Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
O
opencv
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
opencv
Commits
b46719b0
Commit
b46719b0
authored
May 28, 2015
by
Vadim Pisarevsky
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #4074 from vpisarev:objdetect_fixes
parents
8b8fc9e6
882c0321
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
331 additions
and
31 deletions
+331
-31
test_homography.cpp
modules/calib3d/test/test_homography.cpp
+27
-8
test_hal_core.cpp
modules/core/test/test_hal_core.cpp
+195
-0
sumpixels.cpp
modules/imgproc/src/sumpixels.cpp
+3
-0
cascadedetect.cpp
modules/objdetect/src/cascadedetect.cpp
+62
-15
cascadedetect.hpp
modules/objdetect/src/cascadedetect.hpp
+3
-0
hog.cpp
modules/objdetect/src/hog.cpp
+5
-1
cascadedetect.cl
modules/objdetect/src/opencl/cascadedetect.cl
+1
-1
test_cascadeandhog.cpp
modules/objdetect/test/test_cascadeandhog.cpp
+29
-1
facedetect.py
samples/python2/facedetect.py
+6
-5
No files found.
modules/calib3d/test/test_homography.cpp
View file @
b46719b0
...
...
@@ -662,7 +662,7 @@ TEST(Calib3d_Homography, fromImages)
std
::
vector
<
DMatch
>
good_matches
;
for
(
int
i
=
0
;
i
<
descriptors_1
.
rows
;
i
++
)
{
if
(
matches
[
i
].
distance
<=
42
)
if
(
matches
[
i
].
distance
<=
100
)
good_matches
.
push_back
(
matches
[
i
]);
}
...
...
@@ -676,13 +676,32 @@ TEST(Calib3d_Homography, fromImages)
pointframe2
.
push_back
(
keypoints_2
[
good_matches
[
i
].
trainIdx
].
pt
);
}
Mat
inliers
;
Mat
H
=
findHomography
(
pointframe1
,
pointframe2
,
RANSAC
,
3.0
,
inliers
);
int
ninliers
=
countNonZero
(
inliers
);
printf
(
"nfeatures1 = %d, nfeatures2=%d, good matches=%d, ninliers=%d
\n
"
,
Mat
H0
,
H1
,
inliers0
,
inliers1
;
double
min_t0
=
DBL_MAX
,
min_t1
=
DBL_MAX
;
for
(
int
i
=
0
;
i
<
10
;
i
++
)
{
double
t
=
(
double
)
getTickCount
();
H0
=
findHomography
(
pointframe1
,
pointframe2
,
RANSAC
,
3.0
,
inliers0
);
t
=
(
double
)
getTickCount
()
-
t
;
min_t0
=
std
::
min
(
min_t0
,
t
);
}
int
ninliers0
=
countNonZero
(
inliers0
);
for
(
int
i
=
0
;
i
<
10
;
i
++
)
{
double
t
=
(
double
)
getTickCount
();
H1
=
findHomography
(
pointframe1
,
pointframe2
,
RHO
,
3.0
,
inliers1
);
t
=
(
double
)
getTickCount
()
-
t
;
min_t1
=
std
::
min
(
min_t1
,
t
);
}
int
ninliers1
=
countNonZero
(
inliers1
);
double
freq
=
getTickFrequency
();
printf
(
"nfeatures1 = %d, nfeatures2=%d, matches=%d, ninliers(RANSAC)=%d, "
"time(RANSAC)=%.2fmsec, ninliers(RHO)=%d, time(RHO)=%.2fmsec
\n
"
,
(
int
)
keypoints_1
.
size
(),
(
int
)
keypoints_2
.
size
(),
(
int
)
good_matches
.
size
(),
ninliers
);
(
int
)
good_matches
.
size
(),
ninliers
0
,
min_t0
*
1000.
/
freq
,
ninliers1
,
min_t1
*
1000.
/
freq
);
ASSERT_TRUE
(
!
H
.
empty
());
ASSERT_GE
(
ninliers
,
80
);
ASSERT_TRUE
(
!
H0
.
empty
());
ASSERT_GE
(
ninliers0
,
80
);
ASSERT_TRUE
(
!
H1
.
empty
());
ASSERT_GE
(
ninliers1
,
80
);
}
modules/core/test/test_hal_core.cpp
0 → 100644
View file @
b46719b0
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/hal.hpp"
using
namespace
cv
;
enum
{
HAL_EXP
=
0
,
HAL_LOG
=
1
,
HAL_SQRT
=
2
};
TEST
(
Core_HAL
,
mathfuncs
)
{
for
(
int
hcase
=
0
;
hcase
<
6
;
hcase
++
)
{
int
depth
=
hcase
%
2
==
0
?
CV_32F
:
CV_64F
;
double
eps
=
depth
==
CV_32F
?
1e-5
:
1e-10
;
int
nfunc
=
hcase
/
2
;
int
n
=
100
;
Mat
src
(
1
,
n
,
depth
),
dst
(
1
,
n
,
depth
),
dst0
(
1
,
n
,
depth
);
randu
(
src
,
1
,
10
);
double
min_hal_t
=
DBL_MAX
,
min_ocv_t
=
DBL_MAX
;
for
(
int
iter
=
0
;
iter
<
10
;
iter
++
)
{
double
t
=
(
double
)
getTickCount
();
switch
(
nfunc
)
{
case
HAL_EXP
:
if
(
depth
==
CV_32F
)
hal
::
exp
(
src
.
ptr
<
float
>
(),
dst
.
ptr
<
float
>
(),
n
);
else
hal
::
exp
(
src
.
ptr
<
double
>
(),
dst
.
ptr
<
double
>
(),
n
);
break
;
case
HAL_LOG
:
if
(
depth
==
CV_32F
)
hal
::
log
(
src
.
ptr
<
float
>
(),
dst
.
ptr
<
float
>
(),
n
);
else
hal
::
log
(
src
.
ptr
<
double
>
(),
dst
.
ptr
<
double
>
(),
n
);
break
;
case
HAL_SQRT
:
if
(
depth
==
CV_32F
)
hal
::
sqrt
(
src
.
ptr
<
float
>
(),
dst
.
ptr
<
float
>
(),
n
);
else
hal
::
sqrt
(
src
.
ptr
<
double
>
(),
dst
.
ptr
<
double
>
(),
n
);
break
;
default
:
CV_Error
(
Error
::
StsBadArg
,
"unknown function"
);
}
t
=
(
double
)
getTickCount
()
-
t
;
min_hal_t
=
std
::
min
(
min_hal_t
,
t
);
t
=
(
double
)
getTickCount
();
switch
(
nfunc
)
{
case
HAL_EXP
:
exp
(
src
,
dst0
);
break
;
case
HAL_LOG
:
log
(
src
,
dst0
);
break
;
case
HAL_SQRT
:
pow
(
src
,
0.5
,
dst0
);
break
;
default
:
CV_Error
(
Error
::
StsBadArg
,
"unknown function"
);
}
t
=
(
double
)
getTickCount
()
-
t
;
min_ocv_t
=
std
::
min
(
min_ocv_t
,
t
);
}
EXPECT_LE
(
norm
(
dst
,
dst0
,
NORM_INF
|
NORM_RELATIVE
),
eps
);
double
freq
=
getTickFrequency
();
printf
(
"%s (N=%d, %s): hal time=%.2fusec, ocv time=%.2fusec
\n
"
,
(
nfunc
==
HAL_EXP
?
"exp"
:
nfunc
==
HAL_LOG
?
"log"
:
nfunc
==
HAL_SQRT
?
"sqrt"
:
"???"
),
n
,
(
depth
==
CV_32F
?
"f32"
:
"f64"
),
min_hal_t
*
1e6
/
freq
,
min_ocv_t
*
1e6
/
freq
);
}
}
enum
{
HAL_LU
=
0
,
HAL_CHOL
=
1
};
TEST
(
Core_HAL
,
mat_decomp
)
{
for
(
int
hcase
=
0
;
hcase
<
16
;
hcase
++
)
{
int
depth
=
hcase
%
2
==
0
?
CV_32F
:
CV_64F
;
int
size
=
(
hcase
/
2
)
%
4
;
size
=
size
==
0
?
3
:
size
==
1
?
4
:
size
==
2
?
6
:
15
;
int
nfunc
=
(
hcase
/
8
);
double
eps
=
depth
==
CV_32F
?
1e-5
:
1e-10
;
if
(
size
==
3
)
continue
;
Mat
a0
(
size
,
size
,
depth
),
a
(
size
,
size
,
depth
),
b
(
size
,
1
,
depth
),
x
(
size
,
1
,
depth
),
x0
(
size
,
1
,
depth
);
randu
(
a0
,
-
1
,
1
);
a0
=
a0
*
a0
.
t
();
randu
(
b
,
-
1
,
1
);
double
min_hal_t
=
DBL_MAX
,
min_ocv_t
=
DBL_MAX
;
size_t
asize
=
size
*
size
*
a
.
elemSize
();
size_t
bsize
=
size
*
b
.
elemSize
();
for
(
int
iter
=
0
;
iter
<
10
;
iter
++
)
{
memcpy
(
x
.
ptr
(),
b
.
ptr
(),
bsize
);
memcpy
(
a
.
ptr
(),
a0
.
ptr
(),
asize
);
double
t
=
(
double
)
getTickCount
();
switch
(
nfunc
)
{
case
HAL_LU
:
if
(
depth
==
CV_32F
)
hal
::
LU
(
a
.
ptr
<
float
>
(),
a
.
step
,
size
,
x
.
ptr
<
float
>
(),
x
.
step
,
1
);
else
hal
::
LU
(
a
.
ptr
<
double
>
(),
a
.
step
,
size
,
x
.
ptr
<
double
>
(),
x
.
step
,
1
);
break
;
case
HAL_CHOL
:
if
(
depth
==
CV_32F
)
hal
::
Cholesky
(
a
.
ptr
<
float
>
(),
a
.
step
,
size
,
x
.
ptr
<
float
>
(),
x
.
step
,
1
);
else
hal
::
Cholesky
(
a
.
ptr
<
double
>
(),
a
.
step
,
size
,
x
.
ptr
<
double
>
(),
x
.
step
,
1
);
break
;
default
:
CV_Error
(
Error
::
StsBadArg
,
"unknown function"
);
}
t
=
(
double
)
getTickCount
()
-
t
;
min_hal_t
=
std
::
min
(
min_hal_t
,
t
);
t
=
(
double
)
getTickCount
();
solve
(
a0
,
b
,
x0
,
(
nfunc
==
HAL_LU
?
DECOMP_LU
:
DECOMP_CHOLESKY
));
t
=
(
double
)
getTickCount
()
-
t
;
min_ocv_t
=
std
::
min
(
min_ocv_t
,
t
);
}
//std::cout << "x: " << Mat(x.t()) << std::endl;
//std::cout << "x0: " << Mat(x0.t()) << std::endl;
EXPECT_LE
(
norm
(
x
,
x0
,
NORM_INF
|
NORM_RELATIVE
),
eps
);
double
freq
=
getTickFrequency
();
printf
(
"%s (%d x %d, %s): hal time=%.2fusec, ocv time=%.2fusec
\n
"
,
(
nfunc
==
HAL_LU
?
"LU"
:
nfunc
==
HAL_CHOL
?
"Cholesky"
:
"???"
),
size
,
size
,
(
depth
==
CV_32F
?
"f32"
:
"f64"
),
min_hal_t
*
1e6
/
freq
,
min_ocv_t
*
1e6
/
freq
);
}
}
modules/imgproc/src/sumpixels.cpp
View file @
b46719b0
...
...
@@ -318,6 +318,7 @@ static void integral_##suffix( T* src, size_t srcstep, ST* sum, size_t sumstep,
{ integral_(src, srcstep, sum, sumstep, sqsum, sqsumstep, tilted, tiltedstep, size, cn); }
DEF_INTEGRAL_FUNC
(
8u32
s
,
uchar
,
int
,
double
)
DEF_INTEGRAL_FUNC
(
8u32
s32s
,
uchar
,
int
,
int
)
DEF_INTEGRAL_FUNC
(
8u32
f64f
,
uchar
,
float
,
double
)
DEF_INTEGRAL_FUNC
(
8u64
f64f
,
uchar
,
double
,
double
)
DEF_INTEGRAL_FUNC
(
16u64
f64f
,
ushort
,
double
,
double
)
...
...
@@ -505,6 +506,8 @@ void cv::integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, Output
func
=
(
IntegralFunc
)
GET_OPTIMIZED
(
integral_8u32s
);
else
if
(
depth
==
CV_8U
&&
sdepth
==
CV_32S
&&
sqdepth
==
CV_32F
)
func
=
(
IntegralFunc
)
integral_8u32s32f
;
else
if
(
depth
==
CV_8U
&&
sdepth
==
CV_32S
&&
sqdepth
==
CV_32S
)
func
=
(
IntegralFunc
)
integral_8u32s32s
;
else
if
(
depth
==
CV_8U
&&
sdepth
==
CV_32F
&&
sqdepth
==
CV_64F
)
func
=
(
IntegralFunc
)
integral_8u32f64f
;
else
if
(
depth
==
CV_8U
&&
sdepth
==
CV_32F
&&
sqdepth
==
CV_32F
)
...
...
modules/objdetect/src/cascadedetect.cpp
View file @
b46719b0
...
...
@@ -627,33 +627,33 @@ void HaarEvaluator::computeChannels(int scaleIdx, InputArray img)
int
sqy
=
sy
+
(
sqofs
/
sbufSize
.
width
);
UMat
sum
(
usbuf
,
Rect
(
sx
,
sy
,
s
.
szi
.
width
,
s
.
szi
.
height
));
UMat
sqsum
(
usbuf
,
Rect
(
sx
,
sqy
,
s
.
szi
.
width
,
s
.
szi
.
height
));
sqsum
.
flags
=
(
sqsum
.
flags
&
~
UMat
::
DEPTH_MASK
)
|
CV_32
F
;
sqsum
.
flags
=
(
sqsum
.
flags
&
~
UMat
::
DEPTH_MASK
)
|
CV_32
S
;
if
(
hasTiltedFeatures
)
{
int
sty
=
sy
+
(
tofs
/
sbufSize
.
width
);
UMat
tilted
(
usbuf
,
Rect
(
sx
,
sty
,
s
.
szi
.
width
,
s
.
szi
.
height
));
integral
(
img
,
sum
,
sqsum
,
tilted
,
CV_32S
,
CV_32
F
);
integral
(
img
,
sum
,
sqsum
,
tilted
,
CV_32S
,
CV_32
S
);
}
else
{
UMatData
*
u
=
sqsum
.
u
;
integral
(
img
,
sum
,
sqsum
,
noArray
(),
CV_32S
,
CV_32
F
);
CV_Assert
(
sqsum
.
u
==
u
&&
sqsum
.
size
()
==
s
.
szi
&&
sqsum
.
type
()
==
CV_32
F
);
integral
(
img
,
sum
,
sqsum
,
noArray
(),
CV_32S
,
CV_32
S
);
CV_Assert
(
sqsum
.
u
==
u
&&
sqsum
.
size
()
==
s
.
szi
&&
sqsum
.
type
()
==
CV_32
S
);
}
}
else
{
Mat
sum
(
s
.
szi
,
CV_32S
,
sbuf
.
ptr
<
int
>
()
+
s
.
layer_ofs
,
sbuf
.
step
);
Mat
sqsum
(
s
.
szi
,
CV_32
F
,
sum
.
ptr
<
int
>
()
+
sqofs
,
sbuf
.
step
);
Mat
sqsum
(
s
.
szi
,
CV_32
S
,
sum
.
ptr
<
int
>
()
+
sqofs
,
sbuf
.
step
);
if
(
hasTiltedFeatures
)
{
Mat
tilted
(
s
.
szi
,
CV_32S
,
sum
.
ptr
<
int
>
()
+
tofs
,
sbuf
.
step
);
integral
(
img
,
sum
,
sqsum
,
tilted
,
CV_32S
,
CV_32
F
);
integral
(
img
,
sum
,
sqsum
,
tilted
,
CV_32S
,
CV_32
S
);
}
else
integral
(
img
,
sum
,
sqsum
,
noArray
(),
CV_32S
,
CV_32
F
);
integral
(
img
,
sum
,
sqsum
,
noArray
(),
CV_32S
,
CV_32
S
);
}
}
...
...
@@ -689,18 +689,23 @@ bool HaarEvaluator::setWindow( Point pt, int scaleIdx )
return
false
;
pwin
=
&
sbuf
.
at
<
int
>
(
pt
)
+
s
.
layer_ofs
;
const
float
*
pq
=
(
const
floa
t
*
)(
pwin
+
sqofs
);
const
int
*
pq
=
(
const
in
t
*
)(
pwin
+
sqofs
);
int
valsum
=
CALC_SUM_OFS
(
nofs
,
pwin
);
float
valsqsum
=
CALC_SUM_OFS
(
nofs
,
pq
);
unsigned
valsqsum
=
(
unsigned
)(
CALC_SUM_OFS
(
nofs
,
pq
)
);
double
nf
=
(
double
)
normrect
.
area
()
*
valsqsum
-
(
double
)
valsum
*
valsum
;
double
area
=
normrect
.
area
();
double
nf
=
area
*
valsqsum
-
(
double
)
valsum
*
valsum
;
if
(
nf
>
0.
)
{
nf
=
std
::
sqrt
(
nf
);
varianceNormFactor
=
(
float
)(
1.
/
nf
);
return
area
*
varianceNormFactor
<
1e-1
;
}
else
nf
=
1.
;
varianceNormFactor
=
(
float
)(
1.
/
nf
)
;
return
true
;
{
varianceNormFactor
=
1.
f
;
return
false
;
}
}
...
...
@@ -1402,8 +1407,10 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
else
if
(
featureTypeStr
==
CC_LBP
)
featureType
=
FeatureEvaluator
::
LBP
;
else
if
(
featureTypeStr
==
CC_HOG
)
{
featureType
=
FeatureEvaluator
::
HOG
;
CV_Error
(
Error
::
StsNotImplemented
,
"HOG cascade is not supported in 3.0"
);
}
else
return
false
;
...
...
@@ -1580,6 +1587,43 @@ bool CascadeClassifier::read(const FileNode &root)
return
ok
;
}
void
clipObjects
(
Size
sz
,
std
::
vector
<
Rect
>&
objects
,
std
::
vector
<
int
>*
a
,
std
::
vector
<
double
>*
b
)
{
size_t
i
,
j
=
0
,
n
=
objects
.
size
();
Rect
win0
=
Rect
(
0
,
0
,
sz
.
width
,
sz
.
height
);
if
(
a
)
{
CV_Assert
(
a
->
size
()
==
n
);
}
if
(
b
)
{
CV_Assert
(
b
->
size
()
==
n
);
}
for
(
i
=
0
;
i
<
n
;
i
++
)
{
Rect
r
=
win0
&
objects
[
i
];
if
(
r
.
area
()
>
0
)
{
objects
[
j
]
=
r
;
if
(
i
>
j
)
{
if
(
a
)
a
->
at
(
j
)
=
a
->
at
(
i
);
if
(
b
)
b
->
at
(
j
)
=
b
->
at
(
i
);
}
j
++
;
}
}
if
(
j
<
n
)
{
objects
.
resize
(
j
);
if
(
a
)
a
->
resize
(
j
);
if
(
b
)
b
->
resize
(
j
);
}
}
void
CascadeClassifier
::
detectMultiScale
(
InputArray
image
,
CV_OUT
std
::
vector
<
Rect
>&
objects
,
double
scaleFactor
,
...
...
@@ -1589,6 +1633,7 @@ void CascadeClassifier::detectMultiScale( InputArray image,
{
CV_Assert
(
!
empty
());
cc
->
detectMultiScale
(
image
,
objects
,
scaleFactor
,
minNeighbors
,
flags
,
minSize
,
maxSize
);
clipObjects
(
image
.
size
(),
objects
,
0
,
0
);
}
void
CascadeClassifier
::
detectMultiScale
(
InputArray
image
,
...
...
@@ -1601,6 +1646,7 @@ void CascadeClassifier::detectMultiScale( InputArray image,
CV_Assert
(
!
empty
());
cc
->
detectMultiScale
(
image
,
objects
,
numDetections
,
scaleFactor
,
minNeighbors
,
flags
,
minSize
,
maxSize
);
clipObjects
(
image
.
size
(),
objects
,
&
numDetections
,
0
);
}
void
CascadeClassifier
::
detectMultiScale
(
InputArray
image
,
...
...
@@ -1616,6 +1662,7 @@ void CascadeClassifier::detectMultiScale( InputArray image,
cc
->
detectMultiScale
(
image
,
objects
,
rejectLevels
,
levelWeights
,
scaleFactor
,
minNeighbors
,
flags
,
minSize
,
maxSize
,
outputRejectLevels
);
clipObjects
(
image
.
size
(),
objects
,
&
rejectLevels
,
&
levelWeights
);
}
bool
CascadeClassifier
::
isOldFormatCascade
()
const
...
...
modules/objdetect/src/cascadedetect.hpp
View file @
b46719b0
...
...
@@ -5,6 +5,9 @@
namespace
cv
{
void
clipObjects
(
Size
sz
,
std
::
vector
<
Rect
>&
objects
,
std
::
vector
<
int
>*
a
,
std
::
vector
<
double
>*
b
);
class
FeatureEvaluator
{
public
:
...
...
modules/objdetect/src/hog.cpp
View file @
b46719b0
...
...
@@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include "cascadedetect.hpp"
#include "opencv2/core/core_c.h"
#include "opencl_kernels_objdetect.hpp"
...
...
@@ -1823,7 +1824,9 @@ static bool ocl_detectMultiScale(InputArray _img, std::vector<Rect> &found_locat
all_candidates
.
push_back
(
Rect
(
Point2d
(
locations
[
j
])
*
scale
,
scaled_win_size
));
}
found_locations
.
assign
(
all_candidates
.
begin
(),
all_candidates
.
end
());
cv
::
groupRectangles
(
found_locations
,
(
int
)
group_threshold
,
0.2
);
groupRectangles
(
found_locations
,
(
int
)
group_threshold
,
0.2
);
clipObjects
(
imgSize
,
found_locations
,
0
,
0
);
return
true
;
}
#endif //HAVE_OPENCL
...
...
@@ -1879,6 +1882,7 @@ void HOGDescriptor::detectMultiScale(
groupRectangles_meanshift
(
foundLocations
,
foundWeights
,
foundScales
,
finalThreshold
,
winSize
);
else
groupRectangles
(
foundLocations
,
foundWeights
,
(
int
)
finalThreshold
,
0.2
);
clipObjects
(
imgSize
,
foundLocations
,
0
,
&
foundWeights
);
}
void
HOGDescriptor
::
detectMultiScale
(
InputArray
img
,
std
::
vector
<
Rect
>&
foundLocations
,
...
...
modules/objdetect/src/opencl/cascadedetect.cl
View file @
b46719b0
...
...
@@ -160,7 +160,7 @@ void runHaarClassifier(
__global const int* psum = psum1;
#endif
__global const
float* psqsum = (__global const floa
t*)(psum1 + sqofs);
__global const
int* psqsum = (__global const in
t*)(psum1 + sqofs);
float sval = (psum[nofs.x] - psum[nofs.y] - psum[nofs.z] + psum[nofs.w])*invarea;
float sqval = (psqsum[nofs0.x] - psqsum[nofs0.y] - psqsum[nofs0.z] + psqsum[nofs0.w])*invarea;
float nf = (float)normarea * sqrt(max(sqval - sval * sval, 0.f));
...
...
modules/objdetect/test/test_cascadeandhog.cpp
View file @
b46719b0
...
...
@@ -1360,4 +1360,32 @@ TEST(Objdetect_HOGDetector_Strict, accuracy)
std
::
vector
<
float
>
descriptors
;
reference_hog
.
compute
(
image
,
descriptors
);
}
}
}
TEST
(
Objdetect_CascadeDetector
,
small_img
)
{
String
root
=
cvtest
::
TS
::
ptr
()
->
get_data_path
()
+
"cascadeandhog/cascades/"
;
String
cascades
[]
=
{
root
+
"haarcascade_frontalface_alt.xml"
,
root
+
"lbpcascade_frontalface.xml"
,
String
()
};
vector
<
Rect
>
objects
;
RNG
rng
((
uint64
)
-
1
);
for
(
int
i
=
0
;
!
cascades
[
i
].
empty
();
i
++
)
{
printf
(
"%d. %s
\n
"
,
i
,
cascades
[
i
].
c_str
());
CascadeClassifier
cascade
(
cascades
[
i
]);
for
(
int
j
=
0
;
j
<
100
;
j
++
)
{
int
width
=
rng
.
uniform
(
1
,
100
);
int
height
=
rng
.
uniform
(
1
,
100
);
Mat
img
(
height
,
width
,
CV_8U
);
randu
(
img
,
0
,
256
);
cascade
.
detectMultiScale
(
img
,
objects
);
}
}
}
samples/python2/facedetect.py
View file @
b46719b0
...
...
@@ -49,11 +49,12 @@ if __name__ == '__main__':
rects
=
detect
(
gray
,
cascade
)
vis
=
img
.
copy
()
draw_rects
(
vis
,
rects
,
(
0
,
255
,
0
))
for
x1
,
y1
,
x2
,
y2
in
rects
:
roi
=
gray
[
y1
:
y2
,
x1
:
x2
]
vis_roi
=
vis
[
y1
:
y2
,
x1
:
x2
]
subrects
=
detect
(
roi
.
copy
(),
nested
)
draw_rects
(
vis_roi
,
subrects
,
(
255
,
0
,
0
))
if
not
nested
.
empty
():
for
x1
,
y1
,
x2
,
y2
in
rects
:
roi
=
gray
[
y1
:
y2
,
x1
:
x2
]
vis_roi
=
vis
[
y1
:
y2
,
x1
:
x2
]
subrects
=
detect
(
roi
.
copy
(),
nested
)
draw_rects
(
vis_roi
,
subrects
,
(
255
,
0
,
0
))
dt
=
clock
()
-
t
draw_str
(
vis
,
(
20
,
20
),
'time:
%.1
f ms'
%
(
dt
*
1000
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment