Commit b417fb09 authored by catree's avatar catree

Add tutorial and codes for the homography tutorial.

parent 7b701fee
...@@ -554,6 +554,13 @@ ...@@ -554,6 +554,13 @@
pages = {135--144}, pages = {135--144},
publisher = {Springer} publisher = {Springer}
} }
@book{Ma:2003:IVI,
author = {Ma, Yi and Soatto, Stefano and Kosecka, Jana and Sastry, S. Shankar},
title = {An Invitation to 3-D Vision: From Images to Geometric Models},
year = {2003},
isbn = {0387008934},
publisher = {SpringerVerlag},
}
@ARTICLE{Malis, @ARTICLE{Malis,
author = {Malis, Ezio and Vargas, Manuel and others}, author = {Malis, Ezio and Vargas, Manuel and others},
title = {Deeper understanding of the homography decomposition for vision-based control}, title = {Deeper understanding of the homography decomposition for vision-based control},
......
This diff is collapsed.
...@@ -93,3 +93,10 @@ OpenCV. ...@@ -93,3 +93,10 @@ OpenCV.
*Author:* Fedor Morozov *Author:* Fedor Morozov
Using *AKAZE* and *ORB* for planar object tracking. Using *AKAZE* and *ORB* for planar object tracking.
- @subpage tutorial_homography
*Compatibility:* \> OpenCV 3.0
This tutorial will explain the basic concepts of the homography with some
demonstration codes.
%YAML:1.0
---
image_width: 640
image_height: 480
board_width: 9
board_height: 6
square_size: 1.
aspectRatio: 1.
flags: 2
camera_matrix: !!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 5.3591575307485539e+02, 0., 3.4228314953752817e+02, 0.,
5.3591575307485539e+02, 2.3557082321320789e+02, 0., 0., 1. ]
distortion_coefficients: !!opencv-matrix
rows: 5
cols: 1
dt: d
data: [ -2.6637290673868386e-01, -3.8586722644459073e-02,
1.7831841406179300e-03, -2.8122035403651473e-04,
2.3838760574917545e-01 ]
avg_reprojection_error: 3.9259109564815858e-01
#include <iostream>
#include <opencv2/opencv_modules.hpp>
#ifdef HAVE_OPENCV_ARUCO
#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
using namespace std;
using namespace cv;
namespace
{
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD)
{
corners.resize(0);
switch (patternType)
{
case CHESSBOARD:
case CIRCLES_GRID:
//! [compute-chessboard-object-points]
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float(j*squareSize),
float(i*squareSize), 0));
//! [compute-chessboard-object-points]
break;
case ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize),
float(i*squareSize), 0));
break;
default:
CV_Error(Error::StsBadArg, "Unknown pattern type\n");
}
}
void poseEstimationFromCoplanarPoints(const string &imgPath, const string &intrinsicsPath, const Size &patternSize,
const float squareSize)
{
Mat img = imread(imgPath);
Mat img_corners = img.clone(), img_pose = img.clone();
//! [find-chessboard-corners]
vector<Point2f> corners;
bool found = findChessboardCorners(img, patternSize, corners);
//! [find-chessboard-corners]
if (!found)
{
cout << "Cannot find chessboard corners." << endl;
return;
}
drawChessboardCorners(img_corners, patternSize, corners, found);
imshow("Chessboard corners detection", img_corners);
//! [compute-object-points]
vector<Point3f> objectPoints;
calcChessboardCorners(patternSize, squareSize, objectPoints);
vector<Point2f> objectPointsPlanar;
for (size_t i = 0; i < objectPoints.size(); i++)
{
objectPointsPlanar.push_back(Point2f(objectPoints[i].x, objectPoints[i].y));
}
//! [compute-object-points]
//! [load-intrinsics]
FileStorage fs(intrinsicsPath, FileStorage::READ);
Mat cameraMatrix, distCoeffs;
fs["camera_matrix"] >> cameraMatrix;
fs["distortion_coefficients"] >> distCoeffs;
//! [load-intrinsics]
//! [compute-image-points]
vector<Point2f> imagePoints;
undistortPoints(corners, imagePoints, cameraMatrix, distCoeffs);
//! [compute-image-points]
//! [estimate-homography]
Mat H = findHomography(objectPointsPlanar, imagePoints);
cout << "H:\n" << H << endl;
//! [estimate-homography]
//! [pose-from-homography]
// Normalization to ensure that ||c1|| = 1
double norm = sqrt(H.at<double>(0,0)*H.at<double>(0,0) +
H.at<double>(1,0)*H.at<double>(1,0) +
H.at<double>(2,0)*H.at<double>(2,0));
H /= norm;
Mat c1 = H.col(0);
Mat c2 = H.col(1);
Mat c3 = c1.cross(c2);
Mat tvec = H.col(2);
Mat R(3, 3, CV_64F);
for (int i = 0; i < 3; i++)
{
R.at<double>(i,0) = c1.at<double>(i,0);
R.at<double>(i,1) = c2.at<double>(i,0);
R.at<double>(i,2) = c3.at<double>(i,0);
}
//! [pose-from-homography]
//! [display-pose]
Mat rvec;
Rodrigues(R, rvec);
aruco::drawAxis(img_pose, cameraMatrix, distCoeffs, rvec, tvec, 2*squareSize);
imshow("Pose from coplanar points", img_pose);
waitKey();
//! [display-pose]
}
const char* about = "Code for homography tutorial.\n"
"Example 1: pose from homography with coplanar points.\n";
const char* params
= "{ h help | false | print usage }"
"{ image | | path to a chessboard image (left04.jpg) }"
"{ intrinsics | | path to camera intrinsics (left_intrinsics.yml) }"
"{ width w | 9 | chessboard width }"
"{ height h | 6 | chessboard height }"
"{ square_size | 0.025 | chessboard square size }";
}
int main(int argc, char *argv[])
{
CommandLineParser parser(argc, argv, params);
if (parser.get<bool>("help"))
{
cout << about << endl;
parser.printMessage();
return 0;
}
Size patternSize(parser.get<int>("width"), parser.get<int>("height"));
float squareSize = (float) parser.get<double>("square_size");
poseEstimationFromCoplanarPoints(parser.get<string>("image"),
parser.get<string>("intrinsics"),
patternSize, squareSize);
return 0;
}
#else
int main()
{
std::cerr << "FATAL ERROR: This sample requires opencv_aruco module (from opencv_contrib)" << std::endl;
return 0;
}
#endif
#include <iostream>
#include <opencv2/opencv_modules.hpp>
#ifdef HAVE_OPENCV_ARUCO
#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
using namespace std;
using namespace cv;
namespace
{
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
Scalar randomColor( RNG& rng )
{
int icolor = (unsigned int) rng;
return Scalar( icolor & 255, (icolor >> 8) & 255, (icolor >> 16) & 255 );
}
void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD)
{
corners.resize(0);
switch (patternType)
{
case CHESSBOARD:
case CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float(j*squareSize),
float(i*squareSize), 0));
break;
case ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize),
float(i*squareSize), 0));
break;
default:
CV_Error(Error::StsBadArg, "Unknown pattern type\n");
}
}
void perspectiveCorrection(const string &img1Path, const string &img2Path, const Size &patternSize, RNG &rng)
{
Mat img1 = imread(img1Path);
Mat img2 = imread(img2Path);
//! [find-corners]
vector<Point2f> corners1, corners2;
bool found1 = findChessboardCorners(img1, patternSize, corners1);
bool found2 = findChessboardCorners(img2, patternSize, corners2);
//! [find-corners]
if (!found1 || !found2)
{
cout << "Error, cannot find the chessboard corners in both images." << endl;
return;
}
//! [estimate-homography]
Mat H = findHomography(corners1, corners2);
cout << "H:\n" << H << endl;
//! [estimate-homography]
//! [warp-chessboard]
Mat img1_warp;
warpPerspective(img1, img1_warp, H, img1.size());
//! [warp-chessboard]
Mat img_draw_warp;
hconcat(img2, img1_warp, img_draw_warp);
imshow("Desired chessboard view / Warped source chessboard view", img_draw_warp);
//! [compute-transformed-corners]
Mat img_draw_matches;
hconcat(img1, img2, img_draw_matches);
for (size_t i = 0; i < corners1.size(); i++)
{
Mat pt1 = (Mat_<double>(3,1) << corners1[i].x, corners1[i].y, 1);
Mat pt2 = H * pt1;
pt2 /= pt2.at<double>(2);
Point end( (int) (img1.cols + pt2.at<double>(0)), (int) pt2.at<double>(1) );
line(img_draw_matches, corners1[i], end, randomColor(rng), 2);
}
imshow("Draw matches", img_draw_matches);
waitKey();
//! [compute-transformed-corners]
}
const char* about = "Code for homography tutorial.\n"
"Example 2: perspective correction.\n";
const char* params
= "{ h help | false | print usage }"
"{ image1 | | path to the source chessboard image (left02.jpg) }"
"{ image2 | | path to the desired chessboard image (left01.jpg) }"
"{ width w | 9 | chessboard width }"
"{ height h | 6 | chessboard height }";
}
int main(int argc, char *argv[])
{
cv::RNG rng( 0xFFFFFFFF );
CommandLineParser parser(argc, argv, params);
if (parser.get<bool>("help"))
{
cout << about << endl;
parser.printMessage();
return 0;
}
Size patternSize(parser.get<int>("width"), parser.get<int>("height"));
perspectiveCorrection(parser.get<string>("image1"),
parser.get<string>("image2"),
patternSize, rng);
return 0;
}
#else
int main()
{
std::cerr << "FATAL ERROR: This sample requires opencv_aruco module (from opencv_contrib)" << std::endl;
return 0;
}
#endif
#include <iostream>
#include <opencv2/opencv_modules.hpp>
#ifdef HAVE_OPENCV_ARUCO
#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
using namespace std;
using namespace cv;
namespace
{
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD)
{
corners.resize(0);
switch (patternType)
{
case CHESSBOARD:
case CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float(j*squareSize),
float(i*squareSize), 0));
break;
case ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize),
float(i*squareSize), 0));
break;
default:
CV_Error(Error::StsBadArg, "Unknown pattern type\n");
}
}
//! [compute-homography]
Mat computeHomography(const Mat &R_1to2, const Mat &tvec_1to2, const double d_inv, const Mat &normal)
{
Mat homography = R_1to2 + d_inv * tvec_1to2*normal.t();
return homography;
}
//! [compute-homography]
Mat computeHomography(const Mat &R1, const Mat &tvec1, const Mat &R2, const Mat &tvec2,
const double d_inv, const Mat &normal)
{
Mat homography = R2 * R1.t() + d_inv * (-R2 * R1.t() * tvec1 + tvec2) * normal.t();
return homography;
}
//! [compute-c2Mc1]
void computeC2MC1(const Mat &R1, const Mat &tvec1, const Mat &R2, const Mat &tvec2,
Mat &R_1to2, Mat &tvec_1to2)
{
//c2Mc1 = c2Mo * oMc1 = c2Mo * c1Mo.inv()
R_1to2 = R2 * R1.t();
tvec_1to2 = R2 * (-R1.t()*tvec1) + tvec2;
}
//! [compute-c2Mc1]
void homographyFromCameraDisplacement(const string &img1Path, const string &img2Path, const Size &patternSize,
const float squareSize, const string &intrinsicsPath)
{
Mat img1 = imread(img1Path);
Mat img2 = imread(img2Path);
//! [compute-poses]
vector<Point2f> corners1, corners2;
bool found1 = findChessboardCorners(img1, patternSize, corners1);
bool found2 = findChessboardCorners(img2, patternSize, corners2);
if (!found1 || !found2)
{
cout << "Error, cannot find the chessboard corners in both images." << endl;
return;
}
vector<Point3f> objectPoints;
calcChessboardCorners(patternSize, squareSize, objectPoints);
FileStorage fs(intrinsicsPath, FileStorage::READ);
Mat cameraMatrix, distCoeffs;
fs["camera_matrix"] >> cameraMatrix;
fs["distortion_coefficients"] >> distCoeffs;
Mat rvec1, tvec1;
solvePnP(objectPoints, corners1, cameraMatrix, distCoeffs, rvec1, tvec1);
Mat rvec2, tvec2;
solvePnP(objectPoints, corners2, cameraMatrix, distCoeffs, rvec2, tvec2);
//! [compute-poses]
Mat img1_copy_pose = img1.clone(), img2_copy_pose = img2.clone();
Mat img_draw_poses;
aruco::drawAxis(img1_copy_pose, cameraMatrix, distCoeffs, rvec1, tvec1, 2*squareSize);
aruco::drawAxis(img2_copy_pose, cameraMatrix, distCoeffs, rvec2, tvec2, 2*squareSize);
hconcat(img1_copy_pose, img2_copy_pose, img_draw_poses);
imshow("Chessboard poses", img_draw_poses);
//! [compute-camera-displacement]
Mat R1, R2;
Rodrigues(rvec1, R1);
Rodrigues(rvec2, R2);
Mat R_1to2, t_1to2;
computeC2MC1(R1, tvec1, R2, tvec2, R_1to2, t_1to2);
Mat rvec_1to2;
Rodrigues(R_1to2, rvec_1to2);
//! [compute-camera-displacement]
//! [compute-plane-normal-at-camera-pose-1]
Mat normal = (Mat_<double>(3,1) << 0, 0, 1);
Mat normal1 = R1*normal;
//! [compute-plane-normal-at-camera-pose-1]
//! [compute-plane-distance-to-the-camera-frame-1]
Mat origin(3, 1, CV_64F, Scalar(0));
Mat origin1 = R1*origin + tvec1;
double d_inv1 = 1.0 / normal1.dot(origin1);
//! [compute-plane-distance-to-the-camera-frame-1]
//! [compute-homography-from-camera-displacement]
Mat homography_euclidean = computeHomography(R_1to2, t_1to2, d_inv1, normal1);
Mat homography = cameraMatrix * homography_euclidean * cameraMatrix.inv();
homography /= homography.at<double>(2,2);
homography_euclidean /= homography_euclidean.at<double>(2,2);
//! [compute-homography-from-camera-displacement]
//Same but using absolute camera poses instead of camera displacement, just for check
Mat homography_euclidean2 = computeHomography(R1, tvec1, R2, tvec2, d_inv1, normal1);
Mat homography2 = cameraMatrix * homography_euclidean2 * cameraMatrix.inv();
homography_euclidean2 /= homography_euclidean2.at<double>(2,2);
homography2 /= homography2.at<double>(2,2);
cout << "\nEuclidean Homography:\n" << homography_euclidean << endl;
cout << "Euclidean Homography 2:\n" << homography_euclidean2 << endl << endl;
//! [estimate-homography]
Mat H = findHomography(corners1, corners2);
cout << "\nfindHomography H:\n" << H << endl;
//! [estimate-homography]
cout << "homography from camera displacement:\n" << homography << endl;
cout << "homography from absolute camera poses:\n" << homography2 << endl << endl;
//! [warp-chessboard]
Mat img1_warp;
warpPerspective(img1, img1_warp, H, img1.size());
//! [warp-chessboard]
Mat img1_warp_custom;
warpPerspective(img1, img1_warp_custom, homography, img1.size());
imshow("Warped image using homography computed from camera displacement", img1_warp_custom);
Mat img_draw_compare;
hconcat(img1_warp, img1_warp_custom, img_draw_compare);
imshow("Warped images comparison", img_draw_compare);
Mat img1_warp_custom2;
warpPerspective(img1, img1_warp_custom2, homography2, img1.size());
imshow("Warped image using homography computed from absolute camera poses", img1_warp_custom2);
waitKey();
}
const char* about = "Code for homography tutorial.\n"
"Example 3: homography from the camera displacement.\n";
const char* params
= "{ h help | false | print usage }"
"{ image1 | | path to the source chessboard image (left02.jpg) }"
"{ image2 | | path to the desired chessboard image (left01.jpg) }"
"{ intrinsics | | path to camera intrinsics (left_intrinsics.yml) }"
"{ width w | 9 | chessboard width }"
"{ height h | 6 | chessboard height }"
"{ square_size | 0.025 | chessboard square size }";
}
int main(int argc, char *argv[])
{
CommandLineParser parser(argc, argv, params);
if (parser.get<bool>("help"))
{
cout << about << endl;
parser.printMessage();
return 0;
}
Size patternSize(parser.get<int>("width"), parser.get<int>("height"));
float squareSize = (float) parser.get<double>("square_size");
homographyFromCameraDisplacement(parser.get<string>("image1"),
parser.get<string>("image2"),
patternSize, squareSize,
parser.get<string>("intrinsics"));
return 0;
}
#else
int main()
{
std::cerr << "FATAL ERROR: This sample requires opencv_aruco module (from opencv_contrib)" << std::endl;
return 0;
}
#endif
#include <iostream>
#include <opencv2/opencv_modules.hpp>
#ifdef HAVE_OPENCV_ARUCO
#include <opencv2/opencv.hpp>
#include <opencv2/aruco.hpp>
using namespace std;
using namespace cv;
namespace
{
enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID };
void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners, Pattern patternType = CHESSBOARD)
{
corners.resize(0);
switch (patternType) {
case CHESSBOARD:
case CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float(j*squareSize),
float(i*squareSize), 0));
break;
case ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize),
float(i*squareSize), 0));
break;
default:
CV_Error(Error::StsBadArg, "Unknown pattern type\n");
}
}
Mat computeHomography(const Mat &R_1to2, const Mat &tvec_1to2, const double d_inv, const Mat &normal)
{
Mat homography = R_1to2 + d_inv * tvec_1to2*normal.t();
return homography;
}
void computeC2MC1(const Mat &R1, const Mat &tvec1, const Mat &R2, const Mat &tvec2,
Mat &R_1to2, Mat &tvec_1to2)
{
//c2Mc1 = c2Mo * oMc1 = c2Mo * c1Mo.inv()
R_1to2 = R2 * R1.t();
tvec_1to2 = R2 * (-R1.t()*tvec1) + tvec2;
}
void decomposeHomography(const string &img1Path, const string &img2Path, const Size &patternSize,
const float squareSize, const string &intrinsicsPath)
{
Mat img1 = imread(img1Path);
Mat img2 = imread(img2Path);
vector<Point2f> corners1, corners2;
bool found1 = findChessboardCorners(img1, patternSize, corners1);
bool found2 = findChessboardCorners(img2, patternSize, corners2);
if (!found1 || !found2)
{
cout << "Error, cannot find the chessboard corners in both images." << endl;
return;
}
//! [compute-poses]
vector<Point3f> objectPoints;
calcChessboardCorners(patternSize, squareSize, objectPoints);
FileStorage fs(intrinsicsPath, FileStorage::READ);
Mat cameraMatrix, distCoeffs;
fs["camera_matrix"] >> cameraMatrix;
fs["distortion_coefficients"] >> distCoeffs;
Mat rvec1, tvec1;
solvePnP(objectPoints, corners1, cameraMatrix, distCoeffs, rvec1, tvec1);
Mat rvec2, tvec2;
solvePnP(objectPoints, corners2, cameraMatrix, distCoeffs, rvec2, tvec2);
//! [compute-poses]
//! [compute-camera-displacement]
Mat R1, R2;
Rodrigues(rvec1, R1);
Rodrigues(rvec2, R2);
Mat R_1to2, t_1to2;
computeC2MC1(R1, tvec1, R2, tvec2, R_1to2, t_1to2);
Mat rvec_1to2;
Rodrigues(R_1to2, rvec_1to2);
//! [compute-camera-displacement]
//! [compute-plane-normal-at-camera-pose-1]
Mat normal = (Mat_<double>(3,1) << 0, 0, 1);
Mat normal1 = R1*normal;
//! [compute-plane-normal-at-camera-pose-1]
//! [compute-plane-distance-to-the-camera-frame-1]
Mat origin(3, 1, CV_64F, Scalar(0));
Mat origin1 = R1*origin + tvec1;
double d_inv1 = 1.0 / normal1.dot(origin1);
//! [compute-plane-distance-to-the-camera-frame-1]
//! [compute-homography-from-camera-displacement]
Mat homography_euclidean = computeHomography(R_1to2, t_1to2, d_inv1, normal1);
Mat homography = cameraMatrix * homography_euclidean * cameraMatrix.inv();
homography /= homography.at<double>(2,2);
homography_euclidean /= homography_euclidean.at<double>(2,2);
//! [compute-homography-from-camera-displacement]
//! [decompose-homography-from-camera-displacement]
vector<Mat> Rs_decomp, ts_decomp, normals_decomp;
int solutions = decomposeHomographyMat(homography, cameraMatrix, Rs_decomp, ts_decomp, normals_decomp);
cout << "Decompose homography matrix computed from the camera displacement:" << endl << endl;
for (int i = 0; i < solutions; i++)
{
double factor_d1 = 1.0 / d_inv1;
Mat rvec_decomp;
Rodrigues(Rs_decomp[i], rvec_decomp);
cout << "Solution " << i << ":" << endl;
cout << "rvec from homography decomposition: " << rvec_decomp.t() << endl;
cout << "rvec from camera displacement: " << rvec_1to2.t() << endl;
cout << "tvec from homography decomposition: " << ts_decomp[i].t() << " and scaled by d: " << factor_d1 * ts_decomp[i].t() << endl;
cout << "tvec from camera displacement: " << t_1to2.t() << endl;
cout << "plane normal from homography decomposition: " << normals_decomp[i].t() << endl;
cout << "plane normal at camera 1 pose: " << normal1.t() << endl << endl;
}
//! [decompose-homography-from-camera-displacement]
//! [estimate homography]
Mat H = findHomography(corners1, corners2);
//! [estimate homography]
//! [decompose-homography-estimated-by-findHomography]
solutions = decomposeHomographyMat(H, cameraMatrix, Rs_decomp, ts_decomp, normals_decomp);
cout << "Decompose homography matrix estimated by findHomography():" << endl << endl;
for (int i = 0; i < solutions; i++)
{
double factor_d1 = 1.0 / d_inv1;
Mat rvec_decomp;
Rodrigues(Rs_decomp[i], rvec_decomp);
cout << "Solution " << i << ":" << endl;
cout << "rvec from homography decomposition: " << rvec_decomp.t() << endl;
cout << "rvec from camera displacement: " << rvec_1to2.t() << endl;
cout << "tvec from homography decomposition: " << ts_decomp[i].t() << " and scaled by d: " << factor_d1 * ts_decomp[i].t() << endl;
cout << "tvec from camera displacement: " << t_1to2.t() << endl;
cout << "plane normal from homography decomposition: " << normals_decomp[i].t() << endl;
cout << "plane normal at camera 1 pose: " << normal1.t() << endl << endl;
}
//! [decompose-homography-estimated-by-findHomography]
}
const char* about = "Code for homography tutorial.\n"
"Example 4: decompose the homography matrix.\n";
const char* params
= "{ h help | false | print usage }"
"{ image1 | | path to the source chessboard image (left02.jpg) }"
"{ image2 | | path to the desired chessboard image (left01.jpg) }"
"{ intrinsics | | path to camera intrinsics (left_intrinsics.yml) }"
"{ width w | 9 | chessboard width }"
"{ height h | 6 | chessboard height }"
"{ square_size | 0.025 | chessboard square size }";
}
int main(int argc, char *argv[])
{
CommandLineParser parser(argc, argv, params);
if (parser.get<bool>("help"))
{
cout << about << endl;
parser.printMessage();
return 0;
}
Size patternSize(parser.get<int>("width"), parser.get<int>("height"));
float squareSize = (float) parser.get<double>("square_size");
decomposeHomography(parser.get<string>("image1"),
parser.get<string>("image2"),
patternSize, squareSize,
parser.get<string>("intrinsics"));
return 0;
}
#else
int main()
{
std::cerr << "FATAL ERROR: This sample requires opencv_aruco module (from opencv_contrib)" << std::endl;
return 0;
}
#endif
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment