const
SC_STAGE_TYPE
=
"stageType"
;
static
const
char
*
const
SC_BOOST
=
"BOOST"
;
// static const char *const SC_OCTAVES = "octaves";
// static const char *const SC_STAGES = "stages";
// static const char *const SC_FEATURES = "features";
static
const
char
*
const
SC_FEATURE_TYPE
=
"featureType"
;
static
const
char
*
const
SC_ICF
=
"ICF"
;
// static const char *const SC_WEEK = "weakClassifiers";
// static const char *const SC_INTERNAL = "internalNodes";
// static const char *const SC_LEAF = "leafValues";
static
const
char
*
const
SC_ORIG_W
=
"width"
;
static
const
char
*
const
SC_ORIG_H
=
"height"
;
// static const char *const SC_OCT_SCALE = "scale
";
// static const char *const SC_OCT_STAGES = "stageNum
";
// static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor
";
static
const
char
*
const
SC_OCTAVES
=
"octaves
"
;
static
const
char
*
const
SC_STAGES
=
"stages
"
;
static
const
char
*
const
SC_FEATURES
=
"features
"
;
// static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
static
const
char
*
const
SC_WEEK
=
"weakClassifiers"
;
static
const
char
*
const
SC_INTERNAL
=
"internalNodes"
;
static
const
char
*
const
SC_LEAF
=
"leafValues"
;
// static const char * const SC_F_CHANNEL = "channel";
// static const char * const SC_F_RECT = "rect";
static
const
char
*
const
SC_OCT_SCALE
=
"scale"
;
static
const
char
*
const
SC_OCT_STAGES
=
"stageNum"
;
static
const
char
*
const
SC_OCT_SHRINKAGE
=
"shrinkingFactor"
;
// // only Ada Boost supported
// std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
// CV_Assert(stageTypeStr == SC_BOOST);
static
const
char
*
const
SC_STAGE_THRESHOLD
=
"stageThreshold"
;
// // only HOG-like integral channel features cupported
// string featureTypeStr = (string)root[SC_FEATURE_TYPE];
// CV_Assert(featureTypeStr == SC_ICF);
static
const
char
*
const
SC_F_CHANNEL
=
"channel"
;
static
const
char
*
const
SC_F_RECT
=
"rect"
;
// origObjWidth = (int)root[SC_ORIG_W];
// CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH);
// only Ada Boost supported
std
::
string
stageTypeStr
=
(
string
)
root
[
SC_STAGE_TYPE
];
CV_Assert
(
stageTypeStr
==
SC_BOOST
);
// origObjHeight = (int)root[SC_ORIG_H];
// CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT);
// only HOG-like integral channel features cupported
string
featureTypeStr
=
(
string
)
root
[
SC_FEATURE_TYPE
];
CV_Assert
(
featureTypeStr
==
SC_ICF
);
// FileNode fn = root[SC_OCTAVES
];
// if (fn.empty()) return false
;
origObjWidth
=
(
int
)
root
[
SC_ORIG_W
];
CV_Assert
(
origObjWidth
==
ORIG_OBJECT_WIDTH
)
;
// std::vector<icf::Octave> voctaves;
// std::vector<float> vstages;
// std::vector<icf::Node> vnodes;
// std::vector<float> vleaves;
// std::vector<icf::Feature> vfeatures;
// scales.clear();
origObjHeight
=
(
int
)
root
[
SC_ORIG_H
];
CV_Assert
(
origObjHeight
==
ORIG_OBJECT_HEIGHT
);
// // std::vector<Level> levels;
FileNode
fn
=
root
[
SC_OCTAVES
];
if
(
fn
.
empty
())
return
false
;
// FileNodeIterator it = fn.begin(), it_end = fn.end();
// int feature_offset = 0;
// ushort octIndex = 0;
// ushort shrinkage = 1;
std
::
vector
<
Octave
>
voctaves
;
std
::
vector
<
float
>
vstages
;
std
::
vector
<
Node
>
vnodes
;
std
::
vector
<
float
>
vleaves
;
std
::
vector
<
Feature
>
vfeatures
;
scales
.
clear
();
// for (; it != it_end; ++it)
// {
// FileNode fns = *it;
// float scale = (float)fns[SC_OCT_SCALE];
// scales.push_back(scale);
// ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
// ushort2 size;
// size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
// size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
// shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
// icf::Octave octave(octIndex, nstages, shrinkage, size, scale);
// CV_Assert(octave.stages > 0);
// voctaves.push_back(octave);
// FileNode ffs = fns[SC_FEATURES];
// if (ffs.empty()) return false;
// fns = fns[SC_STAGES];
// if (fn.empty()) return false;
// // for each stage (~ decision tree with H = 2)
// FileNodeIterator st = fns.begin(), st_end = fns.end();
// for (; st != st_end; ++st )
// {
// fns = *st;
// vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
FileNodeIterator
it
=
fn
.
begin
(),
it_end
=
fn
.
end
();
int
feature_offset
=
0
;
ushort
octIndex
=
0
;
ushort
shrinkage
=
1
;
// fns = fns[SC_WEEK];
// FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
// for (; ftr != ft_end; ++ftr)
// {
// fns = (*ftr)[SC_INTERNAL];
// FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
// for (; inIt != inIt_end;)
// {
// int feature = (int)(*(inIt +=2)++) + feature_offset;
// float th = (float)(*(inIt++));
// vnodes.push_back(icf::Node(feature, th));
// }
// fns = (*ftr)[SC_LEAF];
// inIt = fns.begin(), inIt_end = fns.end();
// for (; inIt != inIt_end; ++inIt)
// vleaves.push_back((float)(*inIt));
// }
// }
// st = ffs.begin(), st_end = ffs.end();
// for (; st != st_end; ++st )
// {
// cv::FileNode rn = (*st)[SC_F_RECT];
// cv::FileNodeIterator r_it = rn.begin();
// uchar4 rect;
// rect.x = saturate_cast<uchar>((int)*(r_it++));
// rect.y = saturate_cast<uchar>((int)*(r_it++));
// rect.z = saturate_cast<uchar>((int)*(r_it++));
// rect.w = saturate_cast<uchar>((int)*(r_it++));
// vfeatures.push_back(icf::Feature((int)(*st)[SC_F_CHANNEL], rect));
// }
for
(;
it
!=
it_end
;
++
it
)
{
FileNode
fns
=
*
it
;
float
scale
=
(
float
)
fns
[
SC_OCT_SCALE
];
scales
.
push_back
(
scale
);
ushort
nstages
=
saturate_cast
<
ushort
>
((
int
)
fns
[
SC_OCT_STAGES
]);
ushort2
size
;
size
.
x
=
cvRound
(
ORIG_OBJECT_WIDTH
*
scale
);
size
.
y
=
cvRound
(
ORIG_OBJECT_HEIGHT
*
scale
);
shrinkage
=
saturate_cast
<
ushort
>
((
int
)
fns
[
SC_OCT_SHRINKAGE
]);
Octave
octave
(
octIndex
,
nstages
,
shrinkage
,
size
,
scale
);
CV_Assert
(
octave
.
stages
>
0
);
voctaves
.
push_back
(
octave
);
FileNode
ffs
=
fns
[
SC_FEATURES
];
if
(
ffs
.
empty
())
return
false
;
fns
=
fns
[
SC_STAGES
];
if
(
fn
.
empty
())
return
false
;
// for each stage (~ decision tree with H = 2)
FileNodeIterator
st
=
fns
.
begin
(),
st_end
=
fns
.
end
();
for
(;
st
!=
st_end
;
++
st
)
{
fns
=
*
st
;
vstages
.
push_back
((
float
)
fns
[
SC_STAGE_THRESHOLD
]);
// feature_offset += octave.stages * 3;
// ++octIndex;
// }
fns
=
fns
[
SC_WEEK
];
FileNodeIterator
ftr
=
fns
.
begin
(),
ft_end
=
fns
.
end
();
for
(;
ftr
!=
ft_end
;
++
ftr
)
{
fns
=
(
*
ftr
)[
SC_INTERNAL
];
FileNodeIterator
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
for
(;
inIt
!=
inIt_end
;)
{
int
feature
=
(
int
)(
*
(
inIt
+=
2
)
++
)
+
feature_offset
;
float
th
=
(
float
)(
*
(
inIt
++
));
uchar4
rect
;
vnodes
.
push_back
(
Node
(
rect
,
th
));
}
// // upload in gpu memory
// octaves.upload(cv::Mat(1, voctaves.size() * sizeof(icf::Octave), CV_8UC1, (uchar*)&(voctaves[0]) ));
// CV_Assert(!octaves.empty());
fns
=
(
*
ftr
)[
SC_LEAF
];
inIt
=
fns
.
begin
(),
inIt_end
=
fns
.
end
();
for
(;
inIt
!=
inIt_end
;
++
inIt
)
vleaves
.
push_back
((
float
)(
*
inIt
));
}
}
// stages.upload(cv::Mat(vstages).reshape(1,1));
// CV_Assert(!stages.empty());
st
=
ffs
.
begin
(),
st_end
=
ffs
.
end
();
for
(;
st
!=
st_end
;
++
st
)
{
cv
::
FileNode
rn
=
(
*
st
)[
SC_F_RECT
];
cv
::
FileNodeIterator
r_it
=
rn
.
begin
();
uchar4
rect
;
rect
.
x
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
rect
.
y
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
rect
.
z
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
rect
.
w
=
saturate_cast
<
uchar
>
((
int
)
*
(
r_it
++
));
vfeatures
.
push_back
(
Feature
((
int
)(
*
st
)[
SC_F_CHANNEL
],
rect
));
}
// nodes.upload(cv::Mat(1, vnodes.size() * sizeof(icf::Node), CV_8UC1, (uchar*)&(vnodes[0]) ));
// CV_Assert(!nodes.empty());
feature_offset
+=
octave
.
stages
*
3
;
++
octIndex
;
}
// leaves.upload(cv::Mat(vleaves).reshape(1,1));
// CV_Assert(!leaves.empty());
// upload in gpu memory
octaves
.
upload
(
cv
::
Mat
(
1
,
voctaves
.
size
()
*
sizeof
(
Octave
),
CV_8UC1
,
(
uchar
*
)
&
(
voctaves
[
0
])
));
CV_Assert
(
!
octaves
.
empty
());
// features.upload(cv::Mat(1, vfeatures.size() * sizeof(icf::Feature), CV_8UC1, (uchar*)&(vfeatures[0])
));
// CV_Assert(!featur
es.empty());
stages
.
upload
(
cv
::
Mat
(
vstages
).
reshape
(
1
,
1
));
CV_Assert
(
!
stag
es
.
empty
());
// // compute levels
// calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
// CV_Assert(!levels.empty());
nodes
.
upload
(
cv
::
Mat
(
1
,
vnodes
.
size
()
*
sizeof
(
Node
),
CV_8UC1
,
(
uchar
*
)
&
(
vnodes
[
0
])
));
CV_Assert
(
!
nodes
.
empty
());
// //init Cascade
// cascade = icf::Cascade(octaves, stages, nodes, leaves, features, levels
);
leaves
.
upload
(
cv
::
Mat
(
vleaves
).
reshape
(
1
,
1
));
CV_Assert
(
!
leaves
.
empty
()
);
// // allocate buffers
// dmem.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
// shrunk.create(FRAME_HEIGHT / shrinkage * HOG_LUV_BINS, FRAME_WIDTH / shrinkage, CV_8UC1);
// // hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_32SC1);
// luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
// integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1);
features
.
upload
(
cv
::
Mat
(
1
,
vfeatures
.
size
()
*
sizeof
(
Feature
),
CV_8UC1
,
(
uchar
*
)
&
(
vfeatures
[
0
])
));
CV_Assert
(
!
features
.
empty
());
// dfdx.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
// dfdy.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
// angle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
// mag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
// compute levels
calcLevels
(
voctaves
,
FRAME_WIDTH
,
FRAME_HEIGHT
,
TOTAL_SCALES
);
CV_Assert
(
!
levels
.
empty
());
// nmag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1)
;
// nangle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
return
true
;
}
// storage = icf::ChannelStorage(dmem, shrunk, hogluv, shrinkage);
// return true;
// }
namespace
{
struct
CascadeIntrinsics
{
static
const
float
lambda
=
1.099
f
,
a
=
0.89
f
;
// namespace {
// struct CascadeIntrinsics
// {
// static const float lambda = 1.099f, a = 0.89f;
static
float
getFor
(
int
channel
,
float
scaling
)
{
CV_Assert
(
channel
<
10
);
// static float getFor(int channel, float scaling)
// {
// CV_Assert(channel < 10);
if
(
fabs
(
scaling
-
1.
f
)
<
FLT_EPSILON
)
return
1.
f
;
// if (fabs(scaling - 1.f) < FLT_EPSILON)
// return 1.f;
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
static
const
float
A
[
2
][
2
]
=
{
//channel <= 6, otherwise
{
0.89
f
,
1.
f
},
// down
{
1.00
f
,
1.
f
}
// up
};
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
// static const float A[2][2] =
// { //channel <= 6, otherwise
// { 0.89f, 1.f}, // down
// { 1.00f, 1.f} // up
// };
static
const
float
B
[
2
][
2
]
=
{
//channel <= 6, otherwise
{
1.099
f
/
log
(
2
),
2.
f
},
// down
{
0.
f
,
2.
f
}
// up
};
// static const float B[2][2] =
// { //channel <= 6, otherwise
// { 1.099f / log(2), 2.f}, // down
// { 0.f, 2.f} // up
// };
float
a
=
A
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>
6
)];
float
b
=
B
[(
int
)(
scaling
>=
1
)][(
int
)(
channel
>
6
)];
// float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
// float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
return
a
*
pow
(
scaling
,
b
);
}
};
}
// // printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
// return a * pow(scaling, b);
// }
// }
;
// }
inline
void
cv
::
gpu
::
SoftCascade
::
Filds
::
calcLevels
(
const
std
::
vector
<
device
::
icf
::
Octave
>&
octs
,
int
frameW
,
int
frameH
,
int
nscales
)
{
CV_Assert
(
nscales
>
1
)
;
using
device
::
icf
::
Level
;
// inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<icf::Octave>& octs,
// int frameW, int frameH, int nscales)
// {
// CV_Assert(nscales > 1);
std
::
vector
<
Level
>
vlevels
;
float
logFactor
=
(
::
log
(
maxScale
)
-
::
log
(
minScale
))
/
(
nscales
-
1
);
// std::vector<icf::Level> vlevels;
// float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1);
float
scale
=
minScale
;
for
(
int
sc
=
0
;
sc
<
nscales
;
++
sc
)
{
int
width
=
::
std
::
max
(
0.0
f
,
frameW
-
(
origObjWidth
*
scale
));
int
height
=
::
std
::
max
(
0.0
f
,
frameH
-
(
origObjHeight
*
scale
));
float
logScale
=
::
log
(
scale
);
int
fit
=
fitOctave
(
octs
,
logScale
);
Level
level
(
fit
,
octs
[
fit
],
scale
,
width
,
height
);
level
.
scaling
[
0
]
=
CascadeIntrinsics
::
getFor
(
0
,
level
.
relScale
);
level
.
scaling
[
1
]
=
CascadeIntrinsics
::
getFor
(
9
,
level
.
relScale
);
if
(
!
width
||
!
height
)
break
;
else
vlevels
.
push_back
(
level
);
if
(
::
fabs
(
scale
-
maxScale
)
<
FLT_EPSILON
)
break
;
scale
=
::
std
::
min
(
maxScale
,
::
expf
(
::
log
(
scale
)
+
logFactor
));
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x,
//level.objSize.y);
std
::
cout
<<
"level "
<<
sc
<<
" octeve "
<<
vlevels
[
sc
].
octave
<<
" relScale "
<<
vlevels
[
sc
].
relScale
<<
" "
<<
vlevels
[
sc
].
shrScale
<<
" ["
<<
(
int
)
vlevels
[
sc
].
objSize
.
x
<<
" "
<<
(
int
)
vlevels
[
sc
].
objSize
.
y
<<
"] ["
<<
(
int
)
vlevels
[
sc
].
workRect
.
x
<<
" "
<<
(
int
)
vlevels
[
sc
].
workRect
.
y
<<
"]"
<<
std
::
endl
;
}
// float scale = minScale;
// for (int sc = 0; sc < nscales; ++sc)
// {
// int width = ::std::max(0.0f, frameW - (origObjWidth * scale));
// int height = ::std::max(0.0f, frameH - (origObjHeight * scale));
// float logScale = ::log(scale);
// int fit = fitOctave(octs, logScale);
// icf::Level level(fit, octs[fit], scale, width, height);
// level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
// level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
// if (!width || !height)
// break;
// else
// vlevels.push_back(level);
// if (::fabs(scale - maxScale) < FLT_EPSILON) break;
// scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
// // printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
// // level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x,
//level.objSize.y);
// // std::cout << "level " << sc
// // << " octeve "
// // << vlevels[sc].octave
// // << " relScale "
// // << vlevels[sc].relScale
// // << " " << vlevels[sc].shrScale
// // << " [" << (int)vlevels[sc].objSize.x
// // << " " << (int)vlevels[sc].objSize.y << "] ["
// // << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
// }
// levels.upload(cv::Mat(1, vlevels.size() * sizeof(icf::Level), CV_8UC1, (uchar*)&(vlevels[0]) ));
// }
levels
.
upload
(
cv
::
Mat
(
1
,
vlevels
.
size
()
*
sizeof
(
Level
),
CV_8UC1
,
(
uchar
*
)
&
(
vlevels
[
0
])
));
}
cv
::
gpu
::
SoftCascade
::
SoftCascade
()
:
filds
(
0
)
{}
...
...
@@ -444,7 +421,7 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
filds
=
new
Filds
;
Filds
&
flds
=
*
filds
;
//
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
if
(
!
flds
.
fill
(
fs
.
getFirstTopLevelNode
(),
minScale
,
maxScale
))
return
false
;
return
true
;
}
...
...
@@ -538,7 +515,7 @@ void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat&
cudaStream_t
stream
=
StreamAccessor
::
getStream
(
s
);
// detection
//
flds.detect(objects, stream);
flds
.
detect
(
objects
,
stream
);
// // flds.storage.frame(colored, stream);
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment