Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
b4b63cd6
Commit
b4b63cd6
authored
Mar 13, 2013
by
marina.kolpakova
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
add softcascade to people detector sample
parent
e4f55a7e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
148 additions
and
79 deletions
+148
-79
CMakeLists.txt
samples/cpp/CMakeLists.txt
+1
-1
peopledetect.cpp
samples/cpp/peopledetect.cpp
+147
-78
No files found.
samples/cpp/CMakeLists.txt
View file @
b4b63cd6
...
...
@@ -4,7 +4,7 @@
# ----------------------------------------------------------------------------
SET
(
OPENCV_CPP_SAMPLES_REQUIRED_DEPS opencv_core opencv_flann opencv_imgproc
opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree
opencv_highgui opencv_ml opencv_video opencv_objdetect opencv_photo opencv_nonfree
opencv_softcascade
opencv_features2d opencv_calib3d opencv_legacy opencv_contrib opencv_stitching opencv_videostab
)
ocv_check_dependencies
(
${
OPENCV_CPP_SAMPLES_REQUIRED_DEPS
}
)
...
...
samples/cpp/peopledetect.cpp
View file @
b4b63cd6
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/softcascade/softcascade.hpp>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <iostream>
#include <vector>
#include <string>
#include <fstream>
using
namespace
cv
;
using
namespace
std
;
// static void help()
// {
// printf(
// "\nDemonstrate the use of the HoG descriptor using\n"
// " HOGDescriptor::hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());\n"
// "Usage:\n"
// "./peopledetect (<image_filename> | <image_list>.txt)\n\n");
// }
void
filter_rects
(
const
std
::
vector
<
cv
::
Rect
>&
candidates
,
std
::
vector
<
cv
::
Rect
>&
objects
);
int
main
(
int
argc
,
char
**
argv
)
{
Mat
img
;
FILE
*
f
=
0
;
char
_filename
[
1024
];
const
std
::
string
keys
=
"{help h usage ? | | print this message and exit }"
"{cascade c | | path to cascade xml, if empty HOG detector will be executed }"
"{frame f | | wildchart pattern to frame source}"
"{min_scale |0.4 | minimum scale to detect }"
"{max_scale |5.0 | maxamum scale to detect }"
"{total_scales |55 | prefered number of scales between min and max }"
"{write_file wf |0 | write to .txt. Disabled by default.}"
"{write_image wi |0 | write to image. Disabled by default.}"
"{show_image si |1 | show image. Enabled by default.}"
"{threshold thr |-1 | detection threshold. Detections with score less then threshold will be ignored.}"
;
cv
::
CommandLineParser
parser
(
argc
,
argv
,
keys
);
parser
.
about
(
"Soft cascade training application."
);
if
(
argc
==
1
)
if
(
parser
.
has
(
"help"
)
)
{
p
rintf
(
"Usage: peopledetect (<image_filename> | <image_list>.txt)
\n
"
);
p
arser
.
printMessage
(
);
return
0
;
}
img
=
imread
(
argv
[
1
]);
if
(
img
.
data
)
if
(
!
parser
.
check
())
{
parser
.
printErrors
();
return
1
;
}
int
wf
=
parser
.
get
<
int
>
(
"write_file"
);
if
(
wf
)
std
::
cout
<<
"resulte will be stored to .txt file with the same name as image."
<<
std
::
endl
;
int
wi
=
parser
.
get
<
int
>
(
"write_image"
);
if
(
wi
)
std
::
cout
<<
"resulte will be stored to image with the same name as input plus dt."
<<
std
::
endl
;
int
si
=
parser
.
get
<
int
>
(
"show_image"
);
float
minScale
=
parser
.
get
<
float
>
(
"min_scale"
);
float
maxScale
=
parser
.
get
<
float
>
(
"max_scale"
);
int
scales
=
parser
.
get
<
int
>
(
"total_scales"
);
int
thr
=
parser
.
get
<
int
>
(
"threshold"
);
cv
::
HOGDescriptor
hog
;
cv
::
softcascade
::
Detector
cascade
;
bool
useHOG
=
false
;
std
::
string
cascadePath
=
parser
.
get
<
std
::
string
>
(
"cascade"
);
if
(
cascadePath
.
empty
())
{
strcpy
(
_filename
,
argv
[
1
]);
useHOG
=
true
;
hog
.
setSVMDetector
(
cv
::
HOGDescriptor
::
getDefaultPeopleDetector
());
std
::
cout
<<
"going to use HOG detector."
<<
std
::
endl
;
}
else
{
f
=
fopen
(
argv
[
1
],
"rt"
);
if
(
!
f
)
cv
::
FileStorage
fs
(
cascadePath
,
cv
::
FileStorage
::
READ
);
if
(
!
fs
.
isOpened
()
)
{
fprintf
(
stderr
,
"ERROR: the specified file could not be loaded
\n
"
);
return
-
1
;
std
::
cout
<<
"Soft Cascade file "
<<
cascadePath
<<
" can't be opened."
<<
std
::
endl
<<
std
::
flush
;
return
1
;
}
cascade
=
cv
::
softcascade
::
Detector
(
minScale
,
maxScale
,
scales
,
cv
::
softcascade
::
Detector
::
DOLLAR
);
if
(
!
cascade
.
load
(
fs
.
getFirstTopLevelNode
()))
{
std
::
cout
<<
"Soft Cascade can't be parsed."
<<
std
::
endl
<<
std
::
flush
;
return
1
;
}
}
HOGDescriptor
hog
;
hog
.
setSVMDetector
(
HOGDescriptor
::
getDefaultPeopleDetector
());
namedWindow
(
"people detector"
,
1
);
std
::
string
src
=
parser
.
get
<
std
::
string
>
(
"frame"
);
std
::
vector
<
std
::
string
>
frames
;
cv
::
glob
(
parser
.
get
<
std
::
string
>
(
"frame"
),
frames
);
std
::
cout
<<
"collected "
<<
src
<<
" "
<<
frames
.
size
()
<<
" frames."
<<
std
::
endl
;
for
(;;
)
for
(
int
i
=
0
;
i
<
(
int
)
frames
.
size
();
++
i
)
{
char
*
filename
=
_filename
;
if
(
f
)
std
::
string
&
frame_sourse
=
frames
[
i
];
cv
::
Mat
frame
=
cv
::
imread
(
frame_sourse
);
if
(
frame
.
empty
())
{
if
(
!
fgets
(
filename
,
(
int
)
sizeof
(
_filename
)
-
2
,
f
))
break
;
//while(*filename && isspace(*filename))
// ++filename;
if
(
filename
[
0
]
==
'#'
)
continue
;
int
l
=
(
int
)
strlen
(
filename
);
while
(
l
>
0
&&
isspace
(
filename
[
l
-
1
]))
--
l
;
filename
[
l
]
=
'\0'
;
img
=
imread
(
filename
);
}
printf
(
"%s:
\n
"
,
filename
);
if
(
!
img
.
data
)
std
::
cout
<<
"Frame source "
<<
frame_sourse
<<
" can't be opened."
<<
std
::
endl
<<
std
::
flush
;
continue
;
}
std
::
ofstream
myfile
;
if
(
wf
)
myfile
.
open
((
frame_sourse
.
replace
(
frame_sourse
.
end
()
-
3
,
frame_sourse
.
end
(),
"txt"
)).
c_str
(),
std
::
ios
::
out
);
////
if
(
useHOG
)
{
std
::
vector
<
cv
::
Rect
>
found
,
found_filtered
;
// run the detector with default parameters. to get a higher hit-rate
// (and more false alarms, respectively), decrease the hitThreshold and
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely).
hog
.
detectMultiScale
(
frame
,
found
,
0
,
cv
::
Size
(
8
,
8
),
cv
::
Size
(
32
,
32
),
1.05
,
2
);
filter_rects
(
found
,
found_filtered
);
std
::
cout
<<
"collected: "
<<
(
int
)
found_filtered
.
size
()
<<
" detections."
<<
std
::
endl
;
for
(
size_t
ff
=
0
;
ff
<
found_filtered
.
size
();
++
ff
)
{
cv
::
Rect
r
=
found_filtered
[
ff
];
cv
::
rectangle
(
frame
,
r
.
tl
(),
r
.
br
(),
cv
::
Scalar
(
0
,
255
,
0
),
3
);
fflush
(
stdout
);
vector
<
Rect
>
found
,
found_filtered
;
double
t
=
(
double
)
getTickCount
();
// run the detector with default parameters. to get a higher hit-rate
// (and more false alarms, respectively), decrease the hitThreshold and
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely).
hog
.
detectMultiScale
(
img
,
found
,
0
,
Size
(
8
,
8
),
Size
(
32
,
32
),
1.05
,
2
);
t
=
(
double
)
getTickCount
()
-
t
;
printf
(
"tdetection time = %gms
\n
"
,
t
*
1000.
/
cv
::
getTickFrequency
());
size_t
i
,
j
;
for
(
i
=
0
;
i
<
found
.
size
();
i
++
)
if
(
wf
)
myfile
<<
r
.
x
<<
","
<<
r
.
y
<<
","
<<
r
.
width
<<
","
<<
r
.
height
<<
","
<<
0.
f
<<
"
\n
"
;
}
}
else
{
Rect
r
=
found
[
i
];
for
(
j
=
0
;
j
<
found
.
size
();
j
++
)
if
(
j
!=
i
&&
(
r
&
found
[
j
])
==
r
)
break
;
if
(
j
==
found
.
size
()
)
found_filtered
.
push_back
(
r
);
std
::
vector
<
cv
::
softcascade
::
Detection
>
objects
;
cascade
.
detect
(
frame
,
cv
::
noArray
(),
objects
);
std
::
cout
<<
"collected: "
<<
(
int
)
objects
.
size
()
<<
" detections."
<<
std
::
endl
;
for
(
int
obj
=
0
;
obj
<
(
int
)
objects
.
size
();
++
obj
)
{
cv
::
softcascade
::
Detection
d
=
objects
[
obj
];
if
(
d
.
confidence
>
thr
)
{
float
b
=
d
.
confidence
*
1.5
f
;
std
::
stringstream
conf
(
std
::
stringstream
::
in
|
std
::
stringstream
::
out
);
conf
<<
d
.
confidence
;
cv
::
rectangle
(
frame
,
cv
::
Rect
(
d
.
bb
.
x
,
d
.
bb
.
y
,
d
.
bb
.
width
,
d
.
bb
.
height
),
cv
::
Scalar
(
b
,
0
,
255
-
b
,
255
),
2
);
cv
::
putText
(
frame
,
conf
.
str
()
,
cv
::
Point
(
d
.
bb
.
x
+
10
,
d
.
bb
.
y
-
5
),
1
,
1.1
,
cv
::
Scalar
(
25
,
133
,
255
,
0
),
1
,
CV_AA
);
if
(
wf
)
myfile
<<
d
.
bb
.
x
<<
","
<<
d
.
bb
.
y
<<
","
<<
d
.
bb
.
width
<<
","
<<
d
.
bb
.
height
<<
","
<<
d
.
confidence
<<
"
\n
"
;
}
}
}
for
(
i
=
0
;
i
<
found_filtered
.
size
();
i
++
)
if
(
wi
)
cv
::
imwrite
(
frame_sourse
+
".dt.png"
,
frame
);
if
(
wf
)
myfile
.
close
();
if
(
si
)
{
Rect
r
=
found_filtered
[
i
];
// the HOG detector returns slightly larger rectangles than the real objects.
// so we slightly shrink the rectangles to get a nicer output.
r
.
x
+=
cvRound
(
r
.
width
*
0.1
);
r
.
width
=
cvRound
(
r
.
width
*
0.8
);
r
.
y
+=
cvRound
(
r
.
height
*
0.07
);
r
.
height
=
cvRound
(
r
.
height
*
0.8
);
rectangle
(
img
,
r
.
tl
(),
r
.
br
(),
cv
::
Scalar
(
0
,
255
,
0
),
3
);
cv
::
imshow
(
"pedestrian detector"
,
frame
);
cv
::
waitKey
(
10
);
}
imshow
(
"people detector"
,
img
);
int
c
=
waitKey
(
0
)
&
255
;
if
(
c
==
'q'
||
c
==
'Q'
||
!
f
)
break
;
}
if
(
f
)
fclose
(
f
);
if
(
si
)
cv
::
waitKey
(
0
);
return
0
;
}
void
filter_rects
(
const
std
::
vector
<
cv
::
Rect
>&
candidates
,
std
::
vector
<
cv
::
Rect
>&
objects
)
{
size_t
i
,
j
;
for
(
i
=
0
;
i
<
candidates
.
size
();
++
i
)
{
cv
::
Rect
r
=
candidates
[
i
];
for
(
j
=
0
;
j
<
candidates
.
size
();
++
j
)
if
(
j
!=
i
&&
(
r
&
candidates
[
j
])
==
r
)
break
;
if
(
j
==
candidates
.
size
())
objects
.
push_back
(
r
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment